1
|
Nemykin VN, Sabin JR, Kail BW, Upadhyay A, Hendrich MP, Basu P. Influence of the ligand-field on EPR parameters of cis- and trans-isomers in Mo V systems relevant to molybdenum enzymes: Experimental and density functional theory study. J Inorg Biochem 2023; 245:112228. [PMID: 37149488 PMCID: PMC10330323 DOI: 10.1016/j.jinorgbio.2023.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The electron paramagnetic resonance (EPR) investigation of mononuclear cis- and trans-(L1O)MoOCl2 complexes [L1OH = bis(3,5-dimethylpyrazolyl)-3-tert-butyl-2-hydroxy-5-methylphenyl)methane] reveals a significant difference in their spin Hamiltonian parameters which reflect different equatorial and axial ligand fields created by the heteroscorpionate donor atoms. Density functional theory (DFT) was used to calculate the values of principal components and relative orientations of the g and A tensors, and the molecular framework in four pairs of isomeric mononuclear oxo‑molybdenum(V) complexes (cis- and trans-(L1O)MoOCl2, cis,cis- and cis,trans-(L-N2S2)MoOCl [L-N2S2H2 = N,N'-dimethyl-N,N'-bis(mercaptophenyl)ethylenediamine], cis,cis- and cis,trans-(L-N2S2)MoO(SCN), and cis- and trans-[(dt)2MoO(OMe)]2- [dtH2 = 2,3-dimercapto-2-butene]). Scalar relativistic DFT calculations were conducted using three different exchange-correlation functionals. It was found that the use of hybrid exchange-correlation functional with 25% of the Hartree-Fock exchange leads to the best quantitative agreement between theory and experiment. A simplified ligand-field approach was used to analyze the influence of the ligand fields in all cis- and trans-isomers on energies and contributions of molybdenum d-orbital manifold to g and A tensors and relative orientations. Specifically, contributions that originated from the spin-orbit coupling of the dxz, dyz, and dx2-y2 orbitals into the ground state have been discussed. The new findings are discussed in the context of the experimental data of mononuclear molybdoenzyme, DMSO reductase.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Tennessee - Knoxville, Knoxville, TN 37996, USA; Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Jared R Sabin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Brian W Kail
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15216, USA
| | - Anup Upadhyay
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15216, USA; Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Su J, Gong Y, Batista ER, Lucena AF, Maria L, Marçalo J, Van Stipdonk MJ, Berden G, Martens J, Oomens J, Gibson JK, Yang P. Unusual Actinyl Complexes with a Redox-Active N,S-Donor Ligand. Inorg Chem 2023. [PMID: 37390399 DOI: 10.1021/acs.inorgchem.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Understanding the fundamental chemistry of soft N,S-donor ligands with actinides across the series is critical for separation science toward sustainable nuclear energy. This task is particularly challenging when the ligands are redox active. We herein report a series of actinyl complexes with a N,S-donor redox-active ligand that stabilizes different oxidation states across the actinide series. These complexes are isolated and characterized in the gas phase, along with high-level electronic structure studies. The redox-active N,S-donor ligand in the products, C5H4NS, acts as a monoanion in [UVIO2(C5H4NS-)]+ but as a neutral radical with unpaired electrons localized on the sulfur atom in [NpVO2(C5H4NS•)]+ and [PuVO2(C5H4NS•)]+, resulting in different oxidation states for uranium and transuranic elements. This is rationalized by considering the relative energy levels of actinyl(VI) 5f orbitals and S 3p lone pair orbitals of the C5H4NS- ligand and the cooperativity between An-N and An-S bonds that provides additional stability for the transuranic elements.
Collapse
Affiliation(s)
- Jing Su
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu Gong
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ana F Lucena
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Leonor Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jonathan Martens
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Guan J, Guo Z, Li X, Tang H. Theoretical Understanding of Reactions of Rhenium and Ruthenium Tris(thiolate) Complexes with Unsaturated Hydrocarbons: Noninnocent Nature of the Ligand, Mechanism, and Origin of Differential Reactivity. Inorg Chem 2023; 62:2548-2560. [PMID: 36719396 DOI: 10.1021/acs.inorgchem.2c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In retrospect to the complexity induced by the noninnocent ligands in identifying the transition metal's oxidation state and correlating the ligand's noninnocence with reactivity, the reactions of alkene/alkyne addition to rhenium/ruthenium tris(thiolate) complexes are particularly good cases for shedding light on the chemistry of the dppbt ligand, including its noninnocent nature, ligand-centered mechanism, and origin of differential reactivity. Density functional theory (DFT) combined with the high-level ab initio calculations performed herein demonstrates that, upon alkene/alkyne addition, the orbital symmetry properly regulates the reaction to form ligand-centered cis-interligand dithioethers as the most favorable pathway. The neutral and cationic Re and Ru dithioethers are revealed via DFT calculations to be in a low-spin ground state; on the contrary, high-level ab initio methods confirm that the dicationic Re-dithioethers exhibit obvious multireference character with antiferromagnetic coupling between Re-dyz and S1-py. The metal-stabilized thiyl radicals play a pivotal role in delivering the reactivity of [RuL3]+ and [ReL3]+/2+ toward alkene/alkyne rather than [ReL3], where [RuL3]+ and [ReL3]+/2+ present significant radical characters on ligand S2, yet neutral [ReL3] has little such feature, from which differential reactivity arises. Faster styrene addition to Ru tris(thiolate) in contrast to Re tris(thiolate) has been properly interpreted using DFT calculations with major products assigned. The deeper understanding gained in this work would illuminate further experimental exploration in adding alkene/alkyne to other metal-stabilized thiyl radicals.
Collapse
Affiliation(s)
- Jia Guan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zeyi Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xuelian Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Hao Tang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
4
|
Luong XH, Pham NNT, An KL, Lee SU, Kim SS, Park JS, Lee SG. Near-Infrared Absorption Properties of Neutral Bis(1,2-dithiolene) Platinum(II) Complexes Using Density Functional Theory. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1704. [PMID: 35630926 PMCID: PMC9144374 DOI: 10.3390/nano12101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023]
Abstract
Small metal complexes are highly interesting for bioimaging because of their excellent near-infrared (NIR) absorption properties. In this study, neutral complexes of platinum(II) connected to two monoreduced 1,3-diisopropylimidazoline-2,4,5-trithione ligands-namely, [Pt(iPr2timdt)2]-were investigated. Theoretical studies using the density functional theory (DFT) and GW-BSE approximation verified the effects of the geometry of the isopropyl moieties on the NIR absorption spectra. The calculated absorption spectra showed excellent correspondence with the experimental results. The geometry of the isopropyl groups considerably influenced the electronic structures of the metal complexes, which altered the absorption profiles of the respective geometries, as demonstrated in this research.
Collapse
Affiliation(s)
- Xuan-Hoang Luong
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Nguyet N. T. Pham
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
- Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 721337, Vietnam
| | - Kyoung-Lyong An
- NANOCMS Co., Ltd., 48, 4sandan 4-ro, Jiksan-eup, Seobuk-gu, Cheonan-si 31040, Korea; (K.-L.A.); (S.U.L.); (S.S.K.)
| | - Seong Uk Lee
- NANOCMS Co., Ltd., 48, 4sandan 4-ro, Jiksan-eup, Seobuk-gu, Cheonan-si 31040, Korea; (K.-L.A.); (S.U.L.); (S.S.K.)
| | - Shi Surk Kim
- NANOCMS Co., Ltd., 48, 4sandan 4-ro, Jiksan-eup, Seobuk-gu, Cheonan-si 31040, Korea; (K.-L.A.); (S.U.L.); (S.S.K.)
| | - Jong S. Park
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
- Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Seung Geol Lee
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
- Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
5
|
Dille SA, Colston KJ, Ratvasky SC, Pu J, Basu P. Interligand communication in a metal mediated LL'CT system - a case study. RSC Adv 2021; 11:24381-24386. [PMID: 34354823 PMCID: PMC8285364 DOI: 10.1039/d1ra04716g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
A series of oxo-Mo(iv) complexes, [MoO(Dt2−)(Dt0)] (where Dt2− = benzene-1,2-dithiol (bdt), toluene-3,4-dithiol (tdt), quinoxaline-2,3-dithiol (qdt), or 3,6-dichloro-benzene-1,2-dithiol (bdtCl2); Dt0 = N,N′-dimethylpiperazine-2,3-dithione (Me2Dt0) or N,N′-diisopropylpiperazine-2,3-dithione (iPr2Dt0)), possessing a fully oxidized and a fully reduced dithiolene ligand have been synthesized and characterized. The assigned oxidation states of coordinated dithiolene ligands are supported with spectral and crystallographic data. The molecular structure of [MoO(tdt)(iPr2Dt0)] (6) demonstrates a large ligand fold angle of 62.6° along the S⋯S vector of the Dt0 ligand. The electronic structure of this system is probed by density functional theory (DFT) calculations. The HOMO is largely localized on the Dt2− ligand while virtual orbitals are mostly Mo and Dt0 in character. Modeling the electronic spectrum of 6 with time dependent (TD) DFT calculations attributes the intense low energy transition at ∼18 000 cm−1 to a ligand-to-ligand charge transfer (LL′CT). The electron density difference map (EDDM) for the low energy transition depicts the electron rich Dt2− ligand donating charge density to the redox-active orbitals of the electron deficient Dt0 ligand. Electronic communication between dithiolene ligands is facilitated by a Mo-monooxo center and distortion about its primary coordination sphere. The interligand communication between non-innocent dithiolene ligands of different oxidation states has been described in a Mo system. The fully reduced ene-dithiolate (Dt2−) acts as a donor moiety to the oxidized dithione (Dt0) in an LL′CT process.![]()
Collapse
Affiliation(s)
- Sara A Dille
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Kyle J Colston
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Stephen C Ratvasky
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh PA 15282 USA
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis Indianapolis IN 46202 USA
| |
Collapse
|
6
|
Dille SA, Colston KJ, Mogesa B, Cassell J, Perera E, Zeller M, Basu P. The Impact of Ligand Oxidation State and Fold Angle on the Charge Transfer Processes of Mo
IV
O‐Dithione Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sara A. Dille
- School Science Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 402 N. Blackford St. Indianapolis IN 462020 USA
| | - Kyle J. Colston
- School Science Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 402 N. Blackford St. Indianapolis IN 462020 USA
| | - Benjamin Mogesa
- Bayer School of Natural Science Department of Chemistry and Biochemistry Duquesne University 600 Forbes Ave. Pittsburgh PA 15282 USA
| | - Joseph Cassell
- School Science Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 402 N. Blackford St. Indianapolis IN 462020 USA
| | - Eranda Perera
- Bayer School of Natural Science Department of Chemistry and Biochemistry Duquesne University 600 Forbes Ave. Pittsburgh PA 15282 USA
| | - Matthias Zeller
- College of Science Department of Chemistry Purdue University 560 Oval Dr. West Lafayette In 47907 USA
| | - Partha Basu
- School Science Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 402 N. Blackford St. Indianapolis IN 462020 USA
| |
Collapse
|
7
|
Colston KJ, Dille SA, Mogesa B, Brant J, Nemykin VN, Zeller M, Basu P. Syntheses, spectroscopic, redox, and structural properties of homoleptic Iron(III/II) dithione complexes. RSC Adv 2020; 10:38294-38303. [PMID: 35517554 PMCID: PMC9057267 DOI: 10.1039/d0ra07371g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/10/2020] [Indexed: 11/21/2022] Open
Abstract
Two sets of FeIII/II dithione complexes [FeII( i Pr2Dt0)3][PF6]2 ([1][PF6]2), [FeII(Me2Dt0)3][PF6]2 ([2][PF6]2), and [FeIII( i Pr2Dt0)3][PF6]3 ([3][PF6]3), [FeIII(Me2Dt0)3][PF6]3 ([4][PF6]3), and compound [FeIII( i Pr2Dt0)3][FeCl4][PF]2 ([3][FeCl4][PF6]2) were synthesized from N,N'-diisopropyl piperazine-2,3-dithione ( i Pr2Dt0) and N,N'-dimethyl piperazine-2,3-dithione (Me2Dt0) ligands. Complexes [1][PF6]2-[4][PF6]3 have been characterized by NMR, IR, and UV-visible spectroscopies, and by electrochemistry. The molecular structures of [2][PF6]2 and [3][FeCl4][PF6]2 have been determined by X-ray crystallography. Complexes [2][PF6]2 and [3][FeCl4][PF6]2 both crystallized in the monoclinic space group P21/n. Both complexes exhibit distorted octahedral geometry and the three coordinated ligands in each complex exhibit different dithione folding. Complexes [1][PF6]2-[4][PF6]3 exhibit a single FeIII/II based couple and three quasi-reversible ligand-based redox couples. The electronic spectra of [1][PF6]2-[4][PF6]3 show intense MLCT bands that indicate strong mixing between metal and ligand orbitals. DFT calculations were used to provide a framework for understanding the electronic origin of their redox chemistry and spectroscopic features.
Collapse
Affiliation(s)
- Kyle J Colston
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis IN 46202 USA
| | - Sara A Dille
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis IN 46202 USA
| | - Benjamin Mogesa
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh PA 15282 USA
| | - Jacilynn Brant
- The Air Force Research Laboratory, Wright-Patterson AFB OH 45433 USA
| | - Victor N Nemykin
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University West Layfette IN 47907 USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis IN 46202 USA
| |
Collapse
|
8
|
Basu P, Colston KJ, Mogesa B. Dithione, the antipodal redox partner of ene-1,2-dithiol ligands and their metal complexes. Coord Chem Rev 2020; 409:213211. [PMID: 38094102 PMCID: PMC10718511 DOI: 10.1016/j.ccr.2020.213211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Defining the oxidation state of the central atom in a coordination compound is fundamental in understanding the electronic structure and provides a starting point for elucidating molecular properties. The presence of non-innocent ligand(s) can obscure the oxidation state of the central atom as the ligand contribution to the electronic structure is difficult to ascertain. Redox-active ligands, such as dithiolene ligands, are well known non-innocent ligands that can exist in both a fully reduced (Dt2-) and fully oxidized (Dt0) states. Complexes containing the fully oxidized dithione state of the ligand are uncommon and only a few have been completely characterized. Dithione ligands are of interest due to their electron-deficient nature and ability to act as an electron acceptor for more electron-rich moieties, such as other dithiolene ligands or metal centers. This article focuses the syntheses, structures, and metal coordination, particularly coordination compounds, of dithione ligands. Various examples of mono, bis, and tris dithione complexes are discussed.
Collapse
Affiliation(s)
- Partha Basu
- Department of Chemistry and Chemical Biology, IUPUI, Indianapolis, IN 46202, United States
| | - Kyle J. Colston
- Department of Chemistry and Chemical Biology, IUPUI, Indianapolis, IN 46202, United States
| | - Benjamin Mogesa
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| |
Collapse
|
9
|
Yadav R, Singh S, Trivedi M, Kociok-Köhn G, Rath NP, Köhn RD, Muddassir M, Kumar A. New main-group ferrocenyldithiocarbamates and conversion to ferrocene oxazolidine-2-thione and -2-one. NEW J CHEM 2020. [DOI: 10.1039/c9nj06139h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three new main-group ferrocenyl dithiocarbamates and a pure cyclised product, 3-ferrocenylmethyl-oxazolidine-2-thione, were isolated using copper powder.
Collapse
Affiliation(s)
- Reena Yadav
- Department of Chemistry
- University of Lucknow
- Lucknow 226 007
- India
| | - Suryabhan Singh
- Department of Chemistry
- Guru GhasidasVishwadiyalaya
- Bilaspur
- India
| | - Manoj Trivedi
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility (MC2)
- University of Bath
- Bath BA2 7AY
- UK
| | - Nigam P. Rath
- Department of Chemistry & Biochemistry and Centre for Nanoscience
- University of Missouri-St. Louis
- One University Boulevard
- St. Louis
- USA
| | | | - Mohd. Muddassir
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Abhinav Kumar
- Department of Chemistry
- University of Lucknow
- Lucknow 226 007
- India
| |
Collapse
|
10
|
Colston KJ, Dille SA, Mogesa B, Astashkin AV, Brant JA, Zeller M, Basu P. Design, Synthesis, and Structure of Copper Dithione Complexes: Redox‐Dependent Charge Transfer. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kyle J. Colston
- Department of Chemistry and Chemical Biology Indiana University‐Purdue University Indianapolis 402 N. Blackford Street 46202 Indianapolis IN USA
| | - Sara A. Dille
- Department of Chemistry and Chemical Biology Indiana University‐Purdue University Indianapolis 402 N. Blackford Street 46202 Indianapolis IN USA
| | - Benjamin Mogesa
- Department of Chemistry and Biochemistry Duquesne University 15282 Pittsburgh PA USA
| | - Andrei V. Astashkin
- Department of Chemistry and Biochemistry University of Arizona 85721 Tucson AZ USA
| | - Jacilynn A. Brant
- The Air Force Research Laboratory Aerospace Systems Directorate 1950 Fifth Street, Building 18 45433 Wright‐Patterson Air Force Base Ohio USA
| | - Matthias Zeller
- Department of Chemistry Purdue University 560 Oval Drive 47907 West Lafayette IN USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology Indiana University‐Purdue University Indianapolis 402 N. Blackford Street 46202 Indianapolis IN USA
| |
Collapse
|
11
|
Reversible and stable redox behavior of a Pt(II) bis(dithiobenzoate)-type complex attributed to rotaxane-based stabilization. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Hosomi T, Harada R, Masai H, Fujihara T, Tsuji Y, Terao J. Kinetic stabilization of a Ni(ii) bis(dithiobenzoate)-type complex achieved using three-dimensional insulation by a [1]rotaxane structure. Chem Commun (Camb) 2018; 54:2487-2490. [PMID: 29441397 DOI: 10.1039/c8cc00351c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the synthesis of a Ni(ii) bis(dithiobenzoate)-type complex three-dimensionally insulated by a [1]rotaxane structure to reveal the importance of the insulation. Under cyclic voltammetry conditions, the complex showed a stable and reversible redox behavior in contrast to a non-insulated reference complex, clearly demonstrating the effectiveness of the rotaxane-type insulation as a new method of kinetic metal complex stabilization.
Collapse
Affiliation(s)
- Takuro Hosomi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Tang H, Brothers EN, Hall MB. The Distinctive Electronic Structures of Rhenium Tris(thiolate) Complexes, an Unexpected Contrast to the Valence Isoelectronic Ruthenium Tris(thiolate) Complexes. Inorg Chem 2016; 56:583-593. [DOI: 10.1021/acs.inorgchem.6b02434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
14
|
Ratvasky SC, Mogesa B, van Stipdonk MJ, Basu P. A mixed valence zinc dithiolene system with spectator metal and reactor ligands. Polyhedron 2016; 114:370-377. [PMID: 27667891 DOI: 10.1016/j.poly.2016.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Neutral complexes of zinc with N,N'-diisopropylpiperazine-2,3-dithione ( i Pr2Dt0) and N,N'-dimethylpiperazine-2,3-dithione (Me2Dt0) with chloride or maleonitriledithiolate (mnt2-) as coligands have been synthesized and characterized. The molecular structures of these zinc complexes have been determined using single crystal X-ray diffractometry. Complexes recrystallize in monoclinic P type systems with zinc adopting a distorted tetrahedral geometry. Two zinc complexes with mixed-valent dithiolene ligands exhibit ligand-to-ligand charge transfer bands. Optimized geometries, molecular vibrations and electronic structures of charge-transfer complexes were calculated using density functional theory (B3LYP/6-311G+(d,p) level). Redox orbitals are shown to be almost exclusively ligand in nature, with a HOMO based heavily on the electron-rich maleonitriledithiolate ligand, and a LUMO comprised mostly of the electron-deficient dithione ligand. Charge transfer is thus believed to proceed from dithiolate HOMO to dithione LUMO, showing ligand-to-ligand redox interplay across a d10 metal.
Collapse
Affiliation(s)
- Stephen C Ratvasky
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Benjamin Mogesa
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | | | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
15
|
Kennedy SR, Kozar MN, Yennawar HP, Lear BJ. Steady-State Spectroscopic Analysis of Proton-Dependent Electron Transfer on Pyrazine-Appended Metal Dithiolenes [Ni(pdt)2], [Pd(pdt)2], and [Pt(pdt)2] (pdt = 2,3-Pyrazinedithiol). Inorg Chem 2016; 55:8459-67. [DOI: 10.1021/acs.inorgchem.6b01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven R. Kennedy
- Department of Chemistry, The Pennsylvania State University, 126 Davey Laboratory, University Park, Pennsylvania 16802, United States
| | - Morgan N. Kozar
- Department of Chemistry, The Pennsylvania State University, 126 Davey Laboratory, University Park, Pennsylvania 16802, United States
| | - Hemant P. Yennawar
- Department of Chemistry, The Pennsylvania State University, 126 Davey Laboratory, University Park, Pennsylvania 16802, United States
| | - Benjamin J. Lear
- Department of Chemistry, The Pennsylvania State University, 126 Davey Laboratory, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Liu X, Hou GL, Wang X, Wang XB. Negative Ion Photoelectron Spectroscopy Reveals Remarkable Noninnocence of Ligands in Nickel Bis(dithiolene) Complexes [Ni(dddt)2]− and [Ni(edo)2]−. J Phys Chem A 2016; 120:2854-62. [DOI: 10.1021/acs.jpca.6b02711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Liu
- College
of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Department
of Chemistry, Tongji University, Shanghai 200092, China
| | - Gao-Lei Hou
- Physical
Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Xuefeng Wang
- Department
of Chemistry, Tongji University, Shanghai 200092, China
| | - Xue-Bin Wang
- Physical
Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| |
Collapse
|
17
|
Yang J, Mogesa B, Basu P, Kirk ML. Large Ligand Folding Distortion in an Oxomolybdenum Donor-Acceptor Complex. Inorg Chem 2015; 55:785-93. [PMID: 26692422 DOI: 10.1021/acs.inorgchem.5b02252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interligand charge transfer is examined in the novel metallo-dithiolene complex MoO(SPh)2((i)Pr2Dt(0)) (where (i)Pr2Dt(0) = N,N'-isopropyl-piperazine-2,3-dithione). The title complex displays a remarkable 70° "envelope"-type fold of the five-membered dithiolene ring, which is bent upward toward the terminal oxo ligand. A combination of electronic absorption and resonance Raman spectroscopies have been used to probe the basic electronic structure responsible for the large fold-angle distortion. The intense charge transfer transition observed at ∼18 000 cm(-1) is assigned as a thiolate → dithione ligand-to-ligand charge transfer (LL'CT) transition that also possesses Mo(IV) → dithione charge transfer character. Strong orbital mixing between occupied and virtual orbitals with Mo(x(2)-y(2)) orbital character is derived from a strong pseudo Jahn-Teller effect, which drives the large fold-angle distortion to yield a double-well potential in the electronic ground state.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico , MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Benjamin Mogesa
- Department of Chemistry and Biochemistry, Duquesne University , Pittsburgh, Pennsylvania 15282, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University , Pittsburgh, Pennsylvania 15282, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico , MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
18
|
Pimkov IV, Serli-Mitasev B, Peterson AA, Ratvasky SC, Hammann B, Basu P. Designing the Molybdopterin Core through Regioselective Coupling of Building Blocks. Chemistry 2015; 21:17057-72. [DOI: 10.1002/chem.201502845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 01/08/2023]
|