1
|
Lindlar Né Jonasson NSW, Menke A, Senft L, Squarcina A, Schmidl D, Fisher K, Demeshko S, Kruse JC, Josephy T, Mayer P, Gutenthaler-Tietze J, Comba P, Meyer F, Ivanović-Burmazović I, Daumann LJ. Two Plus Four Equals Three-Iron(II)/Iron(IV) Comproportionation as an Additional Pathway for Iron(IV)-Oxido Reactions. Inorg Chem 2025. [PMID: 39965103 DOI: 10.1021/acs.inorgchem.4c04518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Iron enzymes are ubiquitous in nature. In particular, enzymes with iron-oxygen cofactors as active sites perform a vast variety of reactions. Both iron(III)-hydroxido and iron(IV)-oxido species have been observed to play a catalytically active role. In order to complement biochemical investigations, a large variety of synthetic compounds using these motifs were synthesized in past decades to study and understand their inherent reactivity. One such synthetic model complex is [FeIV(O)(Py5Me2)]2+, (Py5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine, henceforth labeled L1), which was used as a model complex for epigenetically relevant iron(II)/α-ketoglutarate-dependent ten-eleven translocation 5-methylcytosine dioxygenases (TET). Additionally, [FeIII(OH)(Py5(OH)2)]2+ (Py5(OH)2 = pyridine-2,6-diylbis [di(pyridin-2-yl)methanol, henceforth labeled L2) was tested as a lipoxygenase model. We have complemented the available complexes of these related pentapyridyl complexes to include all oxidation states II-IV and performed detailed spectroscopic and spectrometric investigations. We found that iron(II) and iron(IV)-oxido compounds (cross-)comproportionate readily to form iron(III)-hydroxido species, which represents a major side reaction for model complex investigations. We also investigated the oxidative reactivity of a new iron(IV)-oxido complex.
Collapse
Affiliation(s)
- Niko S W Lindlar Né Jonasson
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Annika Menke
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
| | - Laura Senft
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
| | - Andrea Squarcina
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
| | - David Schmidl
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
- Department of Chemical and Pharmaceutical Sciences, London Metropolitan University, 166-200 Holloway Road, London N7 8DB , U.K
| | - Katherine Fisher
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
- Department of Chemical and Pharmaceutical Sciences, London Metropolitan University, 166-200 Holloway Road, London N7 8DB , U.K
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
| | - Jan C Kruse
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
| | - Thomas Josephy
- Institute of Inorganic Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Peter Mayer
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
| | | | - Peter Comba
- Institute of Inorganic Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
| | - Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 München, Germany
- Mathematisch Naturwissenschaftliche Fakultät, Lehrstuhl für Bioanorganische Chemie, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Jayaweera HDAC, Almquist CC, Rajeshkumar T, Zhou W, Maron L, Piers WE. Nucleophilic and Electrophilic Molybdenum Terminal Oxo Complexes by Coordination-Induced Bond Weakening of Hydroxo O-H Bonds. Inorg Chem 2025; 64:1860-1874. [PMID: 39818815 DOI: 10.1021/acs.inorgchem.4c04563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The extent of coordination-induced bond weakening in aquo and hydroxo ligands bonded to a molybdenum(III) center complexed by a dianionic, pentadentate ligand system was probed by reacting the known complex (B2Pz4Py)Mo(III)-NTf2, I, with degassed water or dry lithium hydroxide. The aquo adduct was not observed, but two LiNTf2-stabilized hydroxo complexes were fully characterized. Computational and experimental work showed that the O-H bond in these complexes was significantly weakened (to ≈57 kcal mol-1), such that these compounds could be used to form the diamagnetic, d2 neutral terminal molybdenum oxo complex (B2Pz4Py)Mo(IV)O, 2, by hydrogen atom abstraction using the aryl oxyl reagent ArO• (Ar = 2,4,6-tri-tert-butylphenyl). Oxidation of the neutral hydroxo derivative further facilitated the production of 2 by significantly enhancing the acidity of the hydroxyl proton. Speciation in these processes was probed by electrochemical and chemical experiments. The terminal oxo complex 2 was smoothly oxidized by one electron to the cationic [(B2Pz4Py)Mo(V)O]+[A]- derivatives [2]+[A]- (A = NTf2 or Al[OC(CF3)3]4 depending on the oxidizing agent used). Both Mo(IV) and Mo(V)+ oxo complexes were fully characterized with their nucleophilic and electrophilic reaction behavior probed by conducting reactions with the Lewis acid B(C6F5)3 and the Lewis base PPh3. Neutral oxo complex 2 reacts only with the Lewis acid, while the cationic [2]+[A]- reacts only with PPh3, the former by adduct formation and the latter via phosphine oxidation.
Collapse
Affiliation(s)
| | - C Christopher Almquist
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, T2N 1N4 Calgary, AB Canada
| | - Thayalan Rajeshkumar
- LPCNO, INSA, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Wen Zhou
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, T2N 1N4 Calgary, AB Canada
| | - Laurent Maron
- LPCNO, INSA, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, T2N 1N4 Calgary, AB Canada
| |
Collapse
|
3
|
Neururer FR, Heim F, Baltrun M, Boos P, Beerhues J, Seidl M, Hohloch S. Probing the influence of imidazolylidene- and triazolylidene-based carbenes on the catalytic potential of dioxomolybdenum and dioxotungsten complexes in deoxygenation catalysis. Inorg Chem Front 2024:d4qi02392g. [PMID: 39882194 PMCID: PMC11771132 DOI: 10.1039/d4qi02392g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/22/2024] [Indexed: 01/31/2025]
Abstract
We report the synthesis of dianionic OCO-supported NHC and MIC complexes of molybdenum and tungsten with the general formula (OCO)MO2 (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal centre in this transformation. The results show that the molybdenum-based triazolylidene complex 2-Mo is by far the most active catalyst, and TOFs of up to 270 h-1 are observed, while the tungsten analogues are basically inactive. Mechanistic studies suggest that the superiority of the triazolylidene-based complex 2-Mo is a result of a highly stable metal carbene bond, strongly exceeding the stability of the other NHC complexes 1-Mo and 3-Mo. This is proven by the structural isolation of a triazolylidene pinacolate complex (5-Mo) that can be thermally converted to a μ-oxodimolybdenum(V) complex 7-Mo. The latter complex is very oxophilic and stoichiometrically deoxygenates nitro- and nitrosoarenes at room temperature. In contrast, azoarenes are not reductively cleaved by 7-Mo, suggesting direct deoxygenation of the nitroarenes to the corresponding anilines with nitrosoarenes as intermediates. In summary, this work showcases the superior influence of MIC donors on the catalytic properties of early transition metal complexes.
Collapse
Affiliation(s)
- Florian R Neururer
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| | - Florian Heim
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| | - Marc Baltrun
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| | - Philipp Boos
- University of Paderborn, Department of Chemistry Warburger Straße 100 33098 Paderborn Germany
| | - Julia Beerhues
- Freie Universität Berlin, Department of Inorganic Chemistry Fabeckstraße 34-36 14195 Berlin Germany
| | - Michael Seidl
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| | - Stephan Hohloch
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
4
|
Li Y, Singh R, Sinha A, Lisensky GC, Haukka M, Nilsson J, Yiga S, Demeshko S, Gross SJ, Dechert S, Gonzalez A, Farias G, Wendt OF, Meyer F, Nordlander E. Nonheme Fe IV═O Complexes Supported by Four Pentadentate Ligands: Reactivity toward H- and O- Atom Transfer Processes. Inorg Chem 2023; 62:18338-18356. [PMID: 37913548 PMCID: PMC10647104 DOI: 10.1021/acs.inorgchem.3c02526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe-Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIV═O complexes. UV/vis spectra of the four FeIV═O complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIV═O complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C-H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C-H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.
Collapse
Affiliation(s)
- Yong Li
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Reena Singh
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Arup Sinha
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - George C. Lisensky
- Department
of Chemistry, Beloit College, 700 College Street, Beloit, Wisconsin 53511, United States
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box-35, Jyväskylä FI-40014, Finland
| | - Justin Nilsson
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Solomon Yiga
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Serhiy Demeshko
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Sophie Jana Gross
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Sebastian Dechert
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, P.O.
Box 118, Lund SE-221 00, Sweden
| | - Giliandro Farias
- Department
of Chemistry, Federal University of Santa
Catarina, Florianópolis 88040900, Santa Catarina, Brazil
| | - Ola F. Wendt
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Franc Meyer
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Ebbe Nordlander
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
5
|
Jana S, De P, Dey C, Dey SG, Dey A, Gupta SS. Highly regioselective oxidation of C-H bonds in water using hydrogen peroxide by a cytochrome P450 mimicking iron complex. Chem Sci 2023; 14:10515-10523. [PMID: 37799989 PMCID: PMC10548533 DOI: 10.1039/d3sc03495j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cytochrome P450, one of nature's oxidative workhorses, catalyzes the oxidation of C-H bonds in complex biological settings. Extensive research has been conducted over the past five decades to develop a fully functional mimic that activates O2 or H2O2 in water to oxidize strong C-H bonds. We report the first example of a synthetic iron complex that functionally mimics cytochrome P450 in 100% water using H2O2 as the oxidant. This iron complex, in which one methyl group is replaced with a phenyl group in either wing of the macrocycle, oxidized unactivated C-H bonds in small organic molecules with very high selectivity in water (pH 8.5). Several substrates (34 examples) that contained arenes, heteroaromatics, and polar functional groups were oxidized with predictable selectivity and stereoretention with moderate to high yields (50-90%), low catalyst loadings (1-4 mol%) and a small excess of H2O2 (2-3 equiv.) in water. Mechanistic studies indicated the oxoiron(v) to be the active intermediate in water and displayed unprecedented selectivity towards 3° C-H bonds. Under single-turnover conditions, the reactivity of this oxoiron(v) intermediate in water was found to be around 300 fold higher than that in CH3CN, thus implying the role water plays in enzymatic systems.
Collapse
Affiliation(s)
- Sandipan Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| |
Collapse
|
6
|
Palit D, Kundu S, Pain PK, Sarma R, Manna D. A Chemical Model of a TET Enzyme for Selective Oxidation of Hydroxymethyl Cytosine to Formyl Cytosine. Inorg Chem 2023. [PMID: 37339080 DOI: 10.1021/acs.inorgchem.3c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Methylation/demethylation of cytosines in DNA is central to epigenetics, which plays crucial roles in the regulation of about half of all human genes. Although the methylation mechanism, which downregulates gene expression, has been sufficiently decoded; the demethylation pathway, which upregulates gene expression, still holds questions to be answered. Demethylation of 5-methylcytosine by ten-eleven translocation (TET) enzymes yields understudied but epigenetically relevant intermediates, 5-hydroxymethyl (5-hmC), 5-formyl (5-fC), and 5-carboxyl (5-caC) cytosines. Here we report an iron complex, FeIIITAML (TAML = tetraamido macrocyclic ligand), which can facilitate selective oxidation of 5-hmC to its oxidative derivatives by forming a high-valent Fe-oxo intermediate in the presence of H2O2 under physiologically relevant conditions. Detailed HPLC analyses supported by a wide reaction condition optimization for the 5-hmC → 5-fC oxidation provides us with a chemical model of the TET enzyme. This study shines light on future efforts for a better understanding of the roles of 5-hmC and the TET enzyme mechanism and potentially novel therapeutic methods.
Collapse
Affiliation(s)
- Dipanwita Palit
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462066, India
| | - Shubhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462066, India
| | - Pritam Kumar Pain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462066, India
| | - Rajdeep Sarma
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462066, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462066, India
| |
Collapse
|
7
|
Dantignana V, Pérez‐Segura MC, Besalú‐Sala P, Delgado‐Pinar E, Martínez‐Camarena Á, Serrano‐Plana J, Álvarez‐Núñez A, Castillo CE, García‐España E, Luis JM, Basallote MG, Costas M, Company A. Characterization of a Ferryl Flip in Electronically Tuned Nonheme Complexes. Consequences in Hydrogen Atom Transfer Reactivity. Angew Chem Int Ed Engl 2023; 62:e202211361. [PMID: 36305539 PMCID: PMC10107328 DOI: 10.1002/anie.202211361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/04/2022]
Abstract
Two oxoiron(IV) isomers (R 2a and R 2b) of general formula [FeIV (O)(R PyNMe3 )(CH3 CN)]2+ are obtained by reaction of their iron(II) precursor with NBu4 IO4 . The two isomers differ in the position of the oxo ligand, cis and trans to the pyridine donor. The mechanism of isomerization between R 2a and R 2b has been determined by kinetic and computational analyses uncovering an unprecedented path for interconversion of geometrical oxoiron(IV) isomers. The activity of the two oxoiron(IV) isomers in hydrogen atom transfer (HAT) reactions shows that R 2a reacts one order of magnitude faster than R 2b, which is explained by a repulsive noncovalent interaction between the ligand and the substrate in R 2b. Interestingly, the electronic properties of the R substituent in the ligand pyridine ring do not have a significant effect on reaction rates. Overall, the intrinsic structural aspects of each isomer define their relative HAT reactivity, overcoming changes in electronic properties of the ligand.
Collapse
Affiliation(s)
- Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - M. Carmen Pérez‐Segura
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de Ciencias, Instituto de Biomoléculas (INBIO)Universidad de CádizPuerto Real11510CádizSpain
| | - Pau Besalú‐Sala
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Estefanía Delgado‐Pinar
- Departamento de Química InorgánicaInstituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, Paterna46980Valencia 2Spain
| | - Álvaro Martínez‐Camarena
- Departamento de Química InorgánicaInstituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, Paterna46980Valencia 2Spain
| | - Joan Serrano‐Plana
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Andrea Álvarez‐Núñez
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Carmen E. Castillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de Ciencias, Instituto de Biomoléculas (INBIO)Universidad de CádizPuerto Real11510CádizSpain
| | - Enrique García‐España
- Departamento de Química InorgánicaInstituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, Paterna46980Valencia 2Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Manuel G. Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de Ciencias, Instituto de Biomoléculas (INBIO)Universidad de CádizPuerto Real11510CádizSpain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| |
Collapse
|
8
|
Shimbayashi T, Ito H, Shimizu M, Sano H, Sakaki S, Fujita KI. Effect of Substituents in Functional Bipyridonate Ligands on Ruthenium‐Catalyzed Dehydrogenative Oxidation of Alcohols: An Experimental and Computational Study. ChemCatChem 2022. [DOI: 10.1002/cctc.202200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuya Shimbayashi
- Kyoto University Graduate School of Human and Environmental Studies Yoshidanihonmatsu-cho, Sakyo-ku 606-8501 Kyoto JAPAN
| | - Hajime Ito
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Mineyuki Shimizu
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Hayato Sano
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Shigeyoshi Sakaki
- Kyoto University: Kyoto Daigaku Element Strategy Initiative for Catalysts and Batteries Goryo-Ohara, Nishikyo-ku 615-8245 Kyoto JAPAN
| | - Ken-ichi Fujita
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies Yoshidanihonmatsucho, Sakyo-ku 606-8501 Kyoto JAPAN
| |
Collapse
|
9
|
Nandy A, Duan C, Goffinet C, Kulik HJ. New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts. JACS AU 2022; 2:1200-1213. [PMID: 35647589 PMCID: PMC9135396 DOI: 10.1021/jacsau.2c00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 05/03/2023]
Abstract
Despite decades of effort, no earth-abundant homogeneous catalysts have been discovered that can selectively oxidize methane to methanol. We exploit active learning to simultaneously optimize methane activation and methanol release calculated with machine learning-accelerated density functional theory in a space of 16 M candidate catalysts including novel macrocycles. By constructing macrocycles from fragments inspired by synthesized compounds, we ensure synthetic realism in our computational search. Our large-scale search reveals that low-spin Fe(II) compounds paired with strong-field (e.g., P or S-coordinating) ligands have among the best energetic tradeoffs between hydrogen atom transfer (HAT) and methanol release. This observation contrasts with prior efforts that have focused on high-spin Fe(II) with weak-field ligands. By decoupling equatorial and axial ligand effects, we determine that negatively charged axial ligands are critical for more rapid release of methanol and that higher-valency metals [i.e., M(III) vs M(II)] are likely to be rate-limited by slow methanol release. With full characterization of barrier heights, we confirm that optimizing for HAT does not lead to large oxo formation barriers. Energetic span analysis reveals designs for an intermediate-spin Mn(II) catalyst and a low-spin Fe(II) catalyst that are predicted to have good turnover frequencies. Our active learning approach to optimize two distinct reaction energies with efficient global optimization is expected to be beneficial for the search of large catalyst spaces where no prior designs have been identified and where linear scaling relationships between reaction energies or barriers may be limited or unknown.
Collapse
Affiliation(s)
- Aditya Nandy
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Conrad Goffinet
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Mandal D, Katoch A. Effect of Substituent on C-H Activation Catalysed by a nonheme Fe(IV)O Complex: A Computational Investigation of Reactivity and Hydrogen Tunneling. Dalton Trans 2022; 51:11641-11649. [DOI: 10.1039/d2dt01529c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A density functional theory investigation has been presented here to address the C-H activation reactivity and the influence of quantum mechanical tunneling catalyzed by a non-heme iron(IV)-Oxo complex viz. [FeIVOdpaq-X]+...
Collapse
|
11
|
Jonasson NSW, Janßen R, Menke A, Zott FL, Zipse H, Daumann LJ. TET-Like Oxidation in 5-Methylcytosine and Derivatives: A Computational and Experimental Study. Chembiochem 2021; 22:3333-3340. [PMID: 34498783 PMCID: PMC9293240 DOI: 10.1002/cbic.202100420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Indexed: 01/05/2023]
Abstract
The epigenetic marker 5-methylcytosine (5mC) is an important factor in DNA modification and epigenetics. It can be modified through a three-step oxidation performed by ten-eleven-translocation (TET) enzymes and we have previously reported that the iron(IV)-oxo complex [Fe(O)(Py5 Me2 H)]2+ (1) can oxidize 5mC. Here, we report the reactivity of this iron(IV)-oxo complex towards a wider scope of methylated cytosine and uracil derivatives relevant for synthetic DNA applications, such as 1-methylcytosine (1mC), 5-methyl-iso-cytosine (5miC) and thymine (T/5mU). The observed kinetic parameters are corroborated by calculation of the C-H bond energies at the reactive sites which was found to be an efficient tool for reaction rate prediction of 1 towards methylated DNA bases. We identified oxidation products of methylated cytosine derivatives using HPLC-MS and GC-MS. Thereby, we shed light on the impact of the methyl group position and resulting C-H bond dissociation energies on reactivity towards TET-like oxidation.
Collapse
Affiliation(s)
- Niko S. W. Jonasson
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Rachel Janßen
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Annika Menke
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Fabian L. Zott
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Hendrik Zipse
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Lena J. Daumann
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
12
|
Schmidl D, Jonasson NSW, Korytiaková E, Carell T, Daumann LJ. Biomimetic Iron Complex Achieves TET Enzyme Reactivity**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Schmidl
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Niko S. W. Jonasson
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Eva Korytiaková
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Thomas Carell
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Lena J. Daumann
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| |
Collapse
|
13
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
14
|
Schmidl D, Jonasson NSW, Korytiaková E, Carell T, Daumann LJ. Biomimetic Iron Complex Achieves TET Enzyme Reactivity*. Angew Chem Int Ed Engl 2021; 60:21457-21463. [PMID: 34181314 PMCID: PMC8518650 DOI: 10.1002/anie.202107277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Indexed: 12/12/2022]
Abstract
The epigenetic marker 5-methyl-2'-deoxycytidine (5mdC) is the most prevalent modification to DNA. It is removed inter alia via an active demethylation pathway: oxidation by Ten-Eleven Translocation 5-methyl cytosine dioxygenase (TET) and subsequent removal via base excision repair or direct demodification. Recently, we have shown that the synthetic iron(IV)-oxo complex [FeIV (O)(Py5 Me2 H)]2+ (1) can serve as a biomimetic model for TET by oxidizing the nucleobase 5-methyl cytosine (5mC) to its natural metabolites. In this work, we demonstrate that nucleosides and even short oligonucleotide strands can also serve as substrates, using a range of HPLC and MS techniques. We found that the 5-position of 5mC is oxidized preferably by 1, with side reactions occurring only at the strand ends of the used oligonucleotides. A detailed study of the reactivity of 1 towards nucleosides confirms our results; that oxidation of the anomeric center (1') is the most common side reaction.
Collapse
Affiliation(s)
- David Schmidl
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Niko S. W. Jonasson
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Eva Korytiaková
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Thomas Carell
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Lena J. Daumann
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| |
Collapse
|
15
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
16
|
Meena BI, Lakk-Bogáth D, Kaizer J. Effect of redox potential on manganese-mediated benzylalcohol and sulfide oxidation. CR CHIM 2021. [DOI: 10.5802/crchim.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Rydel-Ciszek K. The most reactive iron and manganese complexes with N-pentadentate ligands for dioxygen activation—synthesis, characteristics, applications. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [PMCID: PMC8204929 DOI: 10.1007/s11144-021-02008-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The iron and manganese complexes that activate oxygen atom play multiple role in technologically relevant reactions as well as in biological transformations, in which exist in different redox states. Among them, high-valent oxo intermediate seems to be the most important one. Iron, and/or manganese-based processes have found application in many areas, starting from catalysis and sustainable technologies, through DNA oxidative cleavage, to new substances useful in chemotherapeutic drugs. This review is not only the latest detailed list of uses of homogeneous N-pentadentate iron and manganese catalysts for syntheses of valuable molecules with huge applications in green technologies, but also a kind of "a cookbook", collecting "recipes" for the discussed complexes, in which the sources necessary to obtain a full characterization of the compounds are presented. Following the catalytic activity of metalloenzymes, and taking into account the ubiquity of iron and manganese salts, which in combination with properly designed ligands may show similarity to natural systems, the discussed complexes can find application as new anti-cancer drugs. Also, owing to ability of oxygen atom to exchange in reaction with H2O, they can be successfully applied in photodriven reactions of water oxidation, as well as in chemically regenerated fuel cells as a redox catalyst.
Collapse
Affiliation(s)
- Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, al. Powstańców Warszawy 6, P.O. Box 85, 35-959 Rzeszów, Poland
| |
Collapse
|
18
|
Wuttig A, Derrick JS, Loipersberger M, Snider A, Head-Gordon M, Chang CJ, Toste FD. Controlled Single-Electron Transfer via Metal-Ligand Cooperativity Drives Divergent Nickel-Electrocatalyzed Radical Pathways. J Am Chem Soc 2021; 143:6990-7001. [PMID: 33915049 PMCID: PMC10877625 DOI: 10.1021/jacs.1c01487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrocatalysis enables the construction of C-C bonds under mild conditions via controlled formation of carbon-centered radicals. For sequences initiated by alkyl halide reduction, coordinatively unsaturated Ni complexes commonly serve as single-electron transfer agents, giving rise to the foundational question of whether outer- or inner-sphere electron transfer oxidative addition prevails in redox mediation. Indeed, rational design of electrochemical processes requires the discrimination of these two electron transfer pathways, as they can have outsized effects on the rate of substrate bond activation and thus impact radical generation rates and downstream product selectivities. We present results from combined synthetic, electroanalytical, and computational studies that examine the mechanistic differences of single electron transfer to alkyl halides imparted by Ni metal-ligand cooperativity. Electrogenerated reduced Ni species, stabilized by delocalized spin density onto a redox-active tpyPY2Me polypyridyl ligand, activates alkyl iodides via outer-sphere electron transfer, allowing for the selective activation of alkyl iodide substrates over halogen atom donors and the controlled generation and sequestration of electrogenerated radicals. In contrast, the Ni complex possessing a redox-innocent pentapyridine congener activates the substrates in an inner-sphere fashion owning to a purely metal-localized spin, thereby activating both substrates and halogen atom donors in an indiscriminate fashion, generating a high concentration of radicals and leading to unproductive dimerization. Our data establish that controlled electron transfer via Ni-ligand cooperativity can be used to limit undesired radical recombination products and promote selective radical processes in electrochemical environments, providing a generalizable framework for designing redox mediators with distinct rate and potential requirements.
Collapse
Affiliation(s)
- Anna Wuttig
- Department of Chemistry, University of California, Berkeley, California, U.S.A
| | - Jeffrey S. Derrick
- Department of Chemistry, University of California, Berkeley, California, U.S.A
| | - Matthias Loipersberger
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California, U.S.A
| | - Andrew Snider
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California, U.S.A
| | - Martin Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California, U.S.A
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California, U.S.A
- Department of Molecular and Cell Biology, University of California, Berkeley, California, U.S.A
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, California, U.S.A
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
19
|
Munshi S, Jana RD, Paine TK. Oxidative degradation of toxic organic pollutants by water soluble nonheme iron(iv)-oxo complexes of polydentate nitrogen donor ligands. Dalton Trans 2021; 50:5590-5597. [PMID: 33908934 DOI: 10.1039/d0dt04421k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of four mononuclear nonheme iron(iv)-oxo complexes supported by polydentate nitrogen donor ligands to degrade organic pollutants has been investigated. The water soluble iron(ii) complexes upon treatment with ceric ammonium nitrate (CAN) in aqueous solution are converted into the corresponding iron(iv)-oxo complexes. The hydrogen atom transfer (HAT) ability of iron(iv)-oxo species has been exploited for the oxidation of halogenated phenols and other toxic pollutants with weak X-H (X = C, O, S, etc.) bonds. The iron-oxo oxidants can oxidize chloro- and fluorophenols with moderate to high yields under stoichiometric as well as catalytic conditions. Furthermore, these oxidants perform selective oxidative degradation of several persistent organic pollutants (POPs) such as bisphenol A, nonylphenol, 2,4-D (2,4-dichlorophenoxyacetic acid) and gammaxene. This work demonstrates the utility of water soluble iron(iv)-oxo complexes as potential catalysts for the oxidative degradation of a wide range of toxic pollutants, and these oxidants could be considered as an alternative to conventional oxidation methods.
Collapse
Affiliation(s)
- Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
20
|
Liu S, Amaro-Estrada JI, Baltrun M, Douair I, Schoch R, Maron L, Hohloch S. Catalytic Deoxygenation of Nitroarenes Mediated by High-Valent Molybdenum(VI)–NHC Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenyu Liu
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | | | - Marc Baltrun
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Wegeberg C, Skavenborg ML, Liberato A, McPherson JN, Browne WR, Hedegård ED, McKenzie CJ. Engineering the Oxidative Potency of Non-Heme Iron(IV) Oxo Complexes in Water for C-H Oxidation by a cis Donor and Variation of the Second Coordination Sphere. Inorg Chem 2021; 60:1975-1984. [PMID: 33470794 DOI: 10.1021/acs.inorgchem.0c03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of iron(IV) oxo complexes, which differ in the donor (CH2py or CH2COO-) cis to the oxo group, three with hemilabile pendant donor/second coordination sphere base/acid arms (pyH/py or ROH), have been prepared in water at pH 2 and 7. The νFe═O values of 832 ± 2 cm-1 indicate similar FeIV═O bond strengths; however, different reactivities toward C-H substrates in water are observed. HAT occurs at rates that differ by 1 order of magnitude with nonclassical KIEs (kH/kD = 30-66) consistent with hydrogen atom tunneling. Higher KIEs correlate with faster reaction rates as well as a greater thermodynamic stability of the iron(III) resting states. A doubling in rate from pH 7 to pH 2 for substrate C-H oxidation by the most potent complex, that with a cis-carboxylate donor, [FeIVO(Htpena)]2+, is observed. Supramolecular assistance by the first and second coordination spheres in activating the substrate is proposed. The lifetime of this complex in the absence of a C-H substrate is the shortest (at pH 2, 3 h vs up to 1.3 days for the most stable complex), implying that slow water oxidation is a competing background reaction. The iron(IV)═O complex bearing an alcohol moiety in the second coordination sphere displays significantly shorter lifetimes due to a competing selective intramolecular oxidation of the ligand.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrea Liberato
- Universidad de Cádiz, Facultad de Ciencias, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Puerto Real, Cádiz 11510, Spain
| | - James N McPherson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
22
|
Miller CJ, Chang Y, Wegeberg C, McKenzie CJ, Waite TD. Kinetic Analysis of H2O2 Activation by an Iron(III) Complex in Water Reveals a Nonhomolytic Generation Pathway to an Iron(IV)oxo Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.0c02877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Christopher J. Miller
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yingyue Chang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Christine J. McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - T. David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
23
|
Semi-aromatic polyester synthesis via alternating ring-opening copolymerization using a chromium complex based on a pentapyridine ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Derrick JS, Loipersberger M, Chatterjee R, Iovan DA, Smith PT, Chakarawet K, Yano J, Long JR, Head-Gordon M, Chang CJ. Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials. J Am Chem Soc 2020; 142:20489-20501. [DOI: 10.1021/jacs.0c10664] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jeffrey S. Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Diana A. Iovan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peter T. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Prakash O, Chábera P, Rosemann NW, Huang P, Häggström L, Ericsson T, Strand D, Persson P, Bendix J, Lomoth R, Wärnmark K. A Stable Homoleptic Organometallic Iron(IV) Complex. Chemistry 2020; 26:12728-12732. [PMID: 32369645 PMCID: PMC7590184 DOI: 10.1002/chem.202002158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/08/2022]
Abstract
A homoleptic organometallic FeIV complex that is stable in both solution and in the solid state at ambient conditions has been synthesized and isolated as [Fe(phtmeimb)2 ](PF6 )2 (phtmeimb=[phenyl(tris(3-methylimidazolin-2-ylidene))borate]- ). This FeIV N-heterocyclic carbene (NHC) complex was characterized by 1 H NMR, HR-MS, elemental analysis, scXRD analysis, electrochemistry, Mößbauer spectroscopy, and magnetic susceptibility. The two latter techniques unequivocally demonstrate that [Fe(phtmeimb)2 ](PF6 )2 is a triplet FeIV low-spin S=1 complex in the ground state, in agreement with quantum chemical calculations. The electronic absorption spectrum of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile shows an intense absorption band in the red and near IR, due to LMCT (ligand-to-metal charge transfer) excitation. For the first time the excited state dynamics of a FeIV complex was studied and revealed a ≈0.8 ps lifetime of the 3 LMCT excited state of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile.
Collapse
Affiliation(s)
- Om Prakash
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Nils W Rosemann
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Ping Huang
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Lennart Häggström
- Department of Physics, Ångström Laboratory, Uppsala University, Box 528, Uppsala, 751 21, Sweden
| | - Tore Ericsson
- Department of Physics, Ångström Laboratory, Uppsala University, Box 528, Uppsala, 751 21, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Reiner Lomoth
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| |
Collapse
|
26
|
Fujisaki H, Ishizuka T, Shimoyama Y, Kotani H, Shiota Y, Yoshizawa K, Kojima T. Selective catalytic 2e --oxidation of organic substrates by an Fe II complex having an N-heterocyclic carbene ligand in water. Chem Commun (Camb) 2020; 56:9783-9786. [PMID: 32716434 DOI: 10.1039/d0cc03289a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An FeII complex, 1, having a pentadentate ligand with an NHC moiety catalyzes substrate oxidation to afford 2e--oxidized products with high selectivity by suppression of overoxidation in water. A Bell-Evance-Polanyi plot for the substrate oxidation catalyzed by 1 exhibited an inflection point around 86 kcal mol-1, indicating strong C-H abstraction ability of the reactive species derived from 1.
Collapse
Affiliation(s)
- Hiroto Fujisaki
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Oswald VF, Lee JL, Biswas S, Weitz AC, Mittra K, Fan R, Li J, Zhao J, Hu MY, Alp EE, Bominaar EL, Guo Y, Green MT, Hendrich MP, Borovik AS. Effects of Noncovalent Interactions on High-Spin Fe(IV)-Oxido Complexes. J Am Chem Soc 2020; 142:11804-11817. [PMID: 32489096 DOI: 10.1021/jacs.0c03085] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-valent nonheme FeIV-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of FeIV-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat]3-, which contains phosphinic amido groups. An important structural aspect of [FeIVpoat(O)]- is the inclusion of an auxiliary site capable of binding a Lewis acid (LAII); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LAII s can interact directly with the oxido ligand in FeIV-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.
Collapse
Affiliation(s)
- Victoria F Oswald
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| | - Justin L Lee
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| | - Saborni Biswas
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaustuv Mittra
- Department of Molecular Biosciences and Biochemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael T Green
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States.,Department of Molecular Biosciences and Biochemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - A S Borovik
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| |
Collapse
|
28
|
Park H, Lee D. Ligand Taxonomy for Bioinorganic Modeling of Dioxygen-Activating Non-Heme Iron Enzymes. Chemistry 2020; 26:5916-5926. [PMID: 31909506 DOI: 10.1002/chem.201904975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/04/2020] [Indexed: 12/15/2022]
Abstract
Novel functions emerge from novel structures. To develop efficient catalytic systems for challenging chemical transformations, chemists often seek inspirations from enzymatic catalysis. A large number of iron complexes supported by nitrogen-rich multidentate ligands have thus been developed to mimic oxo-transfer reactivity of dioxygen-activating metalloenzymes. Such efforts have significantly advanced our understanding of the reaction mechanisms by trapping key intermediates and elucidating their geometric and electronic properties. Critical to the success of this biomimetic approach is the design and synthesis of elaborate ligand systems to balance the thermodynamic stability, structural adaptability, and chemical reactivity. In this Concept article, representative design strategies for biomimetic atom-transfer chemistry are discussed from the perspectives of "ligand builders". Emphasis is placed on how the primary coordination sphere is constructed, and how it can be elaborated further by rational design for desired functions.
Collapse
Affiliation(s)
- Hyunchang Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
29
|
Terencio T, Andris E, Gamba I, Srnec M, Costas M, Roithová J. Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1923-1933. [PMID: 31399940 PMCID: PMC6805805 DOI: 10.1007/s13361-019-02251-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
We report and analyze chemoselectivity in the gas phase reactions of cycloalkenes (cyclohexene, cycloheptene, cis-cyclooctene, 1,4-cyclohexadiene) with a non-heme iron(IV)-oxo complex [(PyTACN)Fe(O)(Cl)]+, which models the active species in iron-dependent halogenases. Unlike in the halogenases, we did not observe any chlorination of the substrate. However, we observed two other reaction pathways: allylic hydrogen atom transfer (HAT) and alkene epoxidation. The HAT is clearly preferred in the case of 1,4-cyclohexadiene, both pathways have comparable reaction rates in reaction with cyclohexene, and epoxidation is strongly favored in reactions with cycloheptene and cis-cyclooctene. This preference for epoxidation differs from the reactivity of iron(IV)-oxo complexes in the condensed phase, where HAT usually prevails. To understand the observed selectivity, we analyze effects of the substrate, spin state, and solvation. Our DFT and CASPT2 calculations suggest that all the reactions occur on the quintet potential energy surface. The DFT-calculated energies of the transition states for the epoxidation and hydroxylation pathways explain the observed chemoselectivity. The SMD implicit solvation model predicts the relative increase of the epoxidation barriers with solvent polarity, which explains the clear preference of HAT in the condensed phase.
Collapse
Affiliation(s)
- Thibault Terencio
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
- School of Chemical Science and Engineering, Yachay Tech University, 100650, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Ilaria Gamba
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic.
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona, Campus Montilivi, 17071, Girona, Spain.
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic.
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands.
| |
Collapse
|
30
|
Das A, Nutting JE, Stahl SS. Electrochemical C-H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chem Sci 2019; 10:7542-7548. [PMID: 31588305 PMCID: PMC6761876 DOI: 10.1039/c9sc02609f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
High-valent iron-oxo complexes are key intermediates in C-H functionalization reactions. Herein, we report the generation of a (TAML)Fe-oxo species (TAML = tetraamido macrocyclic ligand) via electrochemical proton-coupled oxidation of the corresponding (TAML)FeIII-OH2 complex. Cyclic voltammetry (CV) and spectroelectrochemical studies are used to elucidate the relevant (TAML)Fe redox processes and determine the predominant (TAML)Fe species present in solution during bulk electrolysis. Evidence for iron(iv) and iron(v) species is presented, and these species are used in the electrochemical oxygenation of benzylic C-H bonds and dehydrogenation of alcohols to ketones.
Collapse
Affiliation(s)
- Amit Das
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| | - Jordan E Nutting
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| | - Shannon S Stahl
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| |
Collapse
|
31
|
Jonasson NSW, Daumann LJ. 5‐Methylcytosine is Oxidized to the Natural Metabolites of TET Enzymes by a Biomimetic Iron(IV)‐Oxo Complex. Chemistry 2019; 25:12091-12097. [PMID: 31211459 DOI: 10.1002/chem.201902340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Niko S. W. Jonasson
- Department ChemieLudwig-Maximilians-University München Butenandtstr. 5-13, Haus D Germany
| | - Lena J. Daumann
- Department ChemieLudwig-Maximilians-University München Butenandtstr. 5-13, Haus D Germany
| |
Collapse
|
32
|
Nandy A, Zhu J, Janet JP, Duan C, Getman RB, Kulik HJ. Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02165] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Jiazhou Zhu
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | - Rachel B. Getman
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
33
|
Rasheed W, Fan R, Abelson CS, Peterson PO, Ching WM, Guo Y, Que L. Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme Fe IV=O complexes. J Biol Inorg Chem 2019; 24:533-545. [PMID: 31172289 DOI: 10.1007/s00775-019-01672-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Oxoiron(IV) motifs are found in important intermediates in many enzymatic cycles that involve oxidations. Over half of the reported synthetic nonheme oxoiron(IV) analogs incorporate heterocyclic donors, with a majority of them comprising pyridines. Herein, we report 1H-NMR studies of oxoiron(IV) complexes containing pyridines that are arranged in different configurations relative to the Fe = O unit and give rise to paramagnetically shifted resonances that differ by as much as 50 ppm. The strong dependence of 1H-NMR shifts on the different configurations and orientation of pyridines relative to the oxoiron(IV) unit demonstrates how unpaired electronic spin density of the iron center affects the chemical shifts of these protons.
Collapse
Affiliation(s)
- Waqas Rasheed
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Chase S Abelson
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Paul O Peterson
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Wei-Min Ching
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Lawrence Que
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
34
|
Singh O, Gupta P, Singh A, Maji A, Singh UP, Ghosh K. Selective oxidation of benzyl alcohol to benzaldehyde, 1‐phenylethanol to acetophenone and fluorene to fluorenol catalysed by iron (II) complexes supported by pincer‐type ligands: Studies on rapid degradation of organic dyes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ovender Singh
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Priyanka Gupta
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Anshu Singh
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Ankur Maji
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Udai P. Singh
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| | - Kaushik Ghosh
- Department of ChemistryIIT Roorkee Roorkee 247667 Uttarakhand India
| |
Collapse
|
35
|
|
36
|
Kamiya K, Kuwabara A, Harada T, Nakanishi S. Electrochemical Formation of Fe(IV)=O Derived from H 2 O 2 on a Hematite Electrode as an Active Catalytic Site for Selective Hydrocarbon Oxidation Reactions. Chemphyschem 2019; 20:648-650. [PMID: 30659730 DOI: 10.1002/cphc.201801207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/17/2019] [Indexed: 11/05/2022]
Abstract
The high-valence iron species (Fe(IV)=O) in the cytochrome P450 enzyme superfamily is generated via the activation of O2 , and serves as the active center of selective hydrocarbon oxidation reactions. Furthermore, P450 can employ an alternate route to produce Fe(IV)=O, even from H2 O2 without O2 activation. Meanwhile, Fe(IV)=O has recently been revealed to be the reactive intermediate during H2 O oxidation to O2 on hematite electrodes. Herein, we demonstrated the generation of Fe(IV)=O on hematite electrodes during the electrochemical oxidative decomposition of H2 O2 using in situ UV-visible absorption spectra. The generation of Fe(IV)=O on hematite electrodes from H2 O2 exhibited 100 mV lower overpotential than that from H2 O. This is because H2 O2 serves not only as the oxygen source of Fe(IV)=O, but also as the additional oxidant. Finally, we confirmed that the Fe(IV)=O generated on hematite electrodes can serve as the catalytic site for styrene epoxidation reactions.
Collapse
Affiliation(s)
- Kazuhide Kamiya
- Department of Chemical Science and Engineering Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.,Research Center for Solar Energy Chemistry, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Akito Kuwabara
- Department of Chemical Science and Engineering Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Takashi Harada
- Research Center for Solar Energy Chemistry, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Shuji Nakanishi
- Department of Chemical Science and Engineering Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.,Research Center for Solar Energy Chemistry, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
37
|
Singh R, Ganguly G, Malinkin SO, Demeshko S, Meyer F, Nordlander E, Paine TK. A Mononuclear Nonheme Iron(IV)-Oxo Complex of a Substituted N4Py Ligand: Effect of Ligand Field on Oxygen Atom Transfer and C–H Bond Cleavage Reactivity. Inorg Chem 2019; 58:1862-1876. [DOI: 10.1021/acs.inorgchem.8b02577] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Reena Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Gaurab Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sergey O. Malinkin
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Serhiy Demeshko
- Universität
Göttingen, Institut für Anorganische Chemie, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität
Göttingen, Institut für Anorganische Chemie, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
38
|
Rohner SS, Kinzel NW, Werlé C, Leitner W. Systematic ligand variation to modulate the electrochemical properties of iron and manganese complexes. Dalton Trans 2019; 48:13205-13211. [DOI: 10.1039/c9dt01343a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic series of iron(+iii) and manganese(+ii) complexes are investigated by cyclic voltammetry to elucidate how the electronic properties of the ligands influence overpotential and catalytic current in the context of water oxidation catalysis.
Collapse
Affiliation(s)
- Stefan S. Rohner
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Niklas W. Kinzel
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Max-Planck-Institute for Chemical Energy Conversion
| | - Christophe Werlé
- Max-Planck-Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Max-Planck-Institute for Chemical Energy Conversion
| |
Collapse
|
39
|
Johnson SI, Heins SP, Klug CM, Wiedner ES, Bullock RM, Raugei S. Design and reactivity of pentapyridyl metal complexes for ammonia oxidation. Chem Commun (Camb) 2019; 55:5083-5086. [DOI: 10.1039/c9cc01249d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Computational and experimental work shows that Mo pentapyridal complexes can oxidize ammonia in the presence of a chemical mediator and evolve N2.
Collapse
Affiliation(s)
- Samantha I. Johnson
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Spencer P. Heins
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Christina M. Klug
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Eric S. Wiedner
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - R. Morris Bullock
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Simone Raugei
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
40
|
Microwave-assisted green oxidation of alcohols with hydrogen peroxide catalyzed by iron complexes with nitrogen ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Shul'pin GB, Vinogradov MM, Shul'pina LS. Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a review). Catal Sci Technol 2018. [DOI: 10.1039/c8cy00659h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, osmium complexes have found applications not only in thecis-hydroxylation of olefins but also very efficient in the oxygenation of C–H compounds (saturated and aromatic hydrocarbons and alcohols) by hydrogen peroxide as well as organic peroxides.
Collapse
Affiliation(s)
- Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
- Plekhanov Russian University of Economics
| | - Mikhail M. Vinogradov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
42
|
Speciation in iron epoxidation catalysis: A perspective on the discovery and role of non-heme iron(III)-hydroperoxo species in iron-catalyzed oxidation reactions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Park SV, Berry JF. Synthesis, characterization and solution behavior of a systematic series of pentapyridyl-supported Ru II complexes: comparison to bimetallic analogs. Dalton Trans 2017; 46:9118-9125. [PMID: 28664959 PMCID: PMC6774635 DOI: 10.1039/c7dt01847a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of RuII complexes stabilized with the pentapyridyl ligand Py5Me2 (Py5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine) and with an axial X ligand (X = Cl-, H2O, N3-, MeCN) were prepared and characterized in the solid state and in non-aqueous solution. The cyclic voltammograms of these complexes in MeCN reflect a reversible substitution of the axial X ligand with MeCN. Irreversible ligand substitution of [(Py5Me2)RuN3]+ is also observed in propylene carbonate, but only at oxidizing potentials that decompose the azide ligand. The monometallic chloride and azide species are compared with analogous Ru2 metal-metal bonded complexes, which have been reported to undergo irreversible chloride dissociation upon reduction.
Collapse
Affiliation(s)
- Sungho V Park
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
44
|
Gordon Z, Drummond MJ, Matson EM, Bogart JA, Schelter EJ, Lord RL, Fout AR. Tuning the Fe(II/III) Redox Potential in Nonheme Fe(II)-Hydroxo Complexes through Primary and Secondary Coordination Sphere Modifications. Inorg Chem 2017; 56:4852-4863. [PMID: 28394119 DOI: 10.1021/acs.inorgchem.6b03071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The derivatization of the imino-functionalized tris(pyrrolylmethyl)amine ligand framework, N(XpiR)3 (XLR; X = H, Br; R = cyclohexyl (Cy), phenyl (Ph), 2,6- diisopropylphenyl (DIPP)), is reported. Modular ligand synthesis allows for facile modification of both the primary and secondary coordination sphere electronics. The iron(II)-hydroxo complexes, N(XpiR)(XafaR)2Fe(II)OH (XLRFeIIOH), are synthesized to establish the impact of the ligand modifications on the complexes' electronic properties, including their chemical and electrochemical oxidation. Cyclic voltammetry demonstrates that the Fe(II/III) redox couple spans a 400 mV range across the series. The origin of the shifted potential is explained based on spectroscopic, structural, and theoretical analyses of the iron(II) and iron(III) compounds.
Collapse
Affiliation(s)
- Zachary Gordon
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Michael J Drummond
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ellen M Matson
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin A Bogart
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Richard L Lord
- Department of Chemistry, Grand Valley State University , 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Alison R Fout
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
Chen L, Khadivi A, Singh M, Jurss JW. Synthesis of a pentadentate, polypyrazine ligand and its application in cobalt-catalyzed hydrogen production. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00362e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A molecular cobalt complex bearing an unprecedented pentadentate, polypyrazine ligand is reported for electrocatalytic H2 evolution from pH 7 water.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Amir Khadivi
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Manpreet Singh
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Jonah W. Jurss
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| |
Collapse
|
46
|
Yoshida M, Kondo M, Okamura M, Kanaike M, Haesuwannakij S, Sakurai H, Masaoka S. Fe, Ru, and Os complexes with the same molecular framework: comparison of structures, properties and catalytic activities. Faraday Discuss 2017; 198:181-196. [DOI: 10.1039/c6fd00227g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of group 8 metal complexes with the same molecular framework, [M(PY5Me2)L]n+ (M = Fe, Ru, and Os; PY5Me2 = 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine; L = monodentate ligand), were successfully synthesized and structurally characterized. The spectroscopic and electrochemical properties as well as the catalytic activity for water oxidation of these complexes were investigated.
Collapse
Affiliation(s)
- Masaki Yoshida
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
| | - Mio Kondo
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
- SOKENDAI [The Graduate University for Advanced Studies]
| | - Masaya Okamura
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
- Department of Chemistry
| | - Mari Kanaike
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
| | - Setsiri Haesuwannakij
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
- SOKENDAI [The Graduate University for Advanced Studies]
| | - Hidehiro Sakurai
- ACT-C
- Japan Science and Technology Agency (JST)
- Saitama
- Japan
- Department of Applied Chemistry
| | - Shigeyuki Masaoka
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
- SOKENDAI [The Graduate University for Advanced Studies]
| |
Collapse
|
47
|
Gil-Sepulcre M, Axelson JC, Aguiló J, Solà-Hernández L, Francàs L, Poater A, Blancafort L, Benet-Buchholz J, Guirado G, Escriche L, Llobet A, Bofill R, Sala X. Synthesis and Isomeric Analysis of RuII Complexes Bearing Pentadentate Scaffolds. Inorg Chem 2016; 55:11216-11229. [DOI: 10.1021/acs.inorgchem.6b01755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marcos Gil-Sepulcre
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Barcelona, Catalonia, Spain
| | - Jordan C. Axelson
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joan Aguiló
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Barcelona, Catalonia, Spain
| | - Lluís Solà-Hernández
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Barcelona, Catalonia, Spain
| | - Laia Francàs
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Av. Països
Catalans 16, 43007 Tarragona, Catalonia, Spain
| | - Albert Poater
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Facultat de Ciències, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Lluís Blancafort
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Facultat de Ciències, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Av. Països
Catalans 16, 43007 Tarragona, Catalonia, Spain
| | - Gonzalo Guirado
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Barcelona, Catalonia, Spain
| | - Lluís Escriche
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Barcelona, Catalonia, Spain
| | - Antoni Llobet
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Barcelona, Catalonia, Spain
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Av. Països
Catalans 16, 43007 Tarragona, Catalonia, Spain
| | - Roger Bofill
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Barcelona, Catalonia, Spain
| | - Xavier Sala
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Barcelona, Catalonia, Spain
| |
Collapse
|
48
|
Axelson JC, Gonzalez MI, Meihaus KR, Chang CJ, Long JR. Synthesis and Characterization of a Tetrapodal NO4(4-) Ligand and Its Transition Metal Complexes. Inorg Chem 2016; 55:7527-34. [PMID: 27404805 DOI: 10.1021/acs.inorgchem.6b00908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present the synthesis and characterization of alkali metal salts of the new tetraanionic, tetrapodal ligand 2,2'-(pyridine-2,6-diyl)bis(2-methylmalonate) (A4[PY(CO2)4], A = Li(+), Na(+), K(+), and Cs(+)), via deprotection of the neutral tetrapodal ligand tetraethyl 2,2'-(pyridine-2,6-diyl)bis(2-methylmalonate) (PY(CO2Et)4). The [PY(CO2)4](4-) ligand is composed of an axial pyridine and four equatorial carboxylate groups and must be kept at or below 0 °C to prevent decomposition. Exposing it to a number of divalent first-row transition metals cleanly forms complexes to give the series K2[(PY(CO2)4)M(H2O)] (M = Mn(2+), Fe(2+), Co(2+), Ni(2+), Zn(2+)). The metal complexes were comprehensively characterized via single-crystal X-ray diffraction, (1)H NMR and UV-vis absorption spectroscopy, and cyclic voltammetry. Crystal structures reveal that [PY(CO2)4](4-) coordinates in a pentadentate fashion to allow for a nearly ideal octahedral coordination geometry upon binding an exogenous water ligand. Additionally, depending on the nature of the charge-balancing countercation (Li(+), Na(+), or K(+)), the [(PY(CO2)4)M(H2O)](2-) complexes can assemble in the solid state to form one-dimensional channels filled with water molecules. Aqueous electrochemistry performed on [(PY(CO2)4)M(H2O)](2-) suggested accessible trivalent oxidation states for the Fe, Co, and Ni complexes, and the trivalent Co(3+) species [(PY(CO2)4)Co(OH)](2-) could be isolated via chemical oxidation. The successful synthesis of the [PY(CO2)4](4-) ligand and its transition metal complexes illustrates the still-untapped versatility within the tetrapodal ligand family, which may yet hold promise for the isolation of more reactive and higher-valent metal complexes.
Collapse
Affiliation(s)
- Jordan C Axelson
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Miguel I Gonzalez
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Katie R Meihaus
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Christopher J Chang
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jeffrey R Long
- Departments of Chemistry, ‡Molecular and Cell Biology, and #Chemical and Biomolecular Engineering and the §Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division and &Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
49
|
Puri M, Company A, Sabenya G, Costas M, Que L. Oxygen Atom Exchange between H2O and Non-Heme Oxoiron(IV) Complexes: Ligand Dependence and Mechanism. Inorg Chem 2016; 55:5818-27. [DOI: 10.1021/acs.inorgchem.6b00023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mayank Puri
- Department of Chemistry and Center for
Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Anna Company
- Grup de
Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT),
Institut de Química Computacional i Catàlisi (IQCC),
Departament de Química, Universitat de Girona, Campus de
Montilivi, E17071, Girona, Catalonia Spain
| | - Gerard Sabenya
- Grup de
Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT),
Institut de Química Computacional i Catàlisi (IQCC),
Departament de Química, Universitat de Girona, Campus de
Montilivi, E17071, Girona, Catalonia Spain
| | - Miquel Costas
- Grup de
Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT),
Institut de Química Computacional i Catàlisi (IQCC),
Departament de Química, Universitat de Girona, Campus de
Montilivi, E17071, Girona, Catalonia Spain
| | - Lawrence Que
- Department of Chemistry and Center for
Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
50
|
Bucinsky L, Rohde GT, Que L, Ozarowski A, Krzystek J, Breza M, Telser J. HFEPR and Computational Studies on the Electronic Structure of a High-Spin Oxidoiron(IV) Complex in Solution. Inorg Chem 2016; 55:3933-45. [PMID: 27031000 DOI: 10.1021/acs.inorgchem.6b00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme iron enzymes perform diverse and important functions in biochemistry. The active form of these enzymes comprises the ferryl, oxidoiron(IV), [FeO](2+) unit. In enzymes, this unit is in the high-spin, quintet, S = 2, ground state, while many synthetic model compounds exist in the spin triplet, S = 1, ground state. Recently, however, Que and co-workers reported an oxidoiron(IV) complex with a quintet ground state, [FeO(TMG3tren)](OTf)2, where TMG3tren = 1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine and OTf = CF3SO3(-). The trigonal geometry imposed by this ligand, as opposed to the tetragonal geometry of earlier model complexes, favors the high-spin ground state. Although [FeO(TMG3tren)](2+) has been earlier probed by magnetic circular dichroism (MCD) and Mössbauer spectroscopies, the technique of high-frequency and -field electron paramagnetic resonance (HFEPR) is superior for describing the electronic structure of the iron(IV) center because of its ability to establish directly the spin-Hamiltonian parameters of high-spin metal centers with high precision. Herein we describe HFEPR studies on [FeO(TMG3tren)](OTf)2 generated in situ and confirm the S = 2 ground state with the following parameters: D = +4.940(5) cm(-1), E = 0.000(5), B4(0) = -14(1) × 10(-4) cm(-1), g⊥ = 2.006(2), and g∥ = 2.03(2). Extraction of a fourth-order spin-Hamiltonian parameter is unusual for HFEPR and impossible by other techniques. These experimental results are combined with state-of-the-art computational studies along with previous structural and spectroscopic results to provide a complete picture of the electronic structure of this biomimetic complex. Specifically, the calculations reproduce well the spin-Hamiltonian parameters of the complex, provide a satisfying geometrical picture of the S = 2 oxidoiron(IV) moiety, and demonstrate that the TMG3tren is an "innocent" ligand.
Collapse
Affiliation(s)
- Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Gregory T Rohde
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University , Chicago, Illinois 60605, United States
| |
Collapse
|