Hossain K, Roy Choudhury A, Majumdar A. Generation and Reactivity of Polychalcogenide Chains in Binuclear Cobalt(II) Complexes.
JACS AU 2024;
4:771-787. [PMID:
38425921 PMCID:
PMC10900221 DOI:
10.1021/jacsau.3c00790]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
A series of six binuclear Co(II)-thiolate complexes, [Co2(BPMP)(S-C6H4-o-X)2]1+ (X = OMe, 2; NH2, 3), [Co2(BPMP)(μ-S-C6H4-o-O)]1+ (4), and [Co2(BPMP)(μ-Y)]1+ (Y = bdt, 5; tdt, 6; mnt, 7), has been synthesized from [Co2(BPMP)(MeOH)2(Cl)2]1+ (1a) and [Co2(BPMP)(Cl)2]1+ (1b), where BPMP1- is the anion of 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol. While 2 and 3 could allow the two-electron redox reaction of the two coordinated thiolates with elemental sulfur (S8) to generate [Co2(BPMP)(μ-S5)]1+ (8), the complexes, 4-7, could not undergo a similar reaction. An analogous redox reaction of 2 with elemental selenium ([Se]) produced [{Co2(BPMP)(μ-Se4)}{Co2(BPMP)(μ-Se3)}]2+ (9a) and [Co2(BPMP)(μ-Se4)]1+ (9b). Further reaction of these polychalcogenido complexes, 8 and 9a/9b, with PPh3 allowed the isolation of [Co2(BPMP)(μ-S)]1+ (10) and [Co2(BPMP)(μ-Se2)]1+ (11), which, in turn, could be converted back to 8 and 9a upon treatment with S8 and [Se], respectively. Interestingly, while the redox reaction of the polyselenide chains in 9a and 11 with S8 produced 8 and [Se], the treatment of 8 with [Se] gave back only the starting material (8), thus demonstrating the different redox behavior of sulfur and selenium. Furthermore, the reaction of 8 and 9a/9b with activated alkynes and cyanide (CN-) allowed the isolation of the complexes, [Co2(BPMP)(μ-E2C2(CO2R)2)]1+ (E = S: 12a, R = Me; 12b, R = Et; E = Se: 13a, R = Me; 13b, R = Et) and [Co2(BPMP)(μ-SH)(NCS)2] (14), respectively. The present work, thus, provides an interesting synthetic strategy, interconversions, and detailed comparative reactivity of binuclear Co(II)-polychalcogenido complexes.
Collapse