1
|
Dong G, Hu B, Chen C, Yu H, Han Q, Wu W. Two Organic-Inorganic Hybrid Manganese Bromides with Highly Efficient Emission toward White LEDs. Inorg Chem 2024; 63:20830-20839. [PMID: 39394053 DOI: 10.1021/acs.inorgchem.4c03639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Organic-inorganic metal halides have attracted great attention due to their tunable structural and spectroscopic properties. Here, two organic-inorganic hybrid manganese bromides, (TEMA)2MnBr4 (TEMA = triethylmethylammonium) and (TEBA)2MnBr4 (TEBA = benzyltriethylammonium), are synthesized using the evaporation crystallization method. Following a heat-induced phase transition at 363 K, the structure and optical properties of (TEMA)2MnBr4 change but return to their initial state upon cooling to room temperature, as confirmed by X-ray diffraction, photoluminescence (PL), and Raman spectra. Meanwhile, (TEBA)2MnBr4, with a larger Mn-Mn distance, exhibits a higher photoluminescence quantum yield of 98.1% and greater thermal quenching temperature. However, due to the poorer thermal stability of the organic cation, the crystal melts at 400 K, leading to fluorescence quenching. White LEDs based on (TEMA)2MnBr4 and (TEBA)2MnBr4 are successfully fabricated with color rendering indices of 97.4 and 97.2, respectively. The investigation provides deep insights into the structural and optical properties of (TEMA)2MnBr4 and (TEBA)2MnBr4, advancing research for LED display design by tuning organic cations.
Collapse
Affiliation(s)
- Gaoke Dong
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Bing Hu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Chen Chen
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Hailong Yu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Qiuju Han
- School of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China
| |
Collapse
|
2
|
Zhang W, Zheng W, Li L, Huang P, Xu J, Zhang W, Shao Z, Chen X. Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408777. [PMID: 39101296 DOI: 10.1002/adma.202408777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Organic-inorganic hybrid manganese(II) halides (OIMnHs) have garnered tremendous interest across a wide array of research fields owing to their outstanding optical properties, abundant structural diversity, low-cost solution processibility, and low toxicity, which make them extremely suitable for use as a new class of luminescent materials for various optoelectronic applications. Over the past years, a plethora of OIMnHs with different structural dimensionalities and multifunctionalities such as efficient photoluminescence (PL), radioluminescence, circularly polarized luminescence, and mechanoluminescence have been newly created by judicious screening of the organic cations and inorganic Mn(II) polyhedra. Specifically, through precise molecular and structural engineering, a series of OIMnHs with near-unity PL quantum yields, high anti-thermal quenching properties, and excellent stability in harsh conditions have been devised and explored for applications in light-emitting diodes (LEDs), X-ray scintillators, multimodal anti-counterfeiting, and fluorescent sensing. In this review, the latest advancements in the development of OIMnHs as efficient light-emitting materials are summarized, which covers from their fundamental physicochemical properties to advanced optoelectronic applications, with an emphasis on the structural and functionality design especially for LEDs and X-ray detection and imaging. Current challenges and future efforts to unlock the potentials of these promising materials are also envisioned.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lingyun Li
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ping Huang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Wen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiqing Shao
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
3
|
Zhang W, Sui P, Zheng W, Li L, Wang S, Huang P, Zhang W, Zhang Q, Yu Y, Chen X. Pseudo-2D Layered Organic-Inorganic Manganese Bromide with a Near-Unity Photoluminescence Quantum Yield for White Light-Emitting Diode and X-Ray Scintillator. Angew Chem Int Ed Engl 2023; 62:e202309230. [PMID: 37747789 DOI: 10.1002/anie.202309230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Eco-friendly lead-free organic-inorganic manganese halides (OIMHs) have attracted considerable attention in various optoelectronic applications because of their superior optical properties and flexible solution processibility. Herein, we report a novel pseudo-2D layered OIMH (MTP)2 MnBr4 (MTP: methyltriphenylphosphonium), which exhibits intense green emission under UV/blue or X-ray excitation, with a near-unity photoluminescence quantum yield, high resistance to thermal quenching (I150 °C =84.1 %) and good photochemical stability. These features enable (MTP)2 MnBr4 as an efficient green phosphor for blue-converted white light-emitting diodes, demonstrating a commercial-level luminous efficiency of 101 lm W-1 and a wide color gamut of 116 % NTSC. Moreover, these (MTP)2 MnBr4 crystals showcase outstanding X-ray scintillation properties, delivering a light yield of 67000 photon MeV-1 , a detection limit of 82.4 nGy s-1 , and a competitive spatial resolution of 6.2 lp mm-1 for X-ray imaging. This work presents a new avenue for the exploration of eco-friendly luminescent OIMHs towards multifunctional light-emitting applications.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Ping Sui
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| | - Lingyun Li
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Shuaihua Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| | - Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| | - Wen Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Qi Zhang
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Zhang R, Xie H, Liu W, Zhan K, Liu H, Tang Z, Yang C. High-Efficiency Narrow-Band Green-Emitting Manganese(II) Halide for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47238-47249. [PMID: 37768211 DOI: 10.1021/acsami.3c09518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Zero-dimensional (0D) Mn2+-based metal halides used as luminescent materials and scintillators have become a research hotspot in the field of photoelectric materials and devices due to their unique composition, structure, and fluorescence properties. It is of great value to explore new Mn2+-based metal halides to achieve multifunctional applications. Herein, the novel 0D Mn2+-based metal halide single crystal (BPTP)2MnBr4 is synthesized by a simple solvent-antisolvent recrystallization method. Under excitation at 468 nm, the (BPTP)2MnBr4 single crystal shows a pronounced narrow-band green luminescence centered at 515 nm derived from the d-d transition of the Mn2+ ion. This emission has a relatively narrow full width at half maximum of 43 nm and a high photoluminescence quantum yield (PLQY) of 82%. In addition, (BPTP)2MnBr4 exhibits good thermal stability at 393 K with a retention of 79% of the initial photoluminescence intensity at 298 K. Benefiting from its strong blue light excitation, high PLQY, and good thermal stability, we manufacture an ideal white light-emitting diode (LED) device using a 460 nm blue LED chip, green-emitting (BPTP)2MnBr4, and commercial K2SiF6:Mn4+ red phosphor. Under 20 mA drive current, the LED shows a high luminous efficiency of 112 lm/W and a wide color gamut of 110.8%, according to the National Television System Committee standard. In addition, (BPTP)2MnBr4 crystals show a strong X-ray absorption. Based on the commercial Lu3Al5O12:Ce3+ scintillator, the calculated light yield of (BPTP)2MnBr4 reaches up to about 136,000 photons/MeV and the detection limit reaches 0.282 μGyair s-1. Additionally, a melt quenching approach is used to construct a (BPTP)2MnBr4 clear glass scintillation screen, realizing a spatial resolution of 10.1 lp/mm. The proper performances of (BPTP)2MnBr4 as phosphor-converted LED materials and the X-ray scintillator with the addition of eco-friendly, low-cost solution processability make 0D Mn2+-based metal halides potential luminescent materials for multifunctional applications.
Collapse
Affiliation(s)
- Ruiqing Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Huidong Xie
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Wei Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Ke Zhan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Hu Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Zuobin Tang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Chang Yang
- Engineering Comprehensive Training Center, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| |
Collapse
|
5
|
Li K, Ye Y, Zhang W, Zhang Y, Liu C. Regulating the Optical Properties of Cs 3MnBr 5 Nanocrystals in Glasses for Narrow-Band Green Emission. Inorg Chem 2023; 62:13001-13010. [PMID: 37527425 DOI: 10.1021/acs.inorgchem.3c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Environmentally friendly phosphors with narrow-band green luminescence are in great demand for solid-state lighting and backlight display applications. Herein, all inorganic lead-free Cs3MnBr5 nanocrystals (NCs) are prepared in glass with dual-band luminescence and a high photoluminescence (PL) quantum yield of 60.2%. However, due to the short separation and strong coupling interaction between neighboring [ M n B r 4 ] 2 - units, Cs3MnBr5 NCs undergo energy transfer from a single [ M n B r 4 ] 2 - unit to coupled [ M n B r 4 ] 2 - clusters and give green-red dual-band PL. Incorporation of Zn into Cs3MnBr5 NCs therefore enlarges the average separation and reduces the interaction between neighboring [ M n B r 4 ] 2 - units to inhibit energy transfer from the green-emitting [ M n B r 4 ] 2 - unit to coupled [ M n B r 4 ] 2 - clusters, thus changing the dual-band PL into single-band green PL at 524 nm with a full width at half maximum of 47 nm and a maximal PL quantum yield of 50%. Low-temperature PL also demonstrates that partial replacement of Mn2+ ions by Zn2+ ions can further confine the exciton in the [ M n B r 4 ] 2 - unit and suppress the energy transfer. These Cs3MnBr5 NCs- and Zn/Cs3MnBr5 NCs-embedded glasses also possess good thermal, photo-, and chemical stabilities. These features demonstrate that these Cs3MnBr5 NCs- and Zn/Cs3MnBr5 NCs-embedded glasses have potential applications for efficient, environmental-friendly, and stable green phosphors in the fields of solid-state lighting and backlight display.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, 122 Luoshi Road, Hongshan, Wuhan, Hubei 430070, P. R. China
| | - Ying Ye
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, 122 Luoshi Road, Hongshan, Wuhan, Hubei 430070, P. R. China
| | - Wenchao Zhang
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, 122 Luoshi Road, Hongshan, Wuhan, Hubei 430070, P. R. China
| | - Yudong Zhang
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, 122 Luoshi Road, Hongshan, Wuhan, Hubei 430070, P. R. China
| | - Chao Liu
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, 122 Luoshi Road, Hongshan, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
6
|
Jung MH. Long-lived spin-triplet excitons in manganese complexes for room-temperature phosphorescence. Dalton Trans 2023; 52:3855-3868. [PMID: 36876424 DOI: 10.1039/d2dt03831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Low-dimensional metal halide perovskites have become emerging candidates for applications in light emitting diodes due to the quantum confinement effect by tuning their composition and structure. However, they suffer from longstanding issues of environmental stability and lead toxicity. Herein, we report phosphorescent manganese halides, (TEM)2MnBr4 (TEM = HN(CH2CH3)3, triethylammonium) and (IM)6[MnBr4][MnBr6] (IM = C3H6N2, imidazolium) with a photoluminescence quantum yield (PLQY) of 50% and 7%, respectively. (TEM)2MnBr4 with a tetrahedral configuration exhibits brilliant green light emission centered at 528 nm, while the (IM)6[MnBr4][MnBr6] compound, in which octahedral and tetrahedral units coexist, exhibits red colored emission at 615 nm. The excited state of (TEM)2MnBr4 and (IM)6[MnBr4][MnBr6] is found to exhibit distinct photophysical emission characteristics consistent with triplet state phosphorescence. Efficient phosphorescence was achieved with a long lifetime of several milliseconds, 0.38 ms for (TEM)2MnBr4 and 5.54 ms for (IM)6[MnBr4][MnBr6], at room temperature. By studying the temperature dependent PL and single-crystal X-ray diffraction measurements and comparing our results with those of previously reported analogues, we have found a direct correlation between Mn⋯Mn distances and PL emission. Our study reveals that the long distance between the Mn centers has made a significant contribution to the long-lived phosphorescence with a highly emissive triplet state.
Collapse
Affiliation(s)
- Mi-Hee Jung
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
7
|
Panda DP, Swain D, Rohj RK, Sarma DD, Sundaresan A. Elucidating Structure-Property Correlation in Perovskitoid and Antiperovskite Piperidinium Manganese Chloride. Inorg Chem 2023; 62:3202-3211. [PMID: 36744767 DOI: 10.1021/acs.inorgchem.2c04173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the world of semiconductors, organic-inorganic hybrid (OIH) halide perovskite is a new paradigm. Recently, a zealous effort has been made to design new lead-free perovskite-like OIH halides, such as perovskitoids and antiperovskites, for optoelectronic applications. In this context, we have synthesized a perovskitoid compound (Piperidinium)MnCl3 (compound 1) crystallizing in an orthorhombic structure with infinite one-dimensional (1D) chains of MnCl6 octahedra. Interestingly, this compound shows switchable dielectric property governed by an order-disorder structural transition. By controlling the stoichiometry of piperidine, we have synthesized an antiperovskite (Piperidinium)3Cl[MnCl4] (compound 2), the inverse analogue of a perovskite, consisting of zero-dimensional (0D) MnCl4 tetrahedra. This type of organic-inorganic hybrid antiperovskite halide is unique and scarce. Such a dissimilarity in lattice dimensionality and Mn2+ ion coordination ensues fascinating photophysical and magnetic properties. Compound 1 exhibits red emission with a photoluminescence quantum yield (PLQY) of ∼28%. On the other hand, the 0D antiperovskite compound 2 displays green emission with a higher PLQY of 54.5%, thanks to the confinement effect. In addition, the dimensionality of the compounds plays a vital role in the exchange interaction. As a result, compound 1 shows an antiferromagnetic ground state, whereas compound 2 is paramagnetic down to 1.8 K. This emerging structure-property relationship in OIH manganese halides will set the platform for designing new perovskites and antiperovskites.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar751013, India
| | - Rohit Kumar Rohj
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - D D Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| |
Collapse
|
8
|
Luo JB, Wei JH, Zhang ZZ, He ZL, Kuang DB. A Melt-Quenched Luminescent Glass of an Organic-Inorganic Manganese Halide as a Large-Area Scintillator for Radiation Detection. Angew Chem Int Ed Engl 2023; 62:e202216504. [PMID: 36504433 DOI: 10.1002/anie.202216504] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Glass is a group of materials with appealing qualities, including simplicity in fabrication, durability, and high transparency, and they play a crucial role in the optics field. In this paper, a new organic-inorganic metal halide luminescent glass exhibiting >78 % transmittance at 506-800 nm range together with a high photoluminescence quantum yield (PLQY) of 28.5 % is reported through a low-temperature melt-quenching approach of pre-synthesized (HTPP)2 MnBr4 (HTPP=hexyltriphenylphosphonium) single crystal. Temperature-dependent X-ray diffraction, polarizing microscopy, and molecular dynamics simulations were combined to investigate the glass-crystal interconversion process, revealing the disordered nature of the glassy state. Benefiting from the transparent nature, (HTPP)2 MnBr4 glass yields an outstanding spatial resolution of 10 lp mm-1 for X-ray imaging. The superb optical properties and facility of large-scale fabrication distinguish the organic-inorganic metal halide glass as a highly promising class of materials for optical devices.
Collapse
Affiliation(s)
- Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhi-Zhong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zi-Lin He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
9
|
Chang T, Dai Y, Wei Q, Xu X, Cao S, Zou B, Zhang Q, Zeng R. Temperature-Dependent Reversible Optical Properties of Mn-Based Organic-Inorganic Hybrid (C 8H 20N) 2MnCl 4 Metal Halides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5487-5494. [PMID: 36652605 DOI: 10.1021/acsami.2c20885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic-inorganic metal halides (OIMHs) have abundant optical properties and potential applications, such as light-emitting diodes, displays, solar cells, and photodetectors. Herein, we report zero-dimensional Mn-based OIMH (C8H20N)2MnCl4 single crystals synthesized by a simple slow evaporation method, which exhibit intense green emission at 520 nm originating from 4T1-6A1 transition of Mn2+ ions. Large organic cations in the crystal structure result in the isolated [MnCl4]2- tetrahedrons, and the closest Mn-Mn distance reaches 9.07 Å, which effectively inhibits the migration of excitation energy between adjacent Mn2+ emission centers, thus achieving a high quantum yield (∼87%) and a long photoluminescence (PL) lifetime (3.42 ms). The different optical and structural properties at low and high temperatures are revealed by temperature-dependent PL and X-ray diffraction spectra. The PL spectra and lifetimes under the heating and cooling processes indicate that the optical property transitions are reversible at 220/240 K. Our work provides a promising strategy for building multifunctional optoelectronic materials and insights into the understanding convertible photophysical properties from isomers of metal halides.
Collapse
Affiliation(s)
- Tong Chang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Yarui Dai
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Qilin Wei
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Xing Xu
- Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Qinglin Zhang
- Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| |
Collapse
|
10
|
Panda DP, Swain D, Chaudhary M, Mishra S, Bhutani G, De AK, Waghmare UV, Sundaresan A. Electron-Phonon Coupling Mediated Self-Trapped-Exciton Emission and Internal Quantum Confinement in Highly Luminescent Zero-Dimensional (Guanidinium) 6Mn 3X 12 (X = Cl and Br). Inorg Chem 2022; 61:17026-17036. [PMID: 36242586 DOI: 10.1021/acs.inorgchem.2c01581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a large Stokes shift and broad emission band in a Mn-based organic-inorganic hybrid halide, (guanidinium)6Mn3Br12 [GuMBr], consisting of trimeric units of distorted MnBr6 octahedra representing a zero-dimensional compound with a liquid like crystalline lattice. Analysis of the photoluminescence (PL) line width and Raman spectra reveals the effects of electron-phonon coupling, suggestive of the formation of Frenkel-like bound excitons. These bound excitons, regarded as the self-trapped excitons (STEs), account for the large Stokes shift and broad emission band. The excited-state dynamics was studied using femtosecond transient absorption spectroscopy, which confirms the STE emission. Further, this compound is highly emissive with a PL quantum yield of ∼50%. With chloride ion incorporation, we observe enhancement of the emissive properties and attribute it to the effects of intrinsic quantum confinement. Localized electronic states in flat bands lining the gap and their strong coupling with phonons are confirmed with first-principles calculations.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology, IndianOil Odisha Campus, Bhubaneswar751013, India
| | - Mohit Chaudhary
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - Samita Mishra
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - A Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| |
Collapse
|
11
|
Lazarowska A, Kamiński M, Cherepy NJ, Mahlik S, Liu RS. Dual role of oxygen-related defects in the luminescence kinetics of AlN:Mn 2. Dalton Trans 2022; 51:14297-14305. [PMID: 36069304 DOI: 10.1039/d2dt02171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents the impact of temperature and pressure on AlN:Mn2+ luminescence kinetics. Unusual behavior of Mn2+ optical properties during UV excitation is observed, where a strong afterglow luminescence of Mn2+ occurs even at low temperatures. When the temperature increases, the contribution of the afterglow luminescence is further enhanced, causing a significant increase in the luminescence intensity. The observed phenomena may be explained by an energy diagram in which the ON-VAl complex in AlN:Mn2+ plays a key role. Hence the ON-VAl complex defect in AlN:Mn2+ plays a double role. When the ON-VAl defect is located close to Mn2+ ions, it is responsible for transferring excitation energy directly to Mn2+ ions. However, when the ON-VAl defect complex is located far from Mn2+ ions, its excited state level acts as an electron trap responsible for afterglow luminescence. Additionally, three models have been tested to explain the structure of the emission spectrum and the strong asymmetry between the excitation and emission spectra. From the most straightforward configuration coordinate diagram through the configuration coordinate diagram model assuming different elastic constants in the excited and ground-states ending by a model based on the Jahn-Teller effect. We proved that only the Jahn-Teller effect in the excited 4T1 electronic state with spin-orbit coupling could fully explain the observed phenomena. Finally, high-pressure spectroscopic results complemented by the calculations of Racah parameters and the Tanabe-Sugano diagram are presented.
Collapse
Affiliation(s)
- Agata Lazarowska
- Institute of Experimental Physics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk, Poland.
| | - Mikołaj Kamiński
- Institute of Experimental Physics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk, Poland.
| | - Nerine J Cherepy
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Sebastian Mahlik
- Institute of Experimental Physics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk, Poland.
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
12
|
Zhang ZC, Zhang T, Su CY, Lun MM, Zhang Y, Fu DW, Wu Q. Competitive Dual-Emission-Induced Thermochromic Luminescence in Organic-Metal Halides. Inorg Chem 2022; 61:13322-13329. [PMID: 35976811 DOI: 10.1021/acs.inorgchem.2c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lead-free Halides, especially Mn-based ones, are preferred as hotspots in the exploration of photoluminescent materials. However, there are few reports on sensitive reversible thermochromism and switchable dual emission originating from self-trapped exciton emission in pure Mn-Based materials. Here, we report a new Mn-based hybrid material [TMPA]2MnI4 (TMPA = trimethylphenylammonium), which shows two emission peaks at 545 and 660 nm benefitting from the d-d orbital transition of Mn2+ and the generation of self-trapped excitons, respectively. Due to the different sensitivity to temperature, the stages of thermal activation and thermal quenching of the two emission types are also inconsistent, showing a certain competition relationship and dominating the emission colors in different temperature ranges, resulting in adjustable green-orange-green thermochromic luminescence from 100 to 403 K (both high and low temperatures correspond to green, and orange is displayed at near room temperature). Therefore, thermochromic luminescence can be easily achieved by controlling the temperature under the guidance of excited states. This work provides new insights into the synthesis and application of thermochromic materials. Therefore, it is certain that regulating temperature while being guided by excited states will achieve thermochromic luminescence. This research offers fresh perspectives on the development and potential of thermochromic materials.
Collapse
Affiliation(s)
- Zhi-Cheng Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Chang-Yuan Su
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qi Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| |
Collapse
|
13
|
He S, Hao S, Lin J, Wang N, Cao J, Guo Z, Wolverton C, Zhao J, Liu Q. Photoluminescent Properties of Two-Dimensional Manganese(II)-Based Perovskites with Different-Length Arylamine Cations. Inorg Chem 2022; 61:11973-11980. [PMID: 35855614 DOI: 10.1021/acs.inorgchem.2c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The participation of organic cations plays an important role in tuning broad-spectra emissions. Herein, we synthesized a series of Mn(II)-based two-dimensional (2D) halide perovskites with arylamine cations of different lengths having the general formula (C6H5(CH2)xNH3)2MnCl4 (x = 1-4), with the x = 4 compound reported here for the first time. With the increase in the -(CH2)- in organic cations, the distance between adjacent inorganic layers increases, causing the title compounds to exhibit different structural distortions. As the Mn-Cl-Mn angular distortion increases, the experimental optical band gaps of the title compounds increase correspondingly. When the angle distortion between the octahedrons of the compounds is similar, the band gaps may also be affected by the distortion of the octahedron itself (the bond-length distortion of 2 is greater than that of 4). Under UV-light irradiation at 298 K, all of the compounds exhibit two emission peaks centered at 480-505 and 610 nm, corresponding to the organic-cation emission and the 4T1(G) to 6A1(S) radiative transition of Mn2+ ions, respectively. Among these title compounds, (PPA)2MnCl4 [(PPA)+ = C6H5(CH2)3NH3+] exhibits the strongest photoluminescence (PL). The study of the title compounds contributes to an in-depth understanding of the relationship between the structural distortion and optical properties of 2D Mn(II)-based perovskite materials.
Collapse
Affiliation(s)
- Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqiang Hao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Wang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Christopher Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Panda DP, Swain D, Sundaresan A. Zero-Dimensional (Piperidinium) 2MnBr 4: Ring Puckering-Induced Isostructural Transition and Strong Electron-Phonon Coupling-Mediated Self-Trapped Exciton Emission. Inorg Chem 2022; 61:11377-11386. [PMID: 35820065 DOI: 10.1021/acs.inorgchem.2c01601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report on the synthesis, structure, and photophysical properties of a lead-free organic-inorganic hybrid halide, (Piperidinium)2MnBr4 (PipMBr). It crystallizes in a monoclinic P21/n structure, with isolated MnBr4 tetrahedra representing a zero-dimensional compound. It undergoes a reversible isostructural transition at 422/417 K in the heating/cooling cycle owing to the hydrogen-bonding rearrangement mediated by ring puckering of piperidinium cations. This compound exhibits green emission with a photoluminescence quantum yield of 51%. Interestingly, strong electron-longitudinal optical phonon coupling with γLO of 237 meV is evidenced from the broadening of the temperature-dependent emission linewidth and the Raman spectrum. Such strong electron-phonon coupling and a relatively low Debye temperature (137 K) suggest the self-trapped exciton emission in this compound.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar 751013, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|