1
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2024:1-40. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
2
|
Inomata T, Endo S, Ido H, Miyamoto M, Ichikawa H, Sugita R, Ozawa T, Masuda H. Detection of Microorganisms Using Artificial Siderophore-Fe III Complex-Modified Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2632-2645. [PMID: 38252152 DOI: 10.1021/acs.langmuir.3c03084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Four FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups of tricatecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and trihydroxamate type artificial siderophores (K3[FeIIILC3], K2[FeIIILC2H1], K[FeIIILC1H2], and [FeIIILH3]) were modified on Au substrate surfaces. Their abilities to adsorb microorganisms were investigated using scanning electron microscopy, quartz crystal microbalance, and AC impedance methods. The artificial siderophore-iron complexes modified on Au substrates (FeLC3/Au, FeLC2H1/Au, FeLC1H2/Au, and FeLH3/Au) showed the selective immobilization behavior for various microorganisms, depending on the structural features of the artificial siderophores (the number of catecholate and hydroxamate arms). Their specificities corresponded well with the structural characteristics of natural siderophores released by microorganisms and used for FeIII ion uptake. These findings suggest that they were generated via specific interactions between the artificial siderophore-FeIII complexes and the receptors on microorganism surfaces. Our observations revealed that the FeL/Au systems may be potentially used as effective microbe-capturing probes that can enable rapid and simple detection and identification of various microorganisms.
Collapse
Affiliation(s)
- Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Suguru Endo
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ido
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masakazu Miyamoto
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ichikawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ririka Sugita
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tomohiro Ozawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| |
Collapse
|
3
|
Endo S, Ozawa T, Inomata T, Masuda H. [Microorganism Immobilization Device Using Artificial Siderophores]. YAKUGAKU ZASSHI 2024; 144:643-650. [PMID: 38825473 DOI: 10.1248/yakushi.23-00197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Inspired by the mechanism by which microorganisms utilize siderophores to ingest iron, four different FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups, K3[FeIII-LC3], K2[FeIII-LC2H1], K[FeIII-LC1H2], and [FeIII-LH3], were prepared. They were modified on an Au substrate surface (Fe-L/Au) and applied as microorganism immobilization devices for fast, sensitive, selective detection of microorganisms, where H6LC3, H5LC2H1, H4LC1H2, and H3LH3 denote the tri-catecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and tri-hydroxamate type of artificial siderophores, respectively. Their adsorption properties for the several microorganisms were investigated using scanning electron microscopy (SEM), quartz crystal microbalance (QCM), and electric impedance spectroscopy (EIS) methods. The artificial siderophore-iron complexes modified on the Au substrates Fe-LC3/Au, Fe-LC2H1/Au, Fe-LC1H2/Au, and Fe-LH3/Au showed specific microorganism immobilization behavior with selectivity based on the structure of the artificial siderophores. Their specificities corresponded well with the structural characteristics of natural siderophores that microorganisms release from the cell and/or use to take up an iron. These findings suggest that release and uptake are achieved through specific interactions between the artificial siderophore-FeIII complexes and receptors on the cell surfaces of microorganisms. This study revealed that Fe-L/Au systems have specific potential to serve as effective immobilization probes of microorganisms for rapid, selective detection and identification of a variety of microorganisms.
Collapse
Affiliation(s)
- Suguru Endo
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Tomohiro Ozawa
- Graduate School of Engineering, Nagoya Institute of Technology
| | | | - Hideki Masuda
- Graduate School of Engineering, Nagoya Institute of Technology
- Faculty of Engineering, Aichi Institute of Technology
| |
Collapse
|