1
|
Hashemkhani M, Sennaroğlu A, Acar HY. ICG-ALA complex for improved phototherapy of cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113121. [PMID: 39923641 DOI: 10.1016/j.jphotobiol.2025.113121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/07/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
5-Aminolevulinic acid (ALA) based photodynamic therapy (PDT) is a clinically approved therapeutic method for cancer treatment. Indocyanine green (ICG) is on the other hand an FDA-approved fluorescent dye that has been widely used in medical imaging in the near-infrared (NIR), and lately recognized as an agent to induce photothermal therapy (PTT). However, the hydrophilicity of ALA and rapid degradation of ICG in aqueous or physiological media as well as their instability limit their clinical application. Besides, the combination of PDT and PTT is a promising alternative to a single therapy approach. Herein, electrostatic binding of ALA to ICG is proposed to bypass such handicaps and provide enhanced therapeutic outcomes with simultaneous PDT and PTT combination. ICG-ALA exhibited excellent biocompatibility up to 50 μg ICG/mL-10 mM ALA in the dark in both SKBR3 and MDA-MB-231 cell lines with higher cell uptake compared to free ALA or ICG. ICG-ALA treatment coupled with 640/808 nm 5 min co-irradiation caused significantly stronger phototoxicity in both cancer cell lines at very low concentrations, reaching near complete loss of viability at 2.5 μg ICG /mL-0.5 mM ALA equivalent concentration of the ICG-ALA. The temperature increase observed during irradiation of the cells and the elevated oxidative stress resulting in the release of caspase 3/7 agrees well with the onset of PTT and PDT. In addition, ICG-ALA demonstrates visualization of cancer cells in both NIR (ICG) and visible (PpIX) regions allowing imaging-guided phototherapy.
Collapse
Affiliation(s)
- Mahshid Hashemkhani
- Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey; Université Paris Cité, Matiére et Systémes Complexes MSC, 45 rue des Saints Péres, 75006 Paris, France.
| | - Alphan Sennaroğlu
- Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey; Departments of Physics and Electrical-Electronics Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey; Koç University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Havva Yağci Acar
- Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey; Koç University, Department of Chemistry, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.
| |
Collapse
|
2
|
Kumar A, Pramanik J, Batta K, Bamal P, Gaur M, Rustagi S, Prajapati BG, Bhattacharya S. Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. CANCER INNOVATION 2024; 3:e150. [PMID: 39398260 PMCID: PMC11467490 DOI: 10.1002/cai2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food TechnologySRM University, Delhi NCRSonepatIndia
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University)MullanaIndia
| | - Jhilam Pramanik
- Department of Food TechnologyWilliam Carey UniversityShillongIndia
| | - Kajol Batta
- Department of Food TechnologyITM UniversityGwaliorIndia
| | - Pooja Bamal
- Department of Food TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Mukesh Gaur
- Department of Food TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunIndia
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and ResearchGanpat UniversityMehsanaIndia
| | - Sankha Bhattacharya
- Department of PharmaceuticsSchool of Pharmacy & Technology Management, SVKM'S NMIMS Deemed‐to‐be UniversityShirpurMaharashtraIndia
| |
Collapse
|
3
|
Lee HK, Park T, Yoo H. Device Applications Enabled by Bandgap Engineering Through Quantum Dot Tuning: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5335. [PMID: 39517603 PMCID: PMC11547182 DOI: 10.3390/ma17215335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Quantum dots (QDs) are becoming essential materials for future scientific and real-world applications, owing to their interesting and distinct optical and electrical properties compared to their bulk-state counterparts. The ability to tune the bandgap of QDs based on size and composition-a key characteristic-opens up new possibilities for enhancing the performance of various optoelectronic devices. These advances could extend to cutting-edge applications such as ultrawide-band or dual-band photodetectors (PDs), optoelectronic logic gates, neuromorphic devices, and security functions. This paper revisits the recent progress in QD-embedded optoelectronic applications, focusing on bandgap tunability. The current limitations and challenges in advancing and realizing QD-based optoelectronic devices are also discussed.
Collapse
Affiliation(s)
- Ho Kyung Lee
- Smart Materials Research Center for IoT, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea
| | - Taehyun Park
- Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea
| |
Collapse
|
4
|
Kurassova K, Filatov N, Karamysheva S, Bukatin A, Starovoytov A, Vartanyan T, Vollmer F, Toropov NA. Microfluidics-Driven Dripping Technique for Fabricating Polymer Microspheres Doped with AgInS 2/ZnS Quantum Dots. ACS OMEGA 2024; 9:39287-39295. [PMID: 39310148 PMCID: PMC11411530 DOI: 10.1021/acsomega.4c07270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Fluorescent microspheres are at the forefront of biosensing technologies. They can be used for a wide range of biomedical applications. They consist of organic dyes and polymers, which are relatively immune to photobleaching and other environmental factors. However, recently developed AgInS2/ZnS quantum dots are a water-soluble, low-toxicity class of semiconductor nanocrystals with enhanced stability as fluorescent materials. Here, we propose a simple way for making microspheres: a microfluidic dripping technique for acrylamide polymer spheres doped with quantum dots. Analyses of their spectra show that the emission of quantum dots, dispersed in water, is saturated with an increasing pump intensity, while quantum dots embedded into polymer microspheres exhibit a more sustained emission. Moreover, our study unveils a remarkable reduction in the luminescence lifetime of quantum dots embedded in microspheres: the mean value of the decay time for quantum dots in solutions was 91 and 3.5 ns for similar quantum dots incorporated into polymer microspheres.
Collapse
Affiliation(s)
- Kamilla Kurassova
- International
Research and Education Centre for Physics of Nanostructures, ITMO University, St. Petersburg 197101, Russia
| | - Nikita Filatov
- Alferov
Saint Petersburg National Research Academic University of the Russian
Academy of Sciences, 8/3A Khlopina Street, St. Petersburg 194021, Russia
| | - Sofia Karamysheva
- International
Research and Education Centre for Physics of Nanostructures, ITMO University, St. Petersburg 197101, Russia
| | - Anton Bukatin
- Alferov
Saint Petersburg National Research Academic University of the Russian
Academy of Sciences, 8/3A Khlopina Street, St. Petersburg 194021, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Sciences, 31-33A Ivana Chernykh Street, St. Petersburg 198095, Russia
| | - Anton Starovoytov
- International
Research and Education Centre for Physics of Nanostructures, ITMO University, St. Petersburg 197101, Russia
| | - Tigran Vartanyan
- International
Research and Education Centre for Physics of Nanostructures, ITMO University, St. Petersburg 197101, Russia
| | - Frank Vollmer
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QD, U.K.
| | - Nikita A. Toropov
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
5
|
Arumugasamy SK, Chellasamy G, Murugan N, Govindaraju S, Yun K, Choi MJ. Synthesis and surface engineering of Ag chalcogenide quantum dots for near-infrared biophotonic applications. Adv Colloid Interface Sci 2024; 331:103245. [PMID: 38945073 DOI: 10.1016/j.cis.2024.103245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Quantum dots (QDs), a novel category of semiconductor materials, exhibit extraordinary capabilities in tuning optical characteristics. Their emergence in biophotonics has been noteworthy, particularly in bio-imaging, biosensing, and theranostics applications. Although conventional QDs such as PbS, CdSe, CdS, and HgTe have garnered attention for their promising features, the presence of heavy metals in these QDs poses significant challenges for biological use. To address these concerns, the development of Ag chalcogenide QDs has gained prominence owing to their near-infrared emission and exceptionally low toxicity, rendering them suitable for biological applications. This review explores recent advancements in Ag chalcogenide QDs, focusing on their synthesis methodologies, surface chemistry modifications, and wide-ranging applications in biomedicine. Additionally, it identifies future directions in material science, highlighting the potential of these innovative QDs in revolutionizing the field.
Collapse
Affiliation(s)
- Shiva Kumar Arumugasamy
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Nanthagopal Murugan
- School of Materials Science and Engineering, University of Ulsan (UOU), Ulsan 44776, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Min-Jae Choi
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
6
|
Ponomaryova TS, Olomskaya VV, Abalymov AA, Anisimov RA, Drozd DD, Drozd AV, Novikova AS, Lomova MV, Zakharevich AM, Goryacheva IY, Goryacheva OA. Visualization of 2D and 3D Tissue Models via Size-Selected Aqueous AgInS/ZnS Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39058959 DOI: 10.1021/acsami.4c05681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Three-dimensional (3D) spheroid cell cultures of fibroblast (L929) and tumor mammary mouse (4T1) were chosen as in vitro tissue models for tissue imaging of ternary AgInS/ZnS fraction quantum dots (QDs). We showed that the tissue-mimetic morphology of cell spheroids through well-developed cell-cell and cell-matrix interactions and distinct diffusion/transport characteristics makes it possible to predict the effect of ternary AgInS/ZnS fraction QDs on the vital activity of cells while simultaneously comparing with classical two-dimensional (2D) cell cultures. The AgInS/ZnS fractions, emitting in a wide spectral range from 635 to 535 nm with a mean size from ∼3.1 ± 0.8 to ∼1.8 ± 0.4 nm and a long photoluminescence lifetime, were separated from the initial QD ensemble by using antisolvent-induced precipitation. For ternary AgInS/ZnS fraction QDs, the absence of toxicity at different QD concentrations was demonstrated on 2D and 3D cell structures. QDs show a robust correlation between numerous factors: their sizes in biological fluids over time, penetration capabilities into 2D and 3D cell structures, and selectivity with respect to penetration into cancerous and healthy cell spheroids. A reproducible protocol for the preparation of QDs along with their unique biological properties allows us to consider ternary AgInS/ZnS fraction QDs as attractive fluorescent contrast agents for tissue imaging.
Collapse
|
7
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
8
|
Ge K, Zhao Y, Liu X, Zhang R. Effects of Photodynamic Therapy Using 5 -Aminolevulinic Acid (ALA) Loaded Acrylic Nanoparticles (ANPs) on HaCaT Cells. Clin Cosmet Investig Dermatol 2024; 17:1297-1308. [PMID: 38835518 PMCID: PMC11149628 DOI: 10.2147/ccid.s458525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Objective ALA-PDT (5-aminolevulinic acid photodynamic therapy) is a central modality in the treatment of skin diseases. Increasing the bioavailability of ALA remains a critical issue. With this in mind, our study explores a novel route of ALA delivery by loading acrylic nanoparticles (ANPs). Methods ALA-ANPs were synthesized by emulsion polymerisation and characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The effects of ALA-ANPs on HaCaT cell line were evaluated, including characteristics, morphological changes, protoporphyrin IX (PpIX) fluorescence kinetics, reactive oxygen species (ROS) levels, mitochondrial membrane potential and ki67 expression in these cells. Results The ANPs had uniform sizes, smooth surfaces and excellent light transmittance, with diameters of 150-200 nm. In contrast, the ALA - ANPs had uneven surfaces and poor light transmittance, with diameters of 220-250 nm. During 12 hours of co-incubation of HaCaT cells with ALA, the intracellular accumulation of PpIX increased over time. Notably, after 6 hours of incubation, PpIX levels induced by 1.81 mg/mL ALA-ANPs exceeded those induced by 1.0 mM ALA (p < 0.01). CCK-8 results showed a positive correlation between PDT-induced inhibition of HaCaT cell proliferation and ALA concentration when ALA concentration remained below 2.0 mM. Compared to the 1.0 mM ALA group, the 1.81 mg/mL ALA-ANPs group showed decreased mitochondrial membrane potential, ki67 immunofluorescence intensity and cell proliferation. In contrast, ROS levels were significantly increased in the 1.81 mg/mL ALA-ANPs group (p < 0.01). Conclusion Loading ANPs provide improved stability and potency for ALA. The ALA-ANPs-PDT approach has superior inhibitory effects on HaCaT proliferation in vitro.
Collapse
Affiliation(s)
- Kang Ge
- Jiaxing Key Discipline of Medicine --Dermatology and Venereology, The Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, People's Republic of China
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Yilu Zhao
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People's Republic of China
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Xiao Liu
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, People's Republic of China
| | - Ruzhi Zhang
- Department of Dermatology and STD, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
9
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
10
|
Khan ZU, Khan LU, Brito HF, Gidlund M, Malta OL, Di Mascio P. Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation. ACS OMEGA 2023; 8:34328-34353. [PMID: 37779941 PMCID: PMC10536110 DOI: 10.1021/acsomega.3c03962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Singlet molecular oxygen (1O2) has been reported in wide arrays of applications ranging from optoelectronic to photooxygenation reactions and therapy in biomedical proposals. It is also considered a major determinant of photodynamic therapy (PDT) efficacy. Since the direct excitation from the triplet ground state (3O2) of oxygen to the singlet excited state 1O2 is spin forbidden; therefore, a rational design and development of heterogeneous sensitizers is remarkably important for the efficient production of 1O2. For this purpose, quantum dots (QDs) have emerged as versatile candidates either by acting individually as sensitizers for 1O2 generation or by working in conjunction with other inorganic materials or organic sensitizers by providing them a vast platform. Thus, conjoining the photophysical properties of QDs with other materials, e.g., coupling/combining with other inorganic materials, doping with the transition metal ions or lanthanide ions, and conjugation with a molecular sensitizer provide the opportunity to achieve high-efficiency quantum yields of 1O2 which is not possible with either component separately. Hence, the current review has been focused on the recent advances made in the semiconductor QDs, perovskite QDs, and transition metal dichalcogenide QD-sensitized 1O2 generation in the context of ongoing and previously published research work (over the past eight years, from 2015 to 2023).
Collapse
Affiliation(s)
- Zahid U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Latif U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
- Synchrotron-light
for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan
| | - Hermi F. Brito
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Magnus Gidlund
- Institute
of Biomedical Sciences-IV, University of
Sao Paulo (USP), 05508-000 São Paulo-SP, Brazil
| | - Oscar L. Malta
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, PE 50740-560, Brazil
| | - Paolo Di Mascio
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| |
Collapse
|
11
|
Onbasli K, Demirci G, Isik F, Durmusoglu EG, Demir HV, Acar HY. Aqueous colloidal nanoplatelets for imaging and improved ALA-based photodynamic therapy of prostate cancer cells. Chem Commun (Camb) 2023; 59:10512-10515. [PMID: 37555511 DOI: 10.1039/d3cc02929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Fluorescent, CdSe/CdS core/crown heterostructured nanoplatelets (NPLs) were transferred to the water via a simple, single-step ligand exchange using 2-mercaptopropionic acid in a simple extraction process. These stable, aqueous NPLs were loaded with a modal drug, 5-aminolevulinic acid (ALA). ALA-loaded NPLs emerged as a new class of theranostic nanoparticles for image-guided enhanced photodynamic therapy of both androgen-dependent and -independent human prostate cancer cells.
Collapse
Affiliation(s)
- Kubra Onbasli
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Gozde Demirci
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey.
| | - Emek Goksu Durmusoglu
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey.
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Havva Yagci Acar
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
- KUYTAM, Koc University Surface Science and Technology Center, 34450 Istanbul, Turkey
| |
Collapse
|
12
|
Boopathy LK, Gopal T, Roy A, Kalari Kandy RR, Arumugam MK. Recent trends in macromolecule-conjugated hybrid quantum dots for cancer theranostic applications. RSC Adv 2023; 13:18760-18774. [PMID: 37346950 PMCID: PMC10281231 DOI: 10.1039/d3ra02673f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Quantum dots (QDs) are small nanoparticles with semiconductor properties ranging from 2 to 10 nanometers comprising 10-50 atoms. The single wavelength excitation character of QDs makes it more significant, as it can excite multiple particles in a confined surface simultaneously by narrow emission. QDs are more photostable than traditional organic dyes; however, when injected into tissues, whole animals, or ionic solutions, there is a significant loss of fluorescence. HQD-based probes conjugated with cancer-specific ligands, antibodies, or peptides are used in clinical diagnosis. It is more precise and reliable than standard immunohistochemistry (IHC) at minimal protein expression levels. Advanced clinical studies use photodynamic therapy (PDT) with fluorescence imaging to effectively identify and treat cancer. Recent studies revealed that a combination of unique characteristics of QDs, including their fluorescence capacity and abnormal expression of miRNA in cancer cells, were used for the detection and monitoring progression of cancer. In this review, we have highlighted the unique properties of QDs and the theranostic behavior of various macromolecule-conjugated HQDs leading to cancer treatment.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Molecular Research Laboratory, Meenakshi Medical College Hospital and Research Institute, MAHER Kanchipuram 631552 Tamil Nadu India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai-600077 Tamil Nadu India
| | - Rakhee Rathnam Kalari Kandy
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland Baltimore-21201 MD USA
| | - Madan Kumar Arumugam
- Cancer Biology Laboratory, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +91-9942110146
| |
Collapse
|
13
|
Hashemkhani M, Celikbas E, Khan M, Sennaroglu A, Yagci Acar H. ALA/Ag 2S/MnO 2 Hybrid Nanoparticles for Near-Infrared Image-Guided Long-Wavelength Phototherapy of Breast Cancer. ACS Biomater Sci Eng 2023. [PMID: 37294926 DOI: 10.1021/acsbiomaterials.3c00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) based on temperature increase and the formation of reactive oxygen species (ROS), respectively, is an exciting avenue to provide local and improved therapy of tumors with minimal off-site toxicity. 5-Aminolevulinic acid (ALA) is one of the most popular PDT pro-drugs, and its efficiency improves significantly when delivered to tumors with nanoparticles (NPs). But the tumor site's hypoxic environment is a handicap for the oxygen-consuming PDT process. In this work, highly stable, small, theranostic NPs composed of Ag2S quantum dots and MnO2, electrostatically loaded with ALA, were developed for enhanced PDT/PTT combination of tumors. MnO2 catalyzes endogenous H2O2 to O2 conversion and glutathione depletion, enhancing ROS generation and ALA-PDT efficiency. Ag2S quantum dots (AS QDs) conjugated with bovine serum albumin (BSA) support MnO2 formation and stabilization around Ag2S. AS-BSA-MnO2 provided a strong intracellular near-infrared (NIR) signal and increased the solution temperature by 15 °C upon laser irradiation at 808 nm (215 mW, 10 mg/mL), proving the hybrid NP as an optically trackable, long-wavelength PTT agent. In the in vitro studies, no significant cytotoxicity was observed in the absence of laser irradiation in healthy (C2C12) or breast cancer cell lines (SKBR3 and MDA-MB-231). The most effective phototoxicity was observed when AS-BSA-MnO2-ALA-treated cells were co-irradiated for 5 min with 640 nm (300 mW) and 808 nm (700 mW) due to enhanced ALA-PDT combined with PTT. The viability of cancer cells decreased to approximately 5-10% at 50 μg/mL [Ag], corresponding to 1.6 mM [ALA], whereas at the same concentration, individual PTT and PDT treatments decreased the viability to 55-35%, respectively. The late apoptotic death of the treated cells was mostly correlated with high ROS levels and lactate dehydrogenase. Overall, these hybrid NPs overcome tumor hypoxia, deliver ALA to tumor cells, and provide both NIR tracking and enhanced PDT + PTT combination therapy upon short, low-dose co-irradiation at long wavelengths. These agents that may be utilized for treating other cancer types are also highly suitable for in vivo investigations.
Collapse
Affiliation(s)
- Mahshid Hashemkhani
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Eda Celikbas
- Graduate School of Materials Science and Engineering, Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Minahil Khan
- Departments of Physics and Electrical and Electronical Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Alphan Sennaroglu
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Departments of Physics and Electrical and Electronical Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
- KUYTAM, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Havva Yagci Acar
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Graduate School of Materials Science and Engineering, Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
14
|
Lou L, Zhou S, Tan S, Xiang M, Wang W, Yuan C, Gao L, Xiao Q. Amplifying the efficacy of ALA-based prodrugs for photodynamic therapy using nanotechnology. Front Pharmacol 2023; 14:1137707. [PMID: 36923350 PMCID: PMC10008889 DOI: 10.3389/fphar.2023.1137707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
5-aminolevulinic acid (ALA) is a clinically approved prodrug involved in intracellular Heme biosynthesis to produce the natural photosensitizer (PS) Protoporphyrin IX (PpIX). ALA based photodynamic therapy (PDT) has been used to treat various malignant and non-malignant diseases. However, natural ALA has disadvantages such as weak lipophilicity, low stability and poor bioavailability, greatly reducing its clinical performance. The emerging nanotechnology is expected to address these limitations and thus improve the therapeutic outcomes. Herein, we summarized important recent advances in the design of ALA-based prodrugs using nanotechnology to improve the efficacy of PDT. The potential limitations and future perspectives of ALA-based nanomedicines are also briefly presented and discussed.
Collapse
Affiliation(s)
- Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shizhe Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Sijia Tan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chuang Yuan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
15
|
Wang H, Li X, Ge Q, Chong Y, Zhang Y. A multifunctional Fe 2O 3@MoS 2@SDS Z-scheme nanocomposite: NIR enhanced bacterial inactivation, degradation antibiotics and inhibiting ARGs dissemination. Colloids Surf B Biointerfaces 2022; 219:112833. [PMID: 36108363 DOI: 10.1016/j.colsurfb.2022.112833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
To fight the flourishment of drug-resistant bacteria caused by antibiotics and the dissemination of antibiotic resistance genes (ARGs), it is of great urgency to develop multifunctional non-antibiotic agents with residual antibiotics elimination, and ARGs dissemination inhibition properties. Herein, sodium dodecyl sulfate (SDS) was modified onto the surface of Fe2O3 @MoS2 by ultrasonic method to obtain the Z-scheme, multifunctional Fe2O3 @MoS2 @SDS nanocomposites. The Fe2O3 @MoS2 @SDS (weight ratio of Fe2O3 @MoS2 and SDS was 1:1) was selected as the optimal agent. Under NIR irradiation, the Fe2O3 @MoS2 @SDS had a photothermal conversion efficiency of 45.96%, and could generate plenty of reactive oxygen species (ROS) at the same time. Under the synergy of photothermal and photodynamic, the antibacterial efficiency of Fe2O3 @MoS2 @SDS to E. coli, MRSA and P. aeruginosa could reach 99.95%, 99.97% and 99.58%, respectively, indicating excellent photothermal-photodynamic therapy (PPT) effect. The Fe2O3 @MoS2 @SDS also displayed photocatalytic activity in degradation of tetracycline (TC). The degradation rate of TC could reach 92.3% after 2 h of visible light irradiation. The obtained results indicated that a promising Fe2O3 @MoS2 @SDS composite based multifunctional nanoplatform could be constructed for NIR induced bacterial inactivation, antibiotics degradation and ARGs dissemination inhibition.
Collapse
Affiliation(s)
- Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu, PR China
| | - Xinhao Li
- School of Environmental Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu, PR China
| | - Qingfeng Ge
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, Jiangsu, PR China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, 225000 Yangzhou, Jiangsu, PR China.
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu, PR China.
| |
Collapse
|
16
|
Hu J, Tian J, Yuan T, Yin Q, Yin J. The critical role of nanoparticle sizes in the interactions between gold nanoparticles and ABC transporters in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106286. [PMID: 36084499 DOI: 10.1016/j.aquatox.2022.106286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Despite the increasing evidences for adenosine triphosphate-binding cassette (ABC transporters)-mediated efflux of nanoparticles, the universality of these phenomena and the determining factors for the process remained to be clarified. This paper aimed to systemically investigate the role of nanoparticle size in the interactions between adenosine triphosphate-binding cassette (ABC transporters) and gold nanoparticles (AuNPs, 3 nm, 19 nm, and 84 nm, named as Au-3, Au-19, and Au-84) in zebrafish embryos. The results showed that all the three AuNPs induced significant toxicity as reflected by delayed hatching of embryos, decreased glutathione (GSH) contents, and increased reactive oxygen species (ROS) levels. Under the hindrance of embryo chorions, smaller AuNPs could more easily accumulate in the embryos, causing higher toxicity. Addition of transporter inhibitors enhanced the accumulation and toxicity of Au-3 and Au-19, and these nanoparticles induced the expressions of abcc2 and abcb4, indicating a fact that Au-3 and Au-19 were the potential substrates of ABC transporters, but these phenomena were barely found for Au-84. On the contrary, Au-84 suppressed the gene expressions of various ABC transporters like abcc1, abcg5, and abcg8. With specific suppressors, transcription factors like nuclear factor-erythroid 2-related factor-2 (Nrf2) and pregnane X receptor (Pxr) were found to be important in the induction of ABC transporters by AuNPs. After all, these results revealed a vital role of nanoparticle sizes in the interactions between ABC transporters and AuNPs in zebrafish embryos, and the critical size could be around 19 nm. Such information would be beneficial in assessing the environmental risk of nanoparticles, as well as their interactions with other chemical toxicants.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China
| | - Tongkuo Yuan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China.
| |
Collapse
|
17
|
Li H, Xu M, Shi R, Zhang A, Zhang J. Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications. Molecules 2022; 27:5548. [PMID: 36080317 PMCID: PMC9458223 DOI: 10.3390/molecules27175548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the metal-based nanocrystal (NC) hierarchical structure requirements in many real applications, starting from basic synthesis principles of electrostatic spinning technology, the formation of functionalized fibrous materials with inorganic metallic and semiconductor nanocrystalline materials by electrostatic spinning synthesis technology in recent years was reviewed. Several typical electrostatic spinning synthesis methods for nanocrystalline materials in polymers are presented. Finally, the specific applications and perspectives of such electrostatic spun nanofibers in the biomedical field are reviewed in terms of antimicrobial fibers, biosensing and so on.
Collapse
Affiliation(s)
- Haojun Li
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meng Xu
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Shi
- Jishuitan Hospital, Beijing 100035, China
| | - Aiying Zhang
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|