1
|
Pajuelo-Corral O, Ortiz-Gómez I, García JA, Rodríguez-Diéguez A, Vitórica-Yrezábal IJ, Salinas-Castillo A, Seco JM, Cepeda J. A family of Cd(II) coordination polymers constructed from 6-aminopicolinate and bipyridyl co-linkers: study of their growth in paper and photoluminescence sensing of Fe 3+ and Zn 2+ ions. Dalton Trans 2024; 53:12138-12151. [PMID: 38989768 DOI: 10.1039/d4dt00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In this work, we report on five novel coordination polymers (CPs) based on the linkage of the [Cd(6apic)2] building block [where 6apic = 6-aminopicolinate] by different bipyridine-type organic spacers, forming different coordination compounds with the following formulae: [Cd(μ-6apic)2]n (1), {[Cd(6apic)2(μ-bipy)]·H2O}n (2), {[Cd(6apic)2(μ-bpe)]·2H2O}n (3), [Cd(6apic)(μ-6apic)(μ-bpa)0.5]n (4) and {[Cd2(6apic)4(μ-tmbp)]·7H2O}n (5) [where bipy = 4,4'-bipyridine, bpe = 1,2-di(4-pyridyl)ethylene, bpa = 1,2-di(4-pyridyl)ethane (bpa) and tmbp = 1,3-di(4-pyridyl)propane]. Most of the synthesized compounds form infinite metal-organic rods through the linkage of the building block by the bipyridine-type linker, except in the case of compound 4 whose assembly forms a densely packed 3D architecture. All compounds were fully characterized and their photoluminescence properties were studied experimentally and computationally through density functional theory (DFT) calculations. All compounds display, upon UV excitation, a similar blue emission of variable intensity depending on the linker employed for the connection of the building units, among which compound 2 deserves to be highlighted for its room temperature phosphorescence (RTP) with an emission lifetime of 32 ms that extends to 79 ms at low temperature. These good photoluminescence properties, in addition to its stability in water over a wide pH range (between 2 and 10), motivated us to study compound 2 as a sensor for the detection of metal ions in water, and it showed high sensitivity to Fe3+ through a fluorescence turn-off mechanism and an unspecific turn-on response to Zn2+. Furthermore, the compound is processed as a paper-based analytical device (PAD) in which the phosphorescence emission is preserved, improving the sensing capacity toward Fe3+ ions.
Collapse
Affiliation(s)
- Oier Pajuelo-Corral
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián, Spain.
| | - Inmaculada Ortiz-Gómez
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jose Angel García
- Departamento de Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | | | | | - Alfonso Salinas-Castillo
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jose M Seco
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain.
| | - Javier Cepeda
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
2
|
Zhang J, Zhao S, Tao X, Chen Q, Yin D, Zhang C. Two AIE-Ligand-Based 2-D Luminescent Metal-Organic Frameworks as Fe 3+ Sensors. Inorg Chem 2024; 63:8342-8350. [PMID: 38640494 DOI: 10.1021/acs.inorgchem.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The design and synthesis of high-performance sensors are very important but remain great challenges. In this work, a new aggregation-induced-emission (AIE) molecule 4,4'-(((9H-fluoren-9-ylidene)methylene)bis(4,1-phenylene))dipyridine (L) was successfully synthesized and first developed as a functional ligand to construct two isomorphic metal-organic frameworks (MOFs) [M(L)(OBBA)]n [M2+ = Cd2+ (1), Co2+ (2); H2OBBA = 4,4'-oxybisbenzoic acid]. They adopt [M2(COO)4] flywheel clusters, OBBA2- bridges, and terminal L ligands as building units to form isomorphic 2-D networks with Lewis base active cites (uncoordinated pyridyl N). Both 1 and 2 exhibit excellent water, pH, and thermal stabilities and extremely efficient Fe3+ sensing abilities in the water environment. The quenching constants and detection limits reach the best levels reported so far. The sensing mechanism of 1 and 2 toward Fe3+ is studied in depth, and the difference in their sensing performance is also explained.
Collapse
Affiliation(s)
- Jinfang Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shunchang Zhao
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingyu Tao
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Qinghan Chen
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Chi Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Yang G, Xu W, Xu B, Yang Y, Li P, Yu A, Ning S, Fu Q, Zhang R, Liu X. Two Decades' advancements and Research trends in needle-type Sensor technology: A scientometric analysis. Heliyon 2024; 10:e27399. [PMID: 38510014 PMCID: PMC10951530 DOI: 10.1016/j.heliyon.2024.e27399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Needle-type sensor, characterized by its slender, elongated shape, is a promising sensing method due to its rapid response, high sensitivity, and portability. Recently, the needle-type sensor technology has garnered increasing attention, leading to its accelerated development and extensive use in medical and healthcare, environmental monitoring, and geosciences. However, there remains a need for a comprehensive review of existing research. Here, we utilize scientometric analysis, which is booming recently, to conduct a comprehensive investigation of the needle-type sensor field. This analysis covers various aspects, including annual trends, journals, institutions, countries, disciplines, authors, references, and keywords of 136,667 publications from the Web of Science Core Collection (WoSCC) database spanning from January 1, 2004, to January 1, 2024. Additionally, we identify current hotspots, frontiers, and predict future trends. Eventually, three research hotspots are refined: multidisciplinary materials science, sensor miniaturization and integration, and biomedical engineering, indicating that further investigations may focus on creating biocompatible materials to enhance sensing properties, optimizing sensor structure through miniaturization and integration methods, and improving clinical applications in biomedical engineering. This work may facilitate the development of needle-type sensors.
Collapse
Affiliation(s)
- Guangyi Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenjing Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Botan Xu
- School of Nursing, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Pengwei Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Aotian Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Simin Ning
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qixuan Fu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rong Zhang
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaohan Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
4
|
Gálico DA, Mazali IO, Sigoli FA. Bifunctional Temperature and Oxygen Dual Probe Based on Anthracene and Europium Complex Luminescence. Int J Mol Sci 2022; 23:ijms232314526. [PMID: 36498852 PMCID: PMC9740382 DOI: 10.3390/ijms232314526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
In this work, we synthesized a polydimethylsiloxane membrane containing two emitter groups chemically attached to the membrane structure. For this, we attached the anthracene group and the [Eu(bzac)3] complex as blue and red emitters, respectively, in the matrix via hydrosilylation reactions. The synthesized membrane can be used as a bifunctional temperature and oxygen ratiometric optical probe by analyzing the effects that temperature changes and oxygen levels produce on the ratio of anthracene and europium(III) emission components. As a temperature probe, the system is operational in the 203-323 K range, with an observed maximum relative sensitivity of 2.06% K-1 at 290 K and temperature uncertainties below 0.1 K over all the operational range. As an oxygen probe, we evaluated the ratiometric response at 25, 30, 35, and 40 °C. These results show an interesting approach to obtaining bifunctional ratiometric optical probes and also suggest the presence of an anthracene → europium(III) energy transfer, even though there is no chemical bonding between species.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970, Sao Paulo, Brazil
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: (D.A.G.); (F.A.S.)
| | - Italo Odone Mazali
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970, Sao Paulo, Brazil
| | - Fernando Aparecido Sigoli
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970, Sao Paulo, Brazil
- Correspondence: (D.A.G.); (F.A.S.)
| |
Collapse
|
5
|
Pajuelo-Corral O, Razquin-Bobillo L, Rojas S, García JA, Choquesillo-Lazarte D, Salinas-Castillo A, Hernández R, Rodríguez-Diéguez A, Cepeda J. Lanthanide(III) Ions and 5-Methylisophthalate Ligand Based Coordination Polymers: An Insight into Their Photoluminescence Emission and Chemosensing for Nitroaromatic Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3977. [PMID: 36432263 PMCID: PMC9694308 DOI: 10.3390/nano12223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The work presented herein reports on the synthesis, structural and physico-chemical characterization, luminescence properties and luminescent sensing activity of a family of isostructural coordination polymers (CPs) with the general formula [Ln2(μ4-5Meip)3(DMF)]n (where Ln(III) = Sm (1Sm), Eu (2Eu), Gd (3Gd), Tb (4Tb) and Yb (5Yb) and 5Meip = 5-methylisophthalate, DMF = N,N-dimethylmethanamide). Crystal structures consist of 3D frameworks tailored by the linkage between infinite lanthanide(III)-carboxylate rods by means of the tetradentate 5Meip ligands. Photoluminescence measurements in solid state at variable temperatures reveal the best-in-class properties based on the capacity of the 5Meip ligand to provide efficient energy transfers to the lanthanide(III) ions, which brings intense emissions in both the visible and near-infrared (NIR) regions. On the one hand, compound 5Yb displays characteristic lanthanide-centered bands in the NIR with sizeable intensity even at room temperature. Among the compounds emitting in the visible region, 4Tb presents a high QY of 63%, which may be explained according to computational calculations. At last, taking advantage of the good performance as well as high chemical and optical stability of 4Tb in water and methanol, its sensing capacity to detect 2,4,6-trinitrophenol (TNP) among other nitroaromatic-like explosives has been explored, obtaining high detection capacity (with Ksv around 105 M-1), low limit of detection (in the 10-6-10-7 M) and selectivity among other molecules (especially in methanol).
Collapse
Affiliation(s)
- Oier Pajuelo-Corral
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain
| | - Laura Razquin-Bobillo
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain
| | - Sara Rojas
- Departamento de Química Inorgánica, UEQ, C/Severo Ochoa s/n, University of Granada, 18071 Granada, Spain
| | - Jose Angel García
- Departamento de Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avda. de las Palmeras 4, 18100 Armilla, Spain
| | - Alfonso Salinas-Castillo
- Departamento de Química Analítica, C/Severo Ochoa s/n, University of Granada, 18071 Granada, Spain
| | - Ricardo Hernández
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, UEQ, C/Severo Ochoa s/n, University of Granada, 18071 Granada, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia, Spain
| |
Collapse
|
6
|
Smith JA, Singh-Wilmot MA, Min Z, Carter KP, Gilbert S, Andrews MB, Ridenour JA, Cahill CL, Ley AN, Holman KT. Polymorphism from a 1:1 Ln:BTB Reaction Pot: Solvothermal versus Sonochemical Synthesis of Ln-MOFs. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Xu C, Chen W, Wang J, Wu Q, Wu P, Tang L. Two Cu(I\II) Coordination Polymers for Photocatalytic Degradation of Organic Dyes and Efficient Detection of Fe3+ Ions. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Yang C, Lei WT, Xin XY, Qiao N, Hao FF, Zhang QF, Zhou Y, Fang M, Wang WM. Construction of two Ln(III)2 (Ln = Dy and Er) compounds by a polydentate Schiff-based ligand: Structure and remarkable single-molecule magnet behavior. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Liu J, Xue J, Yang GP, Dang LL, Ma LF, Li DS, Wang YY. Recent advances of functional heterometallic-organic framework (HMOF) materials: Design strategies and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Lunev AM, Belousov YA. Luminescent sensor materials based on rare-earth element complexes for detecting cations, anions, and small molecules. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Jiajaroen S, Dungkaew W, Kielar F, Sukwattanasinitt M, Sahasithiwat S, Zenno H, Hayami S, Azam M, Al-Resayes SI, Chainok K. Four series of lanthanide coordination polymers based on the tetrabromobenzene-1,4-dicarboxylate ligand: structural diversity and multifunctional properties. Dalton Trans 2022; 51:7420-7435. [PMID: 35506589 DOI: 10.1039/d2dt00007e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Four series of lanthanide-based coordination polymers (LnCPs), namely [Ln(Br4bdc)1.5(MeOH)3] (1Ln; Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy), [Ln2(Br4bdc)2(NO3)2(MeOH)4] (2Ln; Ln = Ce, Pr, Nd, Sm), [Ln(Br4bdc)(NO3)(MeOH)] (3Ln; Ln = Gd, Tb, Dy), and [Ln2(Br4bdc)3(H2O)2.3(MeOH)2.7] (4Ln; Ln = Gd, Tb, Dy) have been synthesized by reacting hydrated lanthanide(III) salts with tetrabromobenzene-1,4-dicarboxylic acid (H2Br4bdc) in different solvents under solvothermal conditions. The structural diversity found in the system mainly resulted from the effects of anions, solvents, and the variation in the ionic radii of the lanthanide(III) ions. Compounds in series 1Ln feature a two-dimensional (2D) layered structure with sql topology based on {(Ln(COO)2)2(μ-COO)2} secondary building units (SBUs). Compounds in series 2Ln and 3Ln comprise, respectively, infinite uniform and alternate chains of {Ln(COO)2}n SBUs that are assembled into a similar network topology to 1Ln. Meanwhile, compounds in series 4Ln feature 3D coordination networks of a pcu α-Po topological net consisting of binuclear {Ln2(COO)3} SBUs. The formation of polymeric networks in series 1Ln-4Ln is facilitated by the numerous coordination sites of the ligand Br4bdc2- and the fact that its bromine atoms can participate in the formation of various types of intermolecular interactions. The solid-state photoluminescence studies on Eu- (1Eu) and Tb- (1Tb, 3Tb, 4Tb) containing compounds indicate that the Br4bdc2- ligands can efficiently sensitize Eu3+ and Tb3+ emission. Notably, such compounds exhibit highly sensitive fluorescence sensing for acetone, water, and Fe3+ ions via the fluorescence quenching effect. As the representatives of the series, activated 1Eu, 2Pr, 3Tb, and 4Tb show the maximum CO2 uptake capacities of 170.4, 273.7, 255.3, and 303.5 cm3 g-1, respectively, at 50 bar and 298 K with good repeatability of the adsorption-desorption properties. Magnetic studies indicate that the Gd- and Dy-based compounds 1Gd, 1Dy, 3Gd, 3Dy, and 4Gd show simple paramagnetic behaviours, whereas compound 4Dy exhibits weak ferromagnetic interactions.
Collapse
Affiliation(s)
- Suwadee Jiajaroen
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand. .,Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 43100, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), The National Science and Technology Development Agency, Pathum Thani 12121, Thailand
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Ku-mamoto University, 2-39-1 Kurokami, Chuoku, Kumamoto, 860-8555 Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Ku-mamoto University, 2-39-1 Kurokami, Chuoku, Kumamoto, 860-8555 Japan
| | - Mohammad Azam
- Department of Chemistry, College of Sciences, King Saud University, PO BOX 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Saud I Al-Resayes
- Department of Chemistry, College of Sciences, King Saud University, PO BOX 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| |
Collapse
|
12
|
Li L, Wang J, Xu S, Li C, Dong B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front Chem 2022; 10:875241. [PMID: 35494640 PMCID: PMC9043490 DOI: 10.3389/fchem.2022.875241] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
All forms of life have absolute request for metal elements, because metal elements are instrumental in various fundamental processes. Fluorescent probes have been widely used due to their ease of operation, good selectivity, high spatial and temporal resolution, and high sensitivity. In this paper, the research progress of various metal ion (Fe3+,Fe2+,Cu2+,Zn2+,Hg2+,Pb2+,Cd2+) fluorescent probes in recent years has been reviewed, and the fluorescence probes prepared with different structures and materials in different environments are introduced. It is of great significance to improve the sensing performance on metal ions. This research has a wide prospect in the application fields of fluorescence sensing, quantitative analysis, biomedicine and so on. This paper discusses about the development and applications of metal fluorescent probes in future.
Collapse
Affiliation(s)
- Luanjing Li
- Sdu-Anu Joint Science College, Shandong University, Weihai, China
| | - Jiahe Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Shihan Xu
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Chunxia Li
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
13
|
Dong H, Ma S, Zhong Q, Zhu M. Crystal structure, magnetic properties and luminescent behavior of four mononuclear lanthanide-radical complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Meng XY, Wang WJ, Ding ZY, Luo SX, Zhang WY, Yan YT, Yang GP, Wang YY. Two novel luminescent metal-organic frameworks based on the thioether bond modification: The selective sensing and effective CO2 fixation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zhao P, Liu Y, He C, Duan C. Synthesis of a Lanthanide Metal-Organic Framework and Its Fluorescent Detection for Phosphate Group-Based Molecules Such as Adenosine Triphosphate. Inorg Chem 2022; 61:3132-3140. [PMID: 35144384 DOI: 10.1021/acs.inorgchem.1c03412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine triphosphate (ATP) is an important kind of metabolized biological molecule that is formed in organisms, especially in mitochondria, is used universally as energy, and is one of the most significant multifunctional biological molecules. Metal-organic frameworks (MOFs) have been widely used in many applications such as gas storage and separation, drug delivery, heterogeneous catalysis, chemical sensors, etc. Remarkably, lanthanide MOFs (Ln-MOFs), which display large pores, multiple dimensions, and unique lanthanide luminescence properties, are widely used as chemical sensors. A novel three-dimensional probe, Eu2(sbdc)3(H2O)3 (Eu-sbdc), was successfully self-assembled with Eu(NO3)3·6H2O and 5,5-dioxo-5H-dibenzo[b,d]thiophene-3,7-dicarboxylic acid (H2sbdc). The Ln-MOF Eu-sbdc can quickly and effectively optically detect ATP via a luminescent quenching mechanism. The Ksv value of Eu-sbdc is 1.02 × 104 M-1, and the lower detection limit of Eu-sbdc for ATP is 20 μM, which is more sensitive to ATP. Its mechanism of monitoring ATP might be a dynamic or static quenching process. Eu-sbdc could effectively and quickly recognize ATP with high sensitivity.
Collapse
Affiliation(s)
- Peiran Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuqian Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Wu JQ, Ma XY, Liang CL, Lu JM, Shi Q, Shao LX. Design of an antenna effect Eu(III)-based metal-organic framework for highly selective sensing of Fe 3. Dalton Trans 2022; 51:2890-2897. [PMID: 35102363 DOI: 10.1039/d1dt03995d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly selective sensing of Fe3+ is very important due to its great effect on biological systems. A novel ligand [1,1':4',1'':4'',1''':4''',1''''-quinquephenyl]-2,2'',2'''',5''-tetracarboxylic acid (H4qptca) was designed and successfully obtained for the first time via three steps in high total yields according to the absorption spectrum of Fe3+. The europium(III)-based metal-organic framework derived from H4qptca, {[Eu(qptca)1/2(H2qptca)1/2(H2O)2]·DMF}n (referred to as SLX-1), was then synthesized and used as a water-stable and highly selective luminescent sensor for Fe3+ in aqueous solution with a comparable detection limit using Ln-MOF probes (6.45 μM) through the antenna effect of SLX-1. Furthermore, the luminescence quenching mechanism was also proposed as a competitive absorption mechanism.
Collapse
Affiliation(s)
- Jia-Qi Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China.
| | - Xin-Yue Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China.
| | - Cheng-Long Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China.
| | - Jian-Mei Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China.
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China.
| | - Li-Xiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China.
| |
Collapse
|
17
|
Geng R, Tang H, Ma Q, Liu L, Feng W, Zhang Z. Bimetallic Ag/Zn-ZIF-8: An efficient and sensitive probe for Fe3+ and Cu2+ detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Panagiotou N, Moscoso FG, Lopes-Costa T, Pedrosa JM, Tasiopoulos AJ. 2-Dimensional rare earth metal–organic frameworks based on a hexanuclear secondary building unit as efficient detectors for vapours of nitroaromatics and volatile organic compounds. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of microporous 2-dimensional rare earth metal organic frameworks based on a hexanuclear secondary building unit with capability to selectively detect vapours of volatile organic compounds and nitroaromatic explosives is reported.
Collapse
Affiliation(s)
- Nikos Panagiotou
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | - Francisco García Moscoso
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Tânia Lopes-Costa
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - José María Pedrosa
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | | |
Collapse
|
19
|
Liu H, Tao Y, Wu T, Li H, Zhang X, Huang F, Bian H. A {Zn
5
} cluster‐based metal–organic framework: Multifunctional detection of Ag
+
, Cr
2
O
7
2−
, and 2,4,6‐trinitrophenol (TNP). Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Han‐Fu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Ye Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Tai‐Xue Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Hai‐Ye Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Xiu‐Qing Zhang
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials Guilin University of Technology Guilin China
| | - Fu‐Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - He‐Dong Bian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities Key Laboratory of Chemistry and Engineering of Forest Products Nanning China
| |
Collapse
|
20
|
Yin J, Chu H, Qin S, Qi H, Hu M. Preparation of Eu 0.075Tb 0.925-Metal Organic Framework as a Fluorescent Probe and Application in the Detection of Fe 3+ and Cr 2O 72. SENSORS (BASEL, SWITZERLAND) 2021; 21:7355. [PMID: 34770661 PMCID: PMC8587718 DOI: 10.3390/s21217355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
Luminescent Ln-MOFs (Eu0.075Tb0.925-MOF) were successfully synthesised through the solvothermal reaction of Tb(NO3)3·6H2O, Eu(NO3)3·6H2O, and the ligand pyromellitic acid. The product was characterised by X-ray diffraction (XRD), TG analysis, EM, X-ray photoelectron spectroscopy (XPS), and luminescence properties, and results show that the synthesised material Eu0.075Tb0.925-MOF has a selective ratio-based fluorescence response to Fe3+ or Cr2O72-. On the basis of the internal filtering effect, the fluorescence detection experiment shows that as the concentration of Fe3+ or Cr2O72- increases, the intensity of the characteristic emission peak at 544 nm of Tb3+ decreases, and the intensity of the characteristic emission peak at 653 nm of Eu3+ increases in Eu0.075Tb0.925-MOF. The fluorescence intensity ratio (I653/I544) has a good linear relationship with the target concentration. The detection linear range for Fe3+ or Cr2O72- is 10-100 μM/L, and the detection limits are 2.71 × 10-7 and 8.72 × 10-7 M, respectively. Compared with the sensor material with a single fluorescence emission, the synthesised material has a higher anti-interference ability. The synthesised Eu0.075Tb0.925-MOF can be used as a highly selective and recyclable sensing material for Fe3+ or Cr2O72-. This material should be an excellent candidate for multifunctional sensors.
Collapse
Affiliation(s)
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer 161006, China; (J.Y.); (S.Q.); (H.Q.); (M.H.)
| | | | | | | |
Collapse
|
21
|
Construction of a Co (II)-MOC based on p-phenylenediamine and 1,2,4,5-benzenetetracarboxylic acid ligands: Synthesis, structure and sensing behavior for NACs and Fe3+ ions. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Kolesnik SS, Nosov VG, Kolesnikov IE, Khairullina EM, Tumkin II, Vidyakina AA, Sysoeva AA, Ryazantsev MN, Panov MS, Khripun VD, Bogachev NA, Skripkin MY, Mereshchenko AS. Ultrasound-Assisted Synthesis of Luminescent Micro- and Nanocrystalline Eu-Based MOFs as Luminescent Probes for Heavy Metal Ions. NANOMATERIALS 2021; 11:nano11092448. [PMID: 34578764 PMCID: PMC8468986 DOI: 10.3390/nano11092448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022]
Abstract
The luminescent coarse-, micro- and nanocrystalline europium(III) terephthalate tetrahydrate (Eu2bdc3·4H2O) metal-organic frameworks were synthesized by the ultrasound-assisted wet-chemical method. Electron micrographs show that the europium(III) terephthalate microparticles are 7 μm long leaf-like plates. According to the dynamic light scattering technique, the average size of the Eu2bdc3·4H2O nanoparticles is equal to about 8 ± 2 nm. Thereby, the reported Eu2bdc3·4H2O nanoparticles are the smallest nanosized rare-earth-based MOF crystals, to the best of our knowledge. The synthesized materials demonstrate red emission due to the 5D0–7FJ transitions of Eu3+ upon 250 nm excitation into 1ππ* state of the terephthalate ion. Size reduction results in broadened emission bands, an increase in the non-radiative rate constants and a decrease in both the quantum efficiency of the 5D0 level and Eu3+ and the luminescence quantum yields. Cu2+, Cr3+, and Fe3+ ions efficiently and selectively quench the luminescence of nanocrystalline europium(III) terephthalate, which makes it a prospective material for luminescent probes to monitor these ions in waste and drinking water.
Collapse
Affiliation(s)
- Stefaniia S. Kolesnik
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Ilya E. Kolesnikov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Evgenia M. Khairullina
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Ilya I. Tumkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Aleksandra A. Vidyakina
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Alevtina A. Sysoeva
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia;
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
- Laboratory of Nanobiotechnology, Saint Petersburg Academic University, ul. Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Maxim S. Panov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Vasiliy D. Khripun
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (S.S.K.); (V.G.N.); (I.E.K.); (E.M.K.); (I.I.T.); (A.A.V.); (M.N.R.); (M.S.P.); (V.D.K.); (N.A.B.); (M.Y.S.)
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia;
- Correspondence: ; Tel.: +7-951-677-5465
| |
Collapse
|
23
|
Nikiforova ME, Lutsenko IA, Kiskin MA, Nelyubina YV, Primakov PV, Bekker OB, Khoroshilov AV, Eremenko IL. Coordination Polymer of Ba2+ with 2-Furoic Acid Anions: Synthesis, Structure, and Thermal Properties. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621090102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Zou Y, Huang K, Zhang X, Qin D, Zhao B. Tetraphenylpyrazine-Based Manganese Metal-Organic Framework as a Multifunctional Sensor for Cu 2+, Cr 3+, MnO 4-, and 2,4,6-Trinitrophenol and the Construction of a Molecular Logical Gate. Inorg Chem 2021; 60:11222-11230. [PMID: 34259513 DOI: 10.1021/acs.inorgchem.1c01226] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A tetraimidazole-decorating tetraphenylpyrazine has been designed and utilized for the fabrication of a novel metal-organic framework (MOF), denoted as {Mn(Tipp)(A)2}n·2H2O (TippMn, where Tipp = 2,3,5,6-tetrakis[4-[(1H-imidazol-1-yl)methyl]phenyl]pyrazine and A = deprotonation of 1,4-naphthalenedicarboxylic acid), through hydrothermal synthesis. Structural analysis reveals that TippMn possesses a 2-fold-interpenetrated 4,8-connected three-dimensional (3D) network with an unprecedented {416·612}{44·62} topology. Fluorescent spectral investigations indicate that TippMn shows discriminative fluorescence when treated by Cr3+ and Cu2+, giving an INHIBIT logical gate performance. Meanwhile, TippMn can be further used as a sensor for MnO4- and 2,4,6-trinitrophenol (TNP) by fluorescence quenching. Notably, the sensing processes toward Cu2+, Cr3+, MnO4-, and TNP are labeled with high selectivity and sensitivity, quick response, and good recyclability. It is anticipated that this MOF-based versatile sensor could shed light on the exploration of MOFs for fluorescent sensors, optical switches, etc.
Collapse
Affiliation(s)
- Yi Zou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Xiangyu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Bin Zhao
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China.,Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Wang M, Zeng G, Zhang X, Bai FY, Xing YH, Shi Z. A new family of Ln-BTC-AC-FM framework intelligent materials: Precise synthesis, structure and characterization for fluorescence detecting of UO22+ and adsorbing dyes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Liu TY, Qu XL, Zhang Y, Yan B. A Stable Cd(II)-Based Metal-Organic Framework: Synthesis, Structure, and Its Eu 3+ Functionalization for Ratiometric Sensing on the Biomarker 2-(2-Methoxyethoxy) Acetic Acid. Inorg Chem 2021; 60:8613-8620. [PMID: 34106687 DOI: 10.1021/acs.inorgchem.1c00589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel two-dimensional Cd-based metal-organic framework (MOF), [Cd(pddb)H2O]n (Cd-MOF), has been hydrothermally synthesized using the V-shaped ligand 4,4'-(pyridine-2,6-diyl)-dibenzoic acid (H2pddb) and structurally characterized. The framework exhibits fascinating one-dimensional in-plane channels functionalized with active pyridine-N sites. The as-synthesized Cd-MOF exhibits excellent water and chemical stability. Furthermore, a simple and nondestructive coordinated postsynthetic modification method has been applied to Cd-MOF to obtain a class of MOF hybrids functionalized by lanthanide ions. More interestingly, Eu3+@Cd-MOF can act as a dual-emissive ratiometric fluorescent probe for 2-(2-methoxyethoxy) acetic acid (MEAA), a metabolite of 2-(2-methoxyethoxy) ethanol, which could result in DNA damage and teratogenic and developmental toxicity. During the sensing process, the fluorescence sensor exhibits notable water tolerance, reusability, and a low detection limit (8.5 μg mL-1). In addition, the chemical substances in human urine and serum do not interfere with the fluorescence quenching process, which makes it possible for the fluorescent probe to be applied in the detection of MEAA in human urine and serum systems. The possible sensing mechanism is also studied and discussed in detail.
Collapse
Affiliation(s)
- Tian-Yu Liu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xiang-Long Qu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yu Zhang
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
27
|
Ma X, Zhang X, Han L, Hao Z, Yong S. A Multi-response Aluminum Metal-organic Frameworks for Fluorescence Sensing of Fe 3+, Sr 2+, SiO 32-and Toluene. Methods Appl Fluoresc 2021; 9. [PMID: 33735838 DOI: 10.1088/2050-6120/abf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
A new Aluminum metal-organic frameworks(Al-MOF) based on tricarboxylate ligands(L){L = 2,2',2'-([1,3,5]-triazine-2,4,6-triimino)tribenzoic acid)} has been designed and synthesized. It can be served as a platform of multi-responsive fluorescence sensor for Fe3+, Sr2+and SiO32-in water, which is mainly due to the significant enhancement effect of these ions on the fluorescence intensity of Al-MOF. Especially, Fe3+ions are rarely able to induce MOFs fluorescence enhancement. The limit of detection for three kinds of ions is 6.62* 10-6M, 5.37* 10-6M, 6.85* 10-10M respectively. Meanwhile, It can also be used as a multi-response fluorescence probe to detect toluene in DMF solution, limit of detection is 9.16* 10-3M respectively. The structure of Al-MOF was characterized by FTIR,1H NMR, SEM, TAG, PXRD and element analysis. The PXRD showed that the structure of Al-MOF remained the high water stability and pH stability. The application of water samples and vegetables showed that Al-MOF had high sensitive detection for Fe3+ions.
Collapse
Affiliation(s)
- Xuelin Ma
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China.,Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Xiaoyong Zhang
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Limin Han
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Zhanzhong Hao
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Shengli Yong
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| |
Collapse
|
28
|
Guo H, Wang F, Ma R, Zhang M, Fu L, Zhou T, Liu S, Guo X. Lanthanide post-functionalized UiO-67 type metal–organic frameworks for tunable light-emission and stable multi-sensors in aqueous media. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Goud EV, Vijai Anand AS, Pallepogu R, Brahmmananda Rao CVS, Nagarajan S, Sivaramakrishna A. Unexpected Coordination Modes of Bisphosphoramides with Lanthanum(III) and Thorium(IV) Salts: Synthesis, Structural Characterization, Stability, and Extraction Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202004516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- E. Veerashekhar Goud
- Department of Chemistry School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore 632014, Tamil Nadu India
| | - A. S. Vijai Anand
- Department of Chemistry School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore 632014, Tamil Nadu India
| | - Raghavaiah Pallepogu
- Department of Chemistry Central University of Karnataka Kadaganchi, Kalaburagi 585 367, Karnataka India
| | | | - Sivaraman Nagarajan
- HBNI, Indira Gandhi Centre for Atomic Research Kalpakkam 603 102, Tamil Nadu India
| | - Akella Sivaramakrishna
- Department of Chemistry School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore 632014, Tamil Nadu India
| |
Collapse
|
30
|
Liu X, Song Z, Li Z, Li H. Adhesion enhancement via the synergistic effect of metal–ligand coordination and supramolecular host–guest interactions in luminescent hydrogels. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01203c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report an approach to achieve adhesion enhancement via the synergistic effect of metal–ligand coordination and supramolecular host–guest interactions in luminescent hydrogels without affecting their luminescence behavior.
Collapse
Affiliation(s)
- Xiao Liu
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Zhihua Song
- School of Pharmacy
- Collaborative Innovation Center of Advanced Drug Delivery Systems and Biotech Drugs in Universities of Shandong
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University)
- Ministry of Education
- Yantai University
| | - Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| |
Collapse
|
31
|
Yang C, Wei YH, Xu S, Zhang HY, Yang YQ, Zhang B, Fang M. Single molecule magnet behavior and magnetic refrigeration of carbonyl oxygen-bridged tetranuclear lanthanide complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01833g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three lanthanide complexes were fabricated and characterized. 1 exhibited cryogenic magnetic refrigeration property and 3 displayed slow relaxation of the magnetization.
Collapse
Affiliation(s)
- Chen Yang
- Department of Chemistry
- Hebei Normal University of Science & Technology
- Qinhuangdao 066004
- P. R. China
| | - Yu-Heng Wei
- Department of Chemistry
- Hebei Normal University of Science & Technology
- Qinhuangdao 066004
- P. R. China
| | - Shuang Xu
- Department of Chemistry
- Hebei Normal University of Science & Technology
- Qinhuangdao 066004
- P. R. China
| | - Hao-Yu Zhang
- Department of Chemistry
- Hebei Normal University of Science & Technology
- Qinhuangdao 066004
- P. R. China
| | - Yue-Qi Yang
- Department of Chemistry
- Hebei Normal University of Science & Technology
- Qinhuangdao 066004
- P. R. China
| | - Bo Zhang
- Department of Chemistry
- Hebei Normal University of Science & Technology
- Qinhuangdao 066004
- P. R. China
| | - Ming Fang
- Department of Chemistry
- Hebei Normal University of Science & Technology
- Qinhuangdao 066004
- P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| |
Collapse
|
32
|
Mariño C, Basbus J, Larralde AL, Alonso JA, Fernández-Díaz MT, Troncoso L. Structural, electrical characterization and oxygen-diffusion paths in LaSrGa 1−xMg xO 4−δ ( x = 0.0–0.2) layered perovskites: an impedance spectroscopy and neutron diffraction study. NEW J CHEM 2021. [DOI: 10.1039/d1nj01662h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the diffusion pathways in perovskite-like structures. The modules of Gfourir and BondStr of Fullprof are feasible to obtain different paths in first approximation.
Collapse
Affiliation(s)
- C. Mariño
- Departamento de Metalurgia
- Universidad de Santiago de Chile
- Avenida Libertador Bernardo O’Higgins
- Estación central
- Santiago
| | - J. Basbus
- Centro Atómico Bariloche (CAB)
- INN-CNEA-CONICET
- S. C. de Bariloche
- Rio Negro
- Argentina
| | - A. L. Larralde
- Laboratorio de Cristalografía Aplicada
- Escuela de Ciencia y Tecnología
- Universidad Nacional de San Marín
- Campus Miguelete
- Martín de Irigoyen
| | - J. A. Alonso
- Instituto de Ciencia de Materiales de Madrid (ICMM)
- CSIC
- Cantoblanco
- Madrid
- Spain
| | | | - L. Troncoso
- Instituto de Materiales y Procesos Termomecánicos
- Universidad Austral de Chile
- General Lagos
- 2086
- Valdivia
| |
Collapse
|
33
|
Wang M, Liu J, Jin J, Wu D, Yang G, Zhang WY, Wang YY. A new 3D luminescent Ba-organic framework with high open metal sites: CO 2 fixation, luminescence sensing, and dye sorption. CrystEngComm 2021. [DOI: 10.1039/d0ce01604g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new synthesized 3D luminescent Ba-organic framework (1) may be used as a recyclable heterogeneous catalyst for fixation of CO2 and has excellent response and sensitivity for pollutant ions. Moreover, 1 exhibits the particular selective sorption towards Congo red (CR) dye.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Jiao Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Dan Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| |
Collapse
|
34
|
Li RN, Guo XH, Wang ZY, Jiang H, Luan L, Li MX, He X. Structural diversity and luminescence sensing of cadmium coordination polymers derived from 5-(bis(4-carboxybenzyl)amino) isophthalic acid. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Han C, Li J, Li G, Kumar A, Muddassir M, Jin J. New 3D Cd(II)-based pillar-supported metal − organic framework as fluorescent sensor for sensitive detection of agricultural pesticide pymetrozine. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Leo P, Briones D, García JA, Cepeda J, Orcajo G, Calleja G, Rodríguez-Diéguez A, Martínez F. Strontium-Based MOFs Showing Dual Emission: Luminescence Thermometers and Toluene Sensors. Inorg Chem 2020; 59:18432-18443. [PMID: 33258586 DOI: 10.1021/acs.inorgchem.0c03065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work reports on the preparation and optical characterization of two metal-organic frameworks (MOFs) based on strontium ions and 2-amino-1,4-benzenedicarboxylate (NH2-bdc) ligand: i.e., [Sr(NH2-bdc)(DMF)]n (1) and {[Sr(NH2-bdc)(Form)]·H2O}n (2) (where DMF = dimethylformamide and Form = formamide). Compound 1 has a 3D architecture built up from the linkage established by NH2-bdc among metal-carboxylate rods, leaving significant microchannels that are largely occupied by DMF molecules coordinated to strontium centers. The solvent molecules play a crucial role in the photoluminescence (PL) properties, which has been deeply characterized by diffuse reflectance and variable-temperature emission. Interestingly, both materials present intriguing photoluminescence (PL) properties involving intense short-lived and long-lasting phosphorescence (LLP), though the latter is especially remarkable for compound 2 with a lifetime of 815 ms at low temperature. Conversely, the strong PL shown by 1 may be successfully exploited due to both its luminescent thermochromism observed in the RT to 10 K range and its solvent-dependent PL sensing capacity, imbuing this material with potential activity as a PL thermometer as well as a toluene detector in water solutions.
Collapse
Affiliation(s)
- Pedro Leo
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, CalleTulipán s/n, 28933 Móstoles, Spain
| | - David Briones
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, CalleTulipán s/n, 28933 Móstoles, Spain
| | - Jose A García
- Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, 20018 San Sebastián, Spain
| | - Gisela Orcajo
- Department of Chemical, Energy and Mechanical Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | - Guillermo Calleja
- Department of Chemical, Energy and Mechanical Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | | | - Fernando Martínez
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, CalleTulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
37
|
Jin CH, Zhu TT, Xi ZH, Chai JL, Zhang XW, Han J, Zhao XL, Chen XD. Lanthanide complexes based on a C symmetric tripodal ligand and potential application as fluorescent probe of Fe3+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
A novel terbium metal–organic framework for luminescence sensing of pyridine: Synthesis, structure, selectivity, sensitivity and recyclability. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Liu Y, Lv X, Zhang X, Liu L, Xie J, Chen Z. Eu(III)-organic complex as recyclable dual-functional luminescent sensor for simultaneous and quantitative sensing of 2,4,6-trinitrophenol and CrO 42- in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118497. [PMID: 32480273 DOI: 10.1016/j.saa.2020.118497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
A novel metal-organic complex (MOC) {[Eu2(HL)2(H2O)4]·3H2O}n (1) (H4L = 3,3',5,5'-azoxybenzenetetracarboxylic acid) has been successfully constructed, which exhibits a fascinating 2D bilayer network with the 1D open channels and has excellent water, pH and thermal stabilities. Luminescence studies reveal that 1 can detect TNP and CrO42- ions with high selectivity and sensitivity in aqueous solution, even if there are related interfering substances. And the mechanisms of luminescence recognitions are discussed on the basis of experiments and theoretical calculations. Furthermore, 1 shows excellent photostability and can be repeatedly used in the above two detection systems. Most importantly, 1 can detect TNP and CrO42- concentration with a good recovery rate in practical application. Therefore, 1 should be a potential dual-functional luminescent sensor for reliable sensing of TNP and CrO42- in the field.
Collapse
Affiliation(s)
- Yaru Liu
- School of Science, North University of China, Taiyuan, Shanxi 030051, China.
| | - Xinxin Lv
- School of Science, North University of China, Taiyuan, Shanxi 030051, China
| | - Xiao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150080, China
| | - Lan Liu
- School of Science, North University of China, Taiyuan, Shanxi 030051, China
| | - Jingwen Xie
- School of Science, North University of China, Taiyuan, Shanxi 030051, China
| | - Zhiping Chen
- School of Science, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
40
|
Qu XL, Yan B. Cd-Based Metal-Organic Framework Containing Uncoordinated Carbonyl Groups as Lanthanide Postsynthetic Modification Sites and Chemical Sensing of Diphenyl Phosphate as a Flame-Retardant Biomarker. Inorg Chem 2020; 59:15088-15100. [PMID: 33006286 DOI: 10.1021/acs.inorgchem.0c02044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the judicious selection of an appropriate semirigid polycarboxylate, 2,5-bis(3',5'-dicarboxylphenyl)benzoic acid (H5bdba), and an inorganic metal ion, a novel anionic framework, {[NH2(CH3)2]2·[Cd3.5(bdba)(Hbdba)(H2O)1.5]}n (Cd-MOF), has been synthesized solvothermally. Single-crystal measurement results show that the prepared Cd-MOF features a three-dimensional structure containing two types of one-dimensional channels, and as we expected, there exist accessible uncoordinated -COOH groups on Hbdba pointing toward the rhombus channels. Powder X-ray diffraction and thermogravimetric analysis measurements were performed for the thermal and chemical stability analysis of Cd-MOF. In addition, the lanthanide(III)-functionalized hybrids, Ln(III)@Cd-MOF, were initially prepared by coordinated postsynthetic modification to incorporate luminescent Ln(III) ions into the structure. The luminescence properties of the hybrids are studied, and the results show notable and specialized fluorescent sensitization of Cd-MOF to Tb(III) ions. Moreover, the Tb(III)@Cd-MOF hybrid with outstanding fluorescence properties was developed as a highly sensitive and selective luminescent probe for the biomarker diphenyl phosphate (DPP) based on multiquenching effects. Tb(III)@Cd-MOF is the first case to realize the detection of urinary DPP through lanthanide metal-organic framework fluorescence spectrometry and shows practical detection potential.
Collapse
Affiliation(s)
- Xiang-Long Qu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
41
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
42
|
Qian X, Deng S, Chen X, Gao Q, Hou YL, Wang A, Chen L. A highly stable, luminescent and layered zinc(II)-MOF: Iron(III)/copper(II) dual sensing and guest-assisted exfoliation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Dong J, Hou SL, Zhao B. Bimetallic Lanthanide-Organic Framework Membranes as a Self-Calibrating Luminescent Sensor for Rapidly Detecting Antibiotics in Water. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38124-38131. [PMID: 32805943 DOI: 10.1021/acsami.0c09940] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rapid, facile, and reliable recognition of different antibiotics by self-calibrating luminescent sensors are important for practical requirements. Herein, we design and synthesize a series of Eu1-xTbx-MOF using a flexible ligand H4L (5,5'-(propane-1,3-diylbis(oxy))di-isophthalic acid). With changing reactant time, submicrometer bimetallic SMOF-10-10h with homogeneous morphology was achieved and further fabricated MOF-based membrane combining with polymer materials. A luminescent study indicated that the bimetallic SMOF-10-10h membrane possesses a legible emission peak for Eu3+ and Tb3+ ions, which can act as a self-calibrating luminescent probe for efficiently sensing different antibiotics within a certain concentration range through two-dimensional (2D) readouts based on the emission intensity ratio. Our work first reports an inexpensive and convenience bimetallic MOF-based membrane as a luminescent sensor with self-calibrating to detect various antibiotics, which makes it a potential luminescent sensor for beneficial application.
Collapse
Affiliation(s)
- Jie Dong
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Advances in luminescent metal-organic framework sensors based on post-synthetic modification. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115939] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Razavi SAA, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213299] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Zhao Y, Xu Y, Xu B, Cen P, Song W, Duan L, Liu X. A dual-sensitized luminescent europium(iii) complex as a photoluminescent probe for selectively detecting Fe 3. RSC Adv 2020; 10:24244-24250. [PMID: 35516177 PMCID: PMC9055115 DOI: 10.1039/d0ra03821k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
A new luminescent EuIII complex, namely [Eu2(BTFA)4(OMe)2(dpq)2] (1), in which BTFA = 3-benzoyl-1,1,1-trifluoroacetone and dpq = dipyrido [3,2-d:2',3'-f] quinoxaline, has been designed and synthesized by employing two different ligands as sensitizers. Crystal structure analysis reveals that complex 1 is composed of dinuclear EuIII units crystallized in the monoclinic P1̄ space group. Notably, 1 exhibits high thermal stability up to 270 °C and excellent water stability. The photoluminescence property of the complex is investigated. Further studies show 1 can recognize Fe3+ ions with high selectivity from mixed metal ions in aqueous solution through the luminescence quenching phenomenon. Furthermore, the recyclability and stability of 1 after sensing experiments are observed to be adequate. By virtue of the superior stability, detection efficiency, applicability and reusability, the as-prepared EuIII complex can be a promising fluorescent material for practical sensing.
Collapse
Affiliation(s)
- Yafeng Zhao
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yanhong Xu
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Bing Xu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University Yinchuan 750021 China
| | - Weiming Song
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Lijuan Duan
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiangyu Liu
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210023 China
| |
Collapse
|
47
|
Liu Y, Feng F, Lv GX, Gao ZS. Fluorescent Tb(III)-MOF for Fe(III) Ion Detection and Treatment Effect in Aortic Dissection by Reducing β-receptor Expression and D-Dimer Production. J Fluoresc 2020; 30:793-799. [DOI: 10.1007/s10895-020-02557-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
48
|
Zhao X, Zhang F, Liu Y, Zhao T, Zhao H, Xiang S, Li Y. A series of luminescent Lnlll-based coordination polymers: Syntheses, structures and luminescent properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Ren H, Wang X, Gong R, Li M, Zhu H, Zhang J, Duan E. Atomically dispersed Eu(III) sites in natural deep eutectic solvents based fluorescent probe efficient identification of Fe 3+ and Cu 2+ in wastewater. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117874. [PMID: 31813718 DOI: 10.1016/j.saa.2019.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal ions in wastewater have brought serious environmental pollution. To improve the detection efficiency, it is important to find useful fluorescent probes. The emerging green natural deep eutectic solvents (NADESs) offer attractive option for "green" detection for its good biocompatibility, easy preparation, and high sensitivity. In this study, a multi-functionalized fluorescent probe with atomically dispersed EuCl3·6H2O in amino acid-based NADESs (l-Glutamic acid/Glycerol, l-Glu/Gly) was synthesized by metal-ligand coordination interactions with a mass ratio of 15:1. Combined with the NADESs and rare earth metal, the l-Glu/Gly/EuCl3·6H2O could form the amino site and Eu2+ site fluorescent centers. Under the excitation wavelength of 370 nm, it had dual emission peaks at 425 nm and 470 nm with efficient resonance energy transfer. The stable optoelectronic properties of l-Glu/Gly/EuCl3·6H2O under external factors, such as mass ratio (13,1 to 18:1), temperature (30-50 °C), pH (1 to 14) and storage time ( >42 days), approved l-Glu/Gly/EuCl3·6H2O an excellent fluorescence probe. In the application of water-quality monitoring, Fe3+ and Cu2+ could react with l-Glu/Gly/EuCl3·6H2O in different reactive patterns. The blue fluorescence was quenched by Fe3+ and enhanced by Cu2+, thus metal ions could be distinguished with high sensitivity. The detective process was determined and the fluorescent mechanism was also proposed. l-Glu/Gly/EuCl3·6H2O fluorescent probe was demonstrated to be an efficient fluorescent probe for metal detection avoiding the hydrothermal process, and the cumbersome of ilter, dialysis, freeze drying.
Collapse
Affiliation(s)
- Hongwei Ren
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China
| | - Xue Wang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Ruiquan Gong
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Meiyu Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Hongyu Zhu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Jinfeng Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China.
| |
Collapse
|
50
|
Ma S, Deng X, Zhong M, Zhu M, Zhang L. Three lanthanide–nitronyl nitroxide complexes: Syntheses, crystal structures, magnetic properties and fluorescence of selective sensing of Fe (III) ions. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|