1
|
Yuan S, Natt N, Powell BJ. Impact of Molecular Distortions on Bistability in Spin Crossover Complexes. Inorg Chem 2025; 64:7182-7193. [PMID: 40156545 DOI: 10.1021/acs.inorgchem.5c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
We present a simple model of molecular distortions in spin crossover complexes, based on crystal field theory and transition state theory. This allows us to model the effects of molecular distortions on T1/2, the characteristic temperature of thermal crossover, and TLIESST, the maximum temperature at which trapped excited high spin (HS) complexes are stable. T1/2 is a purely thermodynamic quantity, determined by the relative free energies of the HS and low spin (LS) states (ΔG = GHS - GLS). The average distortion across HS and LS species [ Σ ¯ = ( Σ H S + Σ L S ) / 2 ] and the change in distortion between spin states (ΔΣ = ΣHS - ΣLS) have a significant impact on ΔG. However, the inner coordination sphere stiffness (k) has little impact on ΔG. Therefore, Σ ¯ and ΔΣ have large effects on T1/2 whereas k does not. TLIESST is largely determined by the height of the barrier (Eb) between the metastable HS state and the LS state. Eb is strongly affected by ΔΣ, Σ ¯ , and k; thus TLIESST is strongly dependent on all of these quantities. Thus, increasing both the relative and absolute distortion of SCO complexes increases TLIESST and decreases T1/2, providing a route to high temperature spin-state switching via molecular distortions.
Collapse
Affiliation(s)
- Shuang Yuan
- School of Mathmatics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nadeem Natt
- School of Mathmatics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin J Powell
- School of Mathmatics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Oleksii Y, El-Ghayoury A. Beyond Spin Crossover: Optical and Electronic Horizons of 2,6-Bis(pyrazol-1-yl)pyridine Ligands and Complexes. Molecules 2025; 30:1314. [PMID: 40142090 PMCID: PMC11945120 DOI: 10.3390/molecules30061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand family is widely recognized for its versatile coordination abilities and broad functionalization potential. This review examines bpp and its modifications at the pyridine ring's 4-position, focusing on their influence on magnetic, optical, and electronic properties. Key applications discussed include spin crossover (SCO), single-ion and single-molecule magnetism (SIM and SMM), luminescence, redox flow batteries (RFBs), and photonic devices. We provide a comprehensive overview of ligand modifications involving carboxylates, extended aromatic systems, radicals, and redox-active units such as tetrathiafulvalene (TTF), alongside supramolecular architectures. The review highlights fundamental design principles, particularly the role of substituents in tuning the SCO behavior, photophysical properties, and self-assembly into functional nanostructures. Notable advancements include SCO-driven conductivity modulation, reversible luminescent switching, and amphiphilic bpp-based vesicles for multicolor emission. By analyzing the interplay between ligand structure and magnetic, optical, and electronic functions, we provide insights into the potential of bpp derivatives for advanced materials design. This review presents recent experimental and theoretical developments, offering a foundation for future exploration of bpp-based compounds in multifunctional devices.
Collapse
|
3
|
Ahmed A, Hall A, Vasili HB, Kulmaczewski R, Kulak AN, Cespedes O, Pask CM, Brammer L, Roseveare TM, Halcrow MA. Structural Bifurcation in the High→Low-Spin and Low→High-Spin Phase Transitions Explains the Asymmetric Spin-Crossover in [FeL 2][BF 4] 2 (L=2,6-Di{pyrazol-1-yl}isonicotinonitrile). Angew Chem Int Ed Engl 2025; 64:e202416924. [PMID: 39636083 PMCID: PMC11773316 DOI: 10.1002/anie.202416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Polycrystalline [FeL2][BF4]2 (L=2,6-di(pyrazol-1-yl)isonicotinonitrile) exhibits an abrupt hysteretic spin transition near 240 K, with a shoulder on the warming branch whose appearance depends on the sample history. The freshly isolated material is a ca 60 : 40 mixture of triclinic (HS1) and tetragonal (HS2) high-spin polymorphs, which are structurally closely related. Both HS1 and HS2 undergo a high→low-spin transition on cooling at 230±10 K. HS1 transforms to a new triclinic low-spin phase with a doubled unit cell volume (LS3), while HS2 forms a monoclinic low-spin phase (LS4) with similar unit cell dimensions to HS2. Single crystals of LS3 and LS4 both convert to HS1 on rewarming. The low→high-spin transition for LS4 is ca 10 K higher in temperature than for LS3, explaining the asymmetric thermal hysteresis. Powder diffraction, calorimetry and magnetic data show that multiple cycling about the spin-transition leads to slow enrichment of the HS1 and LS3 phases at the expense of HS2 and LS4. That is consistent with the HS2/LS4 fraction of the polycrystalline sample undergoing rare, bifurcated HS2→(LS3+LS4) and LS4→(HS1+HS2) phase transitions. The rate of enrichment of HS1/LS3 differed between these experiments, implying it is sample and/or measurement-dependent. Three other salts of this iron(II) complex and the coordination polymer [Ag(μ-L)]BF4 are also briefly described.
Collapse
Affiliation(s)
- Ahmed Ahmed
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsUKLS2 9JT
- School of Natural SciencesCollege of Science and EngineeringUniversity of GalwayH91 TK 33GalwayIreland
| | - Amy Hall
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsUKLS2 9JT
| | - Hari Babu Vasili
- School of Physics and AstronomyUniversity of LeedsW. H. Bragg BuildingLeedsUKLS2 9JT
| | | | | | - Oscar Cespedes
- School of Physics and AstronomyUniversity of LeedsW. H. Bragg BuildingLeedsUKLS2 9JT
| | | | - Lee Brammer
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldUKS3 7HF
| | | | | |
Collapse
|
4
|
Kuppusamy SK, Mizuno A, Kämmerer L, Salamon S, Heinrich B, Bailly C, Šalitroš I, Wende H, Ruben M. Lattice solvent- and substituent-dependent spin-crossover in isomeric iron(II) complexes. Dalton Trans 2024; 53:10851-10865. [PMID: 38826041 DOI: 10.1039/d4dt00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spin-state switching in iron(II) complexes composed of ligands featuring moderate ligand-field strength-for example, 2,6-bi(1H-pyrazol-1-yl)pyridine (BPP)-is dependent on many factors. Herein, we show that spin-state switching in isomeric iron(II) complexes composed of BPP-based ligands-ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate (BPP-COOEt, L1) and (2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)methylacetate (BPP-CH2OCOMe, L2)-is dependent on the nature of the substituent at the BPP skeleton. Bi-stable spin-state switching-with a thermal hysteresis width (ΔT1/2) of 44 K and switching temperature (T1/2) = 298 K in the first cycle-is observed for complex 1·CH3CN composed of L1 and BF4- counter anions. Conversely, the solvent-free isomeric counterpart of 1·CH3CN-complex 2a, composed of L2 and BF4- counter anions-was trapped in the high-spin (HS) state. For one of the polymorphs of complex 2b·CH3CN-2b·CH3CN-Y, Y denotes yellow colour of the crystals-composed of L2 and ClO4- counter anions, a gradual and non-hysteretic SCO is observed with T1/2 = 234 K. Complexes 1·CH3CN and 2b·CH3CN-Y also underwent light-induced spin-state switching at 5 K due to the light-induced excited spin-state trapping (LIESST) effect. Structures of the low-spin (LS) and HS forms of complex 1·CH3CN revealed that spin-state switching goes hand-in-hand with pronounced distortion of the trans-N{pyridyl}-Fe-N{pyridyl} angle (ϕ), whereas such distortion is not observed for 2b·CH3CN-Y. This observation points that distortion is one of the factors making the spin-state switching of 1·CH3CN hysteretic in the solid state. The observation of bi-stable spin-state switching with T1/2 centred at room temperature for 1·CH3CN indicates that technologically relevant spin-state switching profiles based on mononuclear iron(II) complexes can be obtained.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Asato Mizuno
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lea Kämmerer
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Soma Salamon
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel UAR2042 CNRS-Université de Strasbourg, 1 rue Blaise Pascal, BP 296/R8, 67008 Strasbourg cedex, France
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Heiko Wende
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| |
Collapse
|
5
|
Halcrow MA, Vasili HB, Pask CM, Kulak AN, Cespedes O. Activating a high-spin iron(II) complex to thermal spin-crossover with an inert non-isomorphous molecular dopant. Dalton Trans 2024; 53:6983-6992. [PMID: 38563124 DOI: 10.1039/d4dt00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
[Fe(bpp)2][ClO4]2 (bpp = 2,6-bis{pyrazol-1-yl}pyridine; monoclinic, C2/c) is high-spin between 5-300 K, and crystallises with a highly distorted molecular geometry that lies along the octahedral-trigonal prismatic distortion pathway. In contrast, [Ni(bpp)2][ClO4]2 (monoclinic, P21) adopts a more regular, near-octahedral coordination geometry. Gas phase DFT minimisations (ω-B97X-D/6-311G**) of [M(bpp)2]2+ complexes show the energy penalty associated with that coordination geometry distortion runs as M2+ = Fe2+ (HS) ≈ Mn2+ (HS) < Zn2+ ≈ Co2+ (HS) ≲ Cu2+ ≪ Ni2+ ≪ Ru2+ (LS; HS = high-spin, LS = low-spin). Slowly crystallised solid solutions [FexNi1-x(bpp)2][ClO4]2 with x = 0.53 (1a) and 0.74 (2a) adopt the P21 lattice, while x = 0.87 (3a) and 0.94 (4a) are mixed-phase materials with the high-spin C2/c phase as the major component. These materials exhibit thermal spin-transitions at T½ = 250 ± 1 K which occurs gradually in 1a, and abruptly and with narrow thermal hysteresis in 2a-4a. The transition proceeds to 100% completeness in 1a and 2a; that is, the 26% Ni doping in 2a is enough to convert high-spin [Fe(bpp)2][ClO4]2 into a cooperative, fully SCO-active material. These results were confirmed crystallographically for 1a and 2a, which revealed similarities and differences between these materials and the previously published [FexNi1-x(bpp)2][BF4]2 series. Rapidly precipitated powders with the same compositions (1b-4b) mostly resemble 1a-4a, except that 2b is a mixed-phase material; 2b-4b also contain a fraction of amorphous solid in addition to the two crystal phases. The largest iron fraction that can be accommodated by the P21 phase in this system is 0.7 ± 0.1.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Hari Babu Vasili
- School of Physics and Astronomy, University of Leeds, W. H. Bragg Building, Leeds, LS2 9JT, UK
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Alexander N Kulak
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, W. H. Bragg Building, Leeds, LS2 9JT, UK
| |
Collapse
|