1
|
Gupta A, Sasmal PK. Multi-functional biotinylated platinum(IV)-SAHA conjugate for tumor-targeted chemotherapy. Dalton Trans 2024; 53:17829-17840. [PMID: 39404606 DOI: 10.1039/d4dt01571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The development of multi-functional Pt(IV) complexes as chemotherapeutic agents has gained growing attention in medical oncology. However, the design of multi-functional tumor-targeted Pt(IV) complexes with high hydrolytic stability remains challenging. Herein, we have developed a Pt(IV) prodrug conjugated with vorinostat as a multi-functional cancer therapeutic. In this design, the octahedral Pt(IV) prodrug of a DNA damaging anticancer drug cisplatin is tethered to the cancer cell targeting biotin ligand through one of the axial sites and the other axial site of the Pt(IV) center is attached to the anticancer drug vorinostat (also known as SAHA), a histone deacetylase inhibitor (HDACi) approved by the Food and Drug Administration (FDA) for treatment of cutaneous T-cell lymphoma. The designed biotinylated Pt(iv)-SAHA (Biotin-Pt(iv)-SAHA) conjugate is hydrolytically stable but reduced to Pt(II) species under intracellularly relevant conditions and concomitantly releases cisplatin and two of its axial ligands such as SAHA and biotin. The anticancer activity of the conjugate is investigated against a panel of cisplatin-sensitive human cancer cells, including cisplatin-resistant cells. Interestingly, the conjugate exhibited significantly higher cytotoxicity than the clinically approved anticancer drug cisplatin and slightly more cytotoxicity than the HDACi SAHA in all the tested cell lines. By combining the Pt(IV) prodrug of cisplatin with SAHA in the conjugate, synergistic cytotoxicity is achieved. The imaging studies revealed that the conjugate is taken up by cancer cells and shows dose-dependent cell death. The studies on our designed multi-pronged conjugate can be further optimized to enhance its efficacy, paving the way for developing a new class of clinically relevant chemotherapeutic agents.
Collapse
Affiliation(s)
- Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Wang WJ, Ling YY, Shi Y, Wu XW, Su X, Li ZQ, Mao ZW, Tan CP. Identification of mitochondrial ATP synthase as the cellular target of Ru-polypyridyl- β-carboline complexes by affinity-based protein profiling. Natl Sci Rev 2024; 11:nwae234. [PMID: 39114378 PMCID: PMC11304990 DOI: 10.1093/nsr/nwae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Ruthenium polypyridyl complexes are promising anticancer candidates, while their cellular targets have rarely been identified, which limits their clinical application. Herein, we design a series of Ru(II) polypyridyl complexes containing bioactive β-carboline derivatives as ligands for anticancer evaluation, among which Ru5 shows suitable lipophilicity, high aqueous solubility, relatively high anticancer activity and cancer cell selectivity. The subsequent utilization of a photo-clickable probe, Ru5a, serves to validate the significance of ATP synthase as a crucial target for Ru5 through photoaffinity-based protein profiling. Ru5 accumulates in mitochondria, impairs mitochondrial functions and induces mitophagy and ferroptosis. Combined analysis of mitochondrial proteomics and RNA-sequencing shows that Ru5 significantly downregulates the expression of the chloride channel protein, and influences genes related to ferroptosis and epithelial-to-mesenchymal transition. Finally, we prove that Ru5 exhibits higher anticancer efficacy than cisplatin in vivo. We firstly identify the molecular targets of ruthenium polypyridyl complexes using a photo-click proteomic method coupled with a multiomics approach, which provides an innovative strategy to elucidate the anticancer mechanisms of metallo-anticancer candidates.
Collapse
Affiliation(s)
- Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yin Shi
- School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiao-Wen Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuxian Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheng-Qiu Li
- School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Palmeira-Mello MV, Costa AR, de Oliveira LP, Blacque O, Gasser G, Batista AA. Exploring the potential of ruthenium(II)-phosphine-mercapto complexes as new anticancer agents. Dalton Trans 2024; 53:10947-10960. [PMID: 38895770 DOI: 10.1039/d4dt01191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Analu R Costa
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Leticia P de Oliveira
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Alzir A Batista
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Jin N, Wang Z, Tang X, Jin N, Wang X. Promoting Diabetic Wound Healing through a Hydrogel-Based Cascade Regulation Strategy of Fibroblast-Macrophage. Adv Healthc Mater 2024; 13:e2400526. [PMID: 38469978 PMCID: PMC11468540 DOI: 10.1002/adhm.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/08/2024] [Indexed: 03/13/2024]
Abstract
The management of diabetic wounds (DWs) continues to pose a significant challenge in the field of medicine. DWs are primarily prevented from healing due to damage to macrophage efferocytosis and fibroblast dysfunction. Consequently, a treatment strategy that involves both immunoregulation and the promotion of extracellular matrix (ECM) formation holds promise for healing DWs. Nevertheless, existing treatment methods necessitate complex interventions and are associated with increased costs, for example, the use of cytokines and cell therapy, both of which have limited effectiveness. In this study, a new type of ruthenium (IV) oxide nanoparticles (RNPs)-laden hybrid hydrogel dressing with a double network of Pluronic F127 and F68 has been developed. Notably, the hybrid hydrogel demonstrates remarkable thermosensitivity, injectability, immunoregulatory characteristics, and healing capability. RNPs in hydrogel effectively regulate both fibroblasts and macrophages in a cascade manner, stimulating fibroblast differentiation while synergistically enhancing the efferocytosis of macrophage. The immunoregulatory character of the hydrogel aids in restoring the intrinsic stability of the immune microenvironment in the wound and facilitates essential remodeling of the ECM. This hydrogel therefore offers a novel approach for treating DWs through intercellular communication.
Collapse
Affiliation(s)
- Nuo Jin
- Center of 3D Printing & Organ Manufacturing, School of Intelligent MedicineChina Medical UniversityShenyang110001China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of StomatologyJilin UniversityChangchun130021China
| | - Xi Tang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310022China
| | - Nianqiang Jin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent MedicineChina Medical UniversityShenyang110001China
| |
Collapse
|
5
|
Reardon MM, Guerrero M, Alatrash N, MacDonnell FM. Exploration of the Pharmacophore for Cytoskeletal Targeting Ruthenium Polypyridyl Complexes. ChemMedChem 2023; 18:e202300347. [PMID: 37574460 DOI: 10.1002/cmdc.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Ruthenium(II) trisdiimine complexes of the formula, [Ru(dip)n (L-L)3-n ]2+ , where n=0-3; dip=4,7-diphenyl-1,10-phenanthroline; L-L=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) were prepared and tested for cytotoxicity in two cell lines (H358, MCF7). Cellular uptake and subcellular localization were determined by harvesting treated cells and determining the ruthenium concentration in whole or fractionated cells (cytosolic, nuclear, mitochondrial/ ER/Golgi, and cytoskeletal proteins) by Ru ICP-MS. The logP values for the chloride salts of these complexes were measured and the data were analyzed to determine the role of lipophilicity versus structure in the various biological assays. Cellular uptake increased with lipophilicity but shows the biggest jump when the complex contains two or more dip ligands. Significantly, preferential cytoskeletal localization is also correlated with increased cytotoxicity. All of the RPCs promote tubulin polymerization in vitro, but [Ru(dip)2 phen]2+ and [Ru(dip)3 ]2+ show the strongest activity. Analysis of the pellet formed by centrifugation of MTs formed in the presence of [Ru(dip)2 phen]2+ establish a binding stoichiometry of one RPC per tubulin heterodimer. Complexes of the general formula [Ru(dip)2 (L-L)]2+ possess the necessary characteristics to target the cytoskeleton in live cells and increase cytotoxicity, however the nature of the L-L ligand does influence the extent of the effect.
Collapse
Affiliation(s)
- Melissa M Reardon
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Matthew Guerrero
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Nagham Alatrash
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Frederick M MacDonnell
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| |
Collapse
|
6
|
Wang Y, Mesdom P, Purkait K, Saubaméa B, Burckel P, Arnoux P, Frochot C, Cariou K, Rossel T, Gasser G. Ru(ii)/Os(ii)-based carbonic anhydrase inhibitors as photodynamic therapy photosensitizers for the treatment of hypoxic tumours. Chem Sci 2023; 14:11749-11760. [PMID: 37920359 PMCID: PMC10619633 DOI: 10.1039/d3sc03932c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical technique for the treatment of cancer. It is based on the use of non-toxic molecules, called photosensitizers (PSs), that become toxic when irradiated with light and produce reactive oxygen specious (ROS) such as singlet oxygen (1O2). This light-induced toxicity is rather selective since the physician only targets a specific area of the body, leading to minimal side effects. Yet, a strategy to improve further the selectivity of this medical technique is to confine the delivery of the PS to cancer cells only instead of spreading it randomly throughout the body prior to light irradiation. To address this problem, we present here novel sulfonamide-based monopodal and dipodal ruthenium and osmium polypyridyl complexes capable of targeting carbonic anhydrases (CAs) that are a major target in cancer therapy. CAs are overexpressed in the membrane or cytoplasm of various cancer cells. We therefore anticipated that the accumulation of our complexes in or outside the cell prior to irradiation would improve the selectivity of the PDT treatment. We show that our complexes have a high affinity for CAs, accumulate in cancer cells overexpressing CA cells and importantly kill cancer cells under both normoxic and hypoxic conditions upon irradiation at 540 nm. More importantly, Os(ii) compounds still exhibit some phototoxicity under 740 nm irradiation under normoxic conditions. To our knowledge, this is the first description of ruthenium/osmium-based PDT PSs that are CA inhibitors for the selective treatment of cancers.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Pierre Mesdom
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Kallol Purkait
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Bruno Saubaméa
- Cellular and Molecular Imaging Facility, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité F-75006 Paris France
| | - Pierre Burckel
- Institut de Physique du Globe de Paris, Biogéochimie à; l'Anthropocène des Eléments et Contaminants Emergents 75005 Paris France
| | | | | | - Kevin Cariou
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Thibaud Rossel
- Institute of Chemistry, University of Neuchâtel Avenue de Bellevaux 51 2000 Neuchâtel Switzerland
| | - Gilles Gasser
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| |
Collapse
|
7
|
Wang Y, Felder PS, Mesdom P, Blacque O, Mindt TL, Cariou K, Gasser G. Towards Ruthenium(II)-Rhenium(I) Binuclear Complexes as Photosensitizers for Photodynamic Therapy. Chembiochem 2023; 24:e202300467. [PMID: 37526951 DOI: 10.1002/cbic.202300467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
The search for new metal-based photosensitizers (PSs) for anticancer photodynamic therapy (PDT) is a fast-developing field of research. Knowing that polymetallic complexes bear a high potential as PDT PSs, in this study, we aimed at combining the known photophysical properties of a rhenium(I) tricarbonyl complex and a ruthenium(II) polypyridyl complex to prepare a ruthenium-rhenium binuclear complex that could act as a PS for anticancer PDT. Herein, we present the synthesis and characterization of such a system and discuss its stability in aqueous solution. In addition, one of our complexes prepared, which localized in mitochondria, was found to have some degree of selectivity towards two types of cancerous cells: human lung carcinoma A549 and human colon colorectal adenocarcinoma HT29, with interesting photo-index (PI) values of 135.1 and 256.4, respectively, compared to noncancerous retinal pigment epithelium RPE1 cells (22.4).
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Patrick S Felder
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Pierre Mesdom
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Olivier Blacque
- University of Zurich, Department of Chemistry, CH-8057, Zurich, Switzerland
| | - Thomas L Mindt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Währingerstraße 42, 1090, Vienna, Austria
- Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
8
|
Vinck R, Dömötör O, Karges J, Jakubaszek M, Seguin J, Tharaud M, Guérineau V, Cariou K, Mignet N, Enyedy ÉA, Gasser G. In Situ Bioconjugation of a Maleimide-Functionalized Ruthenium-Based Photosensitizer to Albumin for Photodynamic Therapy. Inorg Chem 2023; 62:15510-15526. [PMID: 37708255 DOI: 10.1021/acs.inorgchem.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.
Collapse
Affiliation(s)
- Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Johanne Seguin
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Mickaël Tharaud
- Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, Institut de Physique du Globe de Paris, 75005 Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| |
Collapse
|
9
|
Enslin LE, Purkait K, Pozza MD, Saubamea B, Mesdom P, Visser HG, Gasser G, Schutte-Smith M. Rhenium(I) Tricarbonyl Complexes of 1,10-Phenanthroline Derivatives with Unexpectedly High Cytotoxicity. Inorg Chem 2023; 62:12237-12251. [PMID: 37489813 PMCID: PMC10410611 DOI: 10.1021/acs.inorgchem.3c00730] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 07/26/2023]
Abstract
Eight rhenium(I) tricarbonyl aqua complexes with the general formula fac-[Re(CO)3(N,N'-bid)(H2O)][NO3] (1-8), where N,N'-bid is (2,6-dimethoxypyridyl)imidazo[4,5-f]1,10-phenanthroline (L1), (indole)imidazo[4,5-f]1,10-phenanthroline (L2), (5-methoxyindole)-imidazo[4,5-f]1,10-phenanthroline (L3), (biphenyl)imidazo[4,5-f]1,10-phenanthroline (L4), (fluorene)imidazo[4,5-f]1,10-phenanthroline (L5), (benzo[b]thiophene)imidazo[4,5-f]1,10-phenanthroline (L6), (5-bromothiazole)imidazo[4,5-f]1,10-phenanthroline (L7), and (4,5-dimethylthiophene)imidazo[4,5-f]1,10-phenanthroline (L8), were synthesized and characterized using 1H and 13C{1H} NMR, FT-IR, UV/Vis absorption spectroscopy, and ESI-mass spectrometry, and their purity was confirmed by elemental analysis. The stability of the complexes in aqueous buffer solution (pH 7.4) was confirmed by UV/Vis spectroscopy. The cytotoxicity of the complexes (1-8) was then evaluated on prostate cancer cells (PC3), showing a low nanomolar to low micromolar in vitro cytotoxicity. Worthy of note, three of the Re(I) tricarbonyl complexes showed very low (IC50 = 30-50 nM) cytotoxic activity against PC3 cells and up to 26-fold selectivity over normal human retinal pigment epithelial-1 (RPE-1) cells. The cytotoxicity of both complexes 3 and 6 was lowered under hypoxic conditions in PC3 cells. However, the compounds were still 10 times more active than cisplatin in these conditions. Additional biological experiments were then performed on the most selective complexes (complexes 3 and 6). Cell fractioning experiments followed by ICP-MS studies revealed that 3 and 6 accumulate mostly in the mitochondria and nucleus, respectively. Despite the respective mitochondrial and nuclear localization of 3 and 6, 3 did not trigger the apoptosis pathways for cell killing, whereas 6 can trigger apoptosis but not as a major pathway. Complex 3 induced a paraptosis pathway for cell killing while 6 did not induce any of our other tested pathways, namely, necrosis, paraptosis, and autophagy. Both complexes 3 and 6 were found to be involved in mitochondrial dysfunction and downregulated the ATP production of PC3 cells. To the best of our knowledge, this report presents some of the most cytotoxic Re(I) carbonyl complexes with exceptionally low nanomolar cytotoxic activity toward prostate cancer cells, demonstrating further the future viability of utilizing rhenium in the fight against cancer.
Collapse
Affiliation(s)
- Lucy E. Enslin
- Department
of Chemistry, University of the Free State, Bloemfontein 9301, South Africa
| | - Kallol Purkait
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Maria Dalla Pozza
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Bruno Saubamea
- Plateforme
Imagerie Cellulaire et Moléculaire, Faculté de Pharmacie, Université Paris Cité, F-75270 Paris, France
| | - Pierre Mesdom
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Hendrik G. Visser
- Department
of Chemistry, University of the Free State, Bloemfontein 9301, South Africa
| | - Gilles Gasser
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | | |
Collapse
|
10
|
Martínez-Alonso M, Gandioso A, Thibaudeau C, Qin X, Arnoux P, Demeubayeva N, Guérineau V, Frochot C, Jung AC, Gaiddon C, Gasser G. A Novel Near-IR Absorbing Ruthenium(II) Complex as Photosensitizer for Photodynamic Therapy and its Cetuximab Bioconjugates. Chembiochem 2023; 24:e202300203. [PMID: 37017905 DOI: 10.1002/cbic.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/06/2023]
Abstract
A novel Ru(II) cyclometalated photosensitizer (PS), Ru-NH2 , for photodynamic therapy (PDT) of formula [Ru(appy)(bphen)2 ]PF6 (where appy=4-amino-2-phenylpyridine and bphen=bathophenanthroline) and its cetuximab (CTX) bioconjugates, Ru-Mal-CTX and Ru-BAA-CTX (where Mal=maleimide and BAA=benzoylacrylic acid) were synthesised and characterised. The photophysical properties of Ru-NH2 revealed absorption maxima around 580 nm with an absorption up to 725 nm. The generation of singlet oxygen (1 O2 ) upon light irradiation was confirmed with a 1 O2 quantum yield of 0.19 in acetonitrile. Preliminary in vitro experiments revealed the Ru-NH2 was nontoxic in the dark in CT-26 and SQ20B cell lines but showed outstanding phototoxicity when irradiated, reaching interesting phototoxicity indexes (PI) >370 at 670 nm, and >150 at 740 nm for CT-26 cells and >50 with NIR light in SQ20B cells. The antibody CTX was successfully attached to the complexes in view of the selective delivery of the PS to cancer cells. Up to four ruthenium fragments were anchored to the antibody (Ab), as confirmed by MALDI-TOF mass spectrometry. Nonetheless, the bioconjugates were not as photoactive as the Ru-NH2 complex.
Collapse
Affiliation(s)
- Marta Martínez-Alonso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Chloé Thibaudeau
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, 67200, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », 67200, Strasbourg, France
| | - Xue Qin
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, 67200, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », 67200, Strasbourg, France
| | - Philippe Arnoux
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, 54000, Nancy, France
| | - Nurikamal Demeubayeva
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, 54000, Nancy, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, 54000, Nancy, France
| | - Alain C Jung
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, 67200, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », 67200, Strasbourg, France
| | - Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », 67200, Strasbourg, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
11
|
Silva MJSA, Vinck R, Wang Y, Saubaméa B, Tharaud M, Dominguez-Jurado E, Karges J, Gois PMP, Gasser G. Towards Selective Delivery of a Ruthenium(II) Polypyridyl Complex-Containing Bombesin Conjugate into Cancer Cells. Chembiochem 2023; 24:e202200647. [PMID: 36479913 DOI: 10.1002/cbic.202200647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
An increasing number of novel Ru(II) polypyridyl complexes have been successfully applied as photosensitizers (PSs) for photodynamic therapy (PDT). Despite recent advances in optimized PSs with refined photophysical properties, the lack of tumoral selectivity is often a major hurdle for their clinical development. Here, classical maleimide and versatile NHS-activated acrylamide strategies were employed to site-selectively conjugate a promising Ru(II) polypyridyl complex to the N-terminally Cys-modified Bombesin (BBN) targeting unit. Surprisingly, the decreased cell uptake of these novel Ru-BBN conjugates in cancer cells did not hamper the high phototoxic activity of the Ru-containing bioconjugates and even decreased the toxicity of the constructs in the absence of light irradiation. Overall, although deceiving in terms of selectivity, our new bioconjugates could still be useful for advanced cancer treatment due to their nontoxicity in the dark.
Collapse
Affiliation(s)
- Maria J S A Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging Facility, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, 75006, Paris, France
| | - Mickaël Tharaud
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Elena Dominguez-Jurado
- Faculty of Pharmacy of Albacete, Universidad de Castilla-La Mancha, 02008, Albacete, Spain
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
12
|
Kuznetcova I, Ostojić M, Gligorijević N, Aranđelović S, Arion VB. Enriching Chemical Space of Bioactive Scaffolds by New Ring Systems: Benzazocines and Their Metal Complexes as Potential Anticancer Drugs. Inorg Chem 2022; 61:20445-20460. [PMID: 36473464 PMCID: PMC9768754 DOI: 10.1021/acs.inorgchem.2c03134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The search for new scaffolds of medicinal significance combined with molecular shape enhances their innovative potential and continues to attract the attention of researchers. Herein, we report the synthesis, spectroscopic characterization (1H and 13C NMR, UV-vis, IR), ESI-mass spectrometry, and single-crystal X-ray diffraction analysis of a new ring system of medicinal significance, 5,6,7,9-tetrahydro-8H-indolo[3,2-e]benzazocin-8-one, and a series of derived potential ligands (HL1-HL5), as well as ruthenium(II), osmium(II), and copper(II) complexes (1a, 1b, and 2-5). The stability of compounds in 1% DMSO aqueous solutions has been confirmed by 1H NMR and UV-vis spectroscopy measurements. The antiproliferative activity of HL1-HL5 and 1a, 1b, and 2-5 was evaluated by in vitro cytotoxicity tests against four cancer cell lines (LS-174, HCT116, MDA-MB-361, and A549) and one non-cancer cell line (MRC-5). The lead compounds HL5 and its copper(II) complex 5 were 15× and 17×, respectively, more cytotoxic than cisplatin against human colon cancer cell line HCT116. Annexin V-FITC apoptosis assay showed dominant apoptosis inducing potential of both compounds after prolonged treatment (48 h) in HCT116 cells. HL5 and 5 were found to induce a concentration- and time-dependent arrest of cell cycle in colon cancer cell lines. Antiproliferative activity of 5 in 3D multicellular tumor spheroid model of cancer cells (HCT116, LS-174) superior to that of cisplatin was found. Moreover, HL5 and 5 showed notable inhibition potency against glycogen synthase kinases (GSK-3α and GSK-3β), tyrosine-protein kinase (Src), lymphocyte-specific protein-tyrosine kinase (Lck), and cyclin-dependent kinases (Cdk2 and Cdk5) (IC50 = 1.4-6.1 μM), suggesting their multitargeted mode of action as potential anticancer drugs.
Collapse
Affiliation(s)
- Irina Kuznetcova
- Institute
of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Marija Ostojić
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Nevenka Gligorijević
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sandra Aranđelović
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia,
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria,
| |
Collapse
|