1
|
Wang M, He Z, Chen M, Fu F, Wang Y. Heterogenization of Palladium Trimer and Nanoparticles Through Polymerization Boosted Catalytic Efficiencies in Recyclable Coupling and Reduction Reactions. Chemistry 2024; 30:e202403447. [PMID: 39401948 DOI: 10.1002/chem.202403447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
The development of heterogeneous palladium catalysts has shown continuous vitality in the field of catalysis and materials. In this work, we report one concise free radical polymerization approach to accomplish the aromatic palladium trimer functionalized polymers PSSy-[Pd3]+ (2) and its derived palladium nanoparticles (3). Full characterizations could confirm the successful combination of cationic [Pd3]+ or nanoparticles with poly(p-sulfonated styrene) skeleton. Compared to their monomeric tri-palladium precursor (1) and common Pd(dba)2, Pd(PPh3)4, Pd(OAc)2, heterogeneous PSSy-[Pd3]+ (2) shows much superior catalytic activities (0.15 mol %, TOF=1333.3 h-1) in the SMCC reaction. The identically ligated PdNPs (3) are formed in-suit in the presence of NaBH4 and accomplish quantitative reduction of 4-nitrophenol in just 320 s (0.50 mol %, TOF=2250 h-1). Moreover, these heterogeneous catalysts are reused for 5-6 times without significant loss of catalytic activity. Their superior catalytic ability is probably attributed to the synergistic effect of polymer entanglement and the tri-palladium fragment. This work enlightens that the immobilization of palladium clusters or nanoparticles by polymerization could offer multiple advantages in stability, efficiency and recyclability for their involved catalyses and show far-reaching future implications.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Zhixin He
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Meng Chen
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Fangyu Fu
- School of Sciences, Great Bay University, Great Bay Institute for Advanced Study, Dongguan, 523000, China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| |
Collapse
|
2
|
Mandal T, Chaturvedi A, Azim A, Maji R, De Sarkar S. Earth-Abundant Recyclable Magnetic Iron Oxide Nanoparticles for Green-light Mediated C-H Arylation in Heterogeneous Phase. Chemistry 2024; 30:e202401617. [PMID: 38788130 DOI: 10.1002/chem.202401617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
A magnetically isolable iron oxide nanoparticles is introduced as an efficient heterogeneous photocatalyst for non-directed C-H arylation employing aryl diazonium salts as the aryl precursors. This first-row transition metal-based photocatalyst revealed versatile activities and is applicable to a wide range of substrates, demonstrating brilliant efficacy and superior recyclability. Detailed catalytic characterization describes the physical properties and redox behavior of the Fe-catalyst. Adequate control experiments helped to establish the radical-based mechanism for the C-H arylation.
Collapse
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ashwin Chaturvedi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Aznur Azim
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rohan Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
3
|
Li M, Liu X, Che Y, Xing H, Sun F, Zhou W, Zhu G. Controlled Partial Linker Thermolysis in Metal-Organic Framework UiO-66-NH 2 to Give a Single-Site Copper Photocatalyst for the Functionalization of Terminal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202308651. [PMID: 37466011 DOI: 10.1002/anie.202308651] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Metal-organic frameworks (MOFs) with expanding porosity and tailored pore environments are intriguing for catalytic applications. We report herein a straightforward method of controlled partial linker thermolysis to introduce desirable mesopores into mono-ligand MOFs, which is different from the classical thermolyzing method that starts from mixed-linker MOFs. UiO-66-NH2 , after partial ligand thermolysis, exhibits significant mesoporosity, retained crystal structure, improved charge photogeneration and abundant anchoring sites, which is ideal to explore single-site photocatalysis. Atomically dispersed Cu is then accommodated in the tailored pore. The resulting single-site Cu catalyst exhibits excellent performance for photocatalytic alkylation and oxidation coupling for the functionalization of terminal alkynes. The study highlights the advantage of controlled partial linker thermolysis to synthesize hierarchical MOFs to achieve the advanced single-site photocatalysis.
Collapse
Affiliation(s)
- Mengying Li
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Xin Liu
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Yan Che
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Hongzhu Xing
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guangshan Zhu
- College of Chemistry, Northeast Normal University, Changchun, 130021, China
| |
Collapse
|
4
|
Ma QC, Yue TC, Cao QW, Xie ZB, Dong QW, Wang DZ, Wang LL. Study on magnetic and dye adsorption properties of five coordination polymers based on triazole carboxylic acid ligands. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Kundu S, Mondal D, Rajasekaran VV, Goswami A, Schmittel M. Three-Input Logic AND Gate Drives Sequential Three-Step Catalysis by Parallel Activation of H + and Ag + as a Catalyst Duo. Inorg Chem 2022; 61:17007-17011. [PMID: 36264551 DOI: 10.1021/acs.inorgchem.2c03349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boolean operations with multiple catalysts as output are yet unknown using molecular logic. The issue is solved using a two-component ensemble, composed of a receptor and rotaxane, which acts as a three-input AND gate with a dual catalytic output. Actuation of the ensemble gate by the stoichiometric addition of metal ions (Ag+ and Cd2+) and 2,2,2-trifluoroacetic acid generated in the (1,1,1) truth table state a catalyst duo that synergistically enabled a three-step reaction, furnishing a dihydroisoquinoline as the output of a three-input logic AND gate operation.
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| | - Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| | - Vishnu Verman Rajasekaran
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| | - Abir Goswami
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Department of Chemistry-Biology, Organische Chemie I, University of Siegen, Adolf-Reichwein Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
6
|
Zhang T, Qiao C, Xia L, Yuan T, Wei Q, Yang Q, Chen S. Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|