1
|
Shan WL, Hou HH, Si N, Wang CX, Yuan G, Gao X, Jin GX. Selective Construction and Structural Transformation of Homogeneous Linear Metalla[4]catenane and Metalla[2]catenane Assemblies. Angew Chem Int Ed Engl 2024; 63:e202402198. [PMID: 38319045 DOI: 10.1002/anie.202402198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/07/2024]
Abstract
Although the synthesis of mechanically interlocked molecules has been extensively researched, selectively constructing homogeneous linear [4]catenanes remains a formidable challenge. Here, we selectively constructed a homogeneous linear metalla[4]catenane in a one-step process through the coordination-driven self-assembly of a bidentate benzothiadiazole derivative ligand and a binuclear half-sandwich rhodium precursor. The formation of metalla[4]catenanes was facilitated by cooperative interactions between strong sandwich-type π-π stacking and non-classical hydrogen bonds between the components. Moreover, by modulating the aromatic substituents on the binuclear precursor, two homogeneous metalla[2]catenanes were obtained. The molecular structures of these metallacatenanes were unambiguously characterized by single-crystal X-ray diffraction analysis. Additionally, reversible structural transformation between metal-catenanes and the corresponding metallarectangles could be achieved by altering their concentration, as confirmed by mass spectrometry and NMR spectroscopy studies.
Collapse
Affiliation(s)
- Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Huan-Huan Hou
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Nian Si
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Cai-Xia Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Ibáñez S. The New Di-Gold Metallotweezer Based on an Alkynylpyridine System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123699. [PMID: 35744825 PMCID: PMC9227567 DOI: 10.3390/molecules27123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
We developed a simple method to prepare one gold-based metallotweezer with two planar Au-pyrene-NHC arms bound by a 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine unit. This metallotweezer is able to bind a series of polycyclic aromatic hydrocarbons through the π-stacking interactions between the polyaromatic guests and the pyrene moieties of the NHC ligands. The metallotweezer was also used as a host for the encapsulation of planar metal complexes, such as the Au(III) complex [Au(C^N^C)(C≡CC6H4-OCH3-p)], for which there is a large binding constant of 946 M−1.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|