1
|
Monini V, Bonechi M, Bazzicalupi C, Bianchi A, Gentilesca P, Giurlani W, Innocenti M, Meoli A, Romano GM, Savastano M. Oxygen reduction reaction (ORR) in alkaline solution catalysed by an atomically precise catalyst based on a Pd(II) complex supported on multi-walled carbon nanotubes (MWCNTs). Electrochemical and structural considerations. Dalton Trans 2024; 53:2487-2500. [PMID: 38193252 DOI: 10.1039/d3dt03947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A new atomically precise, single-ion catalyst (MWCNT-LPd) for ORR (oxygen reduction reaction), consisting of a Pd(II) complex of a tetraazacycloalkane anchored on multiwalled carbon nanotubes, has been prepared through a supramolecular approach ensuring a uniform distribution of catalytic centres on the support surface. A tetraazacycloalkane was chosen to saturate the four coordination sites of the typical square planar coordination geometry of Pd(II) with the aim of ascertaining whether the metal ion must have free coordination sites to function effectively in the ORR or whether, as predicted by quantum mechanical calculations, the catalytic effect can be originated from an interaction of O2 in the fifth coordinative position. The results clearly demonstrated that tetracoordination of Pd(II) does not influence its catalytic capacity in the ORR. Electrodes based on this catalyst show ORR performance very close to that of commercial Pt electrodes, despite the low Pd(II) content (1.72% by weight) in the catalyst. The onset potential (Eon) value and the half-wave potential (E1/2) of the catalyst are, respectively, only 53 mV and 24 mV less positive than those observed for the Pt electrode and direct conversion of O2 to H2O reaches 85.0%, compared to 89% of the Pt electrode. Furthermore, a preliminary galvanostatic test (simulating a working fuel cell at a fixed potential) showed that the catalyst maintains its efficiency continuing to produce water throughout the process (the average number of electrons exchanged over time per O2 molecule remains close to 4).
Collapse
Affiliation(s)
- Valeria Monini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Marco Bonechi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Unit of Florence, Via G. Giusti 9, 50121 Florence, Italy.
| | - Pietro Gentilesca
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Walter Giurlani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Massimo Innocenti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Unit of Florence, Via G. Giusti 9, 50121 Florence, Italy.
| | - Arianna Meoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Giammarco Maria Romano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Matteo Savastano
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Unit of Florence, Via G. Giusti 9, 50121 Florence, Italy.
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| |
Collapse
|
2
|
Savastano M. Ye Olde supramolecular chemistry, its modern rebranding and overarching trends in chemistry. Dalton Trans 2024; 53:1373-1392. [PMID: 38180341 DOI: 10.1039/d3dt03686c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We can describe current contingency of supramolecular chemistry as "post-halogen bonding", with clear reference to the success of the σ-hole model and the halogen bond concepts. This phase is characterized by a strong push towards a new nomenclature for non-covalent interactions, a group-by-group one focusing on the electrophile. As such nomenclature increasingly meets IUPAC endorsement, its proposers report resistances to such ideas, especially in the inorganic and coordination chemistry communities. The whole issue has been generating considerable debate in the last decade. Herein we fully embrace such discussion in the hope of involving a larger share of the relevant communities. Alternative descriptions are here reevaluated, novel views reconnected with older ones, and it is ultimately questioned whether the introduction of such a nomenclature and its subtending ideas would be beneficial. The themes of appreciation of general trends in chemistry, of counterintuitive interactions, of positioning of novel nomenclature with respect to existing ones, and of the extension of group-by-group naming from main block to d-block elements - as key and currently unresolved issues - are discussed. Equivalent, alternative and arguably more comprehensive descriptions are tentatively given, in the hope to overcome controversies together in the pursuit of higher rewards: a comprehensive shared view of supramolecular forces and a common language to express it.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele Roma, via di Val Cannuta 247, 00166, Rome, Italy.
| |
Collapse
|