1
|
Jiang L, Liao J, Nie L, Dong G, Song D, Tang G, Zhou Q. Dual COF functionalized magnetic MXene composite for enhancing magnetic solid phase extraction of thiophene compounds from oilfield produced waters prior to GC-MS/MS analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135653. [PMID: 39217939 DOI: 10.1016/j.jhazmat.2024.135653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel COFTABT@COFTATp modified magnetic MXene composite (CoFe2O4 @Ti3C2 @COFTABT@COFTATp) was synthesized by Schiff base reaction and irre-versible enol-keto tautomerization, and employed to establish a sensitive monitoring method for six thiophene compounds in oilfield produced water samples based on magnetic solid-phase extraction (MSPE) prior to gas chromatography coupled with a triple quadruple mass spectrometer (GC-MS/MS). The designed magnetic materials exhibited unexpected enrichment ability to target thiophene compounds and achieved good extraction efficiencies ranging from 83 % to 98 %. The developed MSPE/GC-MS/MS method exhibited good linearity in the range of 0.001-100 μg L-1, and obtained lower limits of detection ranging from 0.39 to 1.9 ng L-1. The spiked recoveries of thiophene compounds obtained in three oilfield produced water samples were over the range of 96.26 %-99.54 % with relative standard deviations (RSDs) less than 3.7 %. Notably, benzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene were detected in three oilfield-produced water samples. Furthermore, the material still kept favorable stability after six recycling experiments. The adsorption kinetics, adsorption isotherms as well as adsorption thermodynamics of thiophene compounds were investigated in detail to provide insight into the mechanisms. Overall, the present work contributed a promising strategy for designing and synthesizing new functionalized materials for the enrichment and detection of typical pollutants in the environment.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guojin Tang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
2
|
Liu G, Liu S, Lai C, Qin L, Zhang M, Li Y, Xu M, Ma D, Xu F, Liu S, Dai M, Chen Q. Strategies for Enhancing the Photocatalytic and Electrocatalytic Efficiency of Covalent Triazine Frameworks for CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307853. [PMID: 38143294 DOI: 10.1002/smll.202307853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Indexed: 12/26/2023]
Abstract
Converting carbon dioxide (CO2) into fuel and high-value-added chemicals is considered a green and effective way to solve global energy and environmental problems. Covalent triazine frameworks (CTFs) are extensively utilized as an emerging catalyst for photo/electrocatalytic CO2 reduction reaction (CO2RR) recently recognized for their distinctive qualities, including excellent thermal and chemical stability, π-conjugated structure, rich nitrogen content, and a strong affinity for CO2, etc. Nevertheless, single-component CTFs have the problems of accelerated recombination of photoexcited electron-hole pairs and restricted conductivity, which limit their application for photo/electrocatalytic CO2RR. Therefore, emphasis will then summarize the strategies for enhancing the photocatalytic and electrocatalytic efficiency of CTFs for CO2RR in this paper, including atom doping, constructing a heterojunction structure, etc. This review first illustrates the synthesis strategies of CTFs and the advantages of CTFs in the field of photo/electrocatalytic CO2RR. Subsequently, the mechanism of CTF-based materials in photo/electrocatalytic CO2RR is described. Lastly, the challenges and future prospects of CTFs in photo/electrocatalytic CO2RR are addressed, which offers a fresh perspective for the future development of CTFs in photo/electrocatalytic CO2RR.
Collapse
Affiliation(s)
- Gang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shaobo Liu
- College of Architecture and Art, Central South University, Changsha, 410083, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mengyi Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingyang Dai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
3
|
Xiao K, Zhu R, Zhang X, Du C, Chen J. Ultrasensitive detection and efficient removal of mercury ions based on covalent organic framework spheres with double active sites. Anal Chim Acta 2023; 1278:341751. [PMID: 37709436 DOI: 10.1016/j.aca.2023.341751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
In present work, a new spherical covalent organic framework (TFPB-APTU COF) with good photoelectric property and double active sites (secondary amine (-NH-) group and sulfur (S) atom) was prepared for ultrasensitive detection and efficient removal of mercury ions (Hg2+). The -NH- group and S atom can capture free Hg2+ by coordination and chelation interaction, and the related steric hindrance effect reduces the photocurrent signal of the TFPB-APTU COF, resulting in the highly sensitive photoelectrochemical analysis of Hg2+ with a wide linear response range (0.01-100000 nM) and low detection limit (0.006 nM). On the other hand, the developed TFPB-APTU COF has large removal capacity (2692 mg g-1), good regeneration capability, and high removal speed for Hg2+ removal based on the double active sites (-NH- group and S atom), large specific surface area and porous spherical structure. The developed TFPB-APTU COF spheres show great potential in monitoring and treatment of environmental pollution of Hg2+.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
4
|
Yan G, Sun X, Zhang Y, Li H, Huang H, Jia B, Su D, Ma T. Metal-Free 2D/2D van der Waals Heterojunction Based on Covalent Organic Frameworks for Highly Efficient Solar Energy Catalysis. NANO-MICRO LETTERS 2023; 15:132. [PMID: 37211571 PMCID: PMC10200743 DOI: 10.1007/s40820-023-01100-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as a kind of rising star materials in photocatalysis. However, their photocatalytic activities are restricted by the high photogenerated electron-hole pairs recombination rate. Herein, a novel metal-free 2D/2D van der Waals heterojunction, composed of a two-dimensional (2D) COF with ketoenamine linkage (TpPa-1-COF) and 2D defective hexagonal boron nitride (h-BN), is successfully constructed through in situ solvothermal method. Benefitting from the presence of VDW heterojunction, larger contact area and intimate electronic coupling can be formed between the interface of TpPa-1-COF and defective h-BN, which make contributions to promoting charge carriers separation. The introduced defects can also endow the h-BN with porous structure, thus providing more reactive sites. Moreover, the TpPa-1-COF will undergo a structural transformation after being integrated with defective h-BN, which can enlarge the gap between the conduction band position of the h-BN and TpPa-1-COF, and suppress electron backflow, corroborated by experimental and density functional theory calculations results. Accordingly, the resulting porous h-BN/TpPa-1-COF metal-free VDW heterojunction displays outstanding solar energy catalytic activity for water splitting without co-catalysts, and the H2 evolution rate can reach up to 3.15 mmol g-1 h-1, which is about 67 times greater than that of pristine TpPa-1-COF, also surpassing that of state-of-the-art metal-free-based photocatalysts reported to date. In particular, it is the first work for constructing COFs-based heterojunctions with the help of h-BN, which may provide new avenue for designing highly efficient metal-free-based photocatalysts for H2 evolution.
Collapse
Affiliation(s)
- Ge Yan
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Adv. Mater., College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Adv. Mater., College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Yu Zhang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Adv. Mater., College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Hui Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Dawei Su
- Faculty of Science, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|