1
|
Bioinspired oxidation of benzyl alcohol: The role of environment and nuclearity of the catalyst evaluated by multivariate analysis. J Inorg Biochem 2023; 240:112095. [PMID: 36535194 DOI: 10.1016/j.jinorgbio.2022.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Inspired by copper-containing enzymes such as galactose oxidase and catechol oxidase, in which distinct coordination environments and nuclearities lead to specific catalytic activities, we summarize here the catalytic properties of dinuclear and mononuclear copper species towards benzyl alcohol oxidation using a multivariate statistical approach. The new dinuclear [Cu2(μ-L1)(μ-pz)]2+ (1) is compared against the mononuclear [CuL2Cl] (2), where (L1)- and (L2)- are the respective deprotonated forms of 2,6-bis((bis(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol, and 3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzaldehyde and (pz)- is a pyrazolato bridge. Copper(II) perchlorate (CP) is used as control. The catalytic oxidation of benzyl alcohol is pursued, aiming to assess the role of the ligand environment and nuclearity. The multivariate statistical approach allows for the search of optimal catalytic conditions, considering variables such as catalyst load, hydrogen peroxide load, and time. Species 1, 2 and CP promoted selective production of benzaldehyde at different yields, with only negligible amounts of benzoic acid. Under normalized conditions, 2 showed superior catalytic activity. This species is 3.5-fold more active than the monometallic control CP, and points out to the need for an efficient ligand framework. Species 2 is 6-fold more active than the dinuclear 1, and indicates the favored nuclearity for the conversion of alcohols into aldehydes.
Collapse
|
2
|
Singh K, Kundu A, Adhikari D. Ligand-Based Redox: Catalytic Applications and Mechanistic Aspects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kirti Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, India
| |
Collapse
|
3
|
Riffel MN, Siegel L, Oliver AG, Tsui EY. Cluster self-assembly and anion binding by metal complexes of non-innocent thiazolidinyl-thiolate ligands. Dalton Trans 2022; 51:9611-9615. [PMID: 35695261 DOI: 10.1039/d2dt01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnII and FeII chloride complexes of a di(methylthiazolidinyl)pyridine ligand were deprotonated to form the corresponding thiolate complexes supported by redox-active iminopyridine moieties. The thiolate donor groups are nucleophilic and reactive toward oxidants, electrophiles, and protons, while the pendant thiazolidine rings are available for hydrogen bonding. Anion exchange with the weakly-coordinating triflate anion resulted in self-assembly of the iminopyridine complexes to form a trimeric [M3S3] cluster. Hydrogen bonding closely associates anions with this trimetallic core.
Collapse
Affiliation(s)
- Madeline N Riffel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| | - Lukas Siegel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA. .,Department of Chemistry, Heidelberg University, Heidelberg, Germany
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| | - Emily Y Tsui
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
4
|
Role of a Redox-Active Ligand Close to a Dinuclear Activating Framework. TOP ORGANOMETAL CHEM 2022. [DOI: 10.1007/3418_2022_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Thierer LM, Wang Q, Brooks SH, Cui P, Qi J, Gau MR, Manor BC, Carroll PJ, Tomson NC. Pyridyldiimine macrocyclic ligands: Influences of template ion, linker length and imine substitution on ligand synthesis, structure and redox properties. Polyhedron 2021; 198. [PMID: 33776186 DOI: 10.1016/j.poly.2021.115044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A series of 2,6-diiminopyridine-derived macrocyclic ligands have been synthesized via [2+2] condensation around alkaline earth metal triflate salts. The inclusion of a tert-butyl group at the 4-position of the pyridine ring of the macrocyclic synthons results in macrocyclic complexes that are soluble in common organic solvents, thereby enabling a systematic comparison of the physical properties of the complexes by NMR spectroscopy, mass spectrometry, solution-phase UV-Vis spectroscopy, cyclic voltammetry and single-crystal X-ray crystallography. Solid-state structures determined crystallographically demonstrate increased twisting in the ligand, concurrent with either a decrease in ion size or an increase in macrocycle ring size (18, 20, or 22 membered rings). The degree of folding and twisting within the macrocycle can be quantified using parameters derived from the Npyr-M-Npyr bond angle and the relative orientation of the pyridinediimine (PDI) and pyridinedialdimine (PDAI) fragments to each other within the solid state structures. Cyclic voltammetry and UV-Vis spectroscopy were used to compare the relative energies of the imine π* orbital of the redox active PDI and PDAI components in the macrocycle when coordinated to redox inactive metals. Both methods indicate the change from a methyl to hydrogen substitution on the imine carbon lowers the energy of the ligand π* system.
Collapse
Affiliation(s)
| | | | | | - Peng Cui
- University of Pennsylvania for this work
| | - Jia Qi
- University of Pennsylvania for this work
| | | | | | | | | |
Collapse
|
6
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
van der Vlugt JI. Redox-Active Pincer Ligands. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Tong L, Duan L, Zhou A, Thummel RP. First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213079] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Dedushko MA, Schweitzer D, Blakely MN, Swartz RD, Kaminsky W, Kovacs JA. Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex. J Biol Inorg Chem 2019; 24:919-926. [PMID: 31342141 PMCID: PMC6948190 DOI: 10.1007/s00775-019-01686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
In order to shed light on metal-dependent mechanisms for O-O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)- and Mn(III)-peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, and a Co-containing artificial leaf inspired by nature's photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)-peroxo compound differ noticeably from the analogous Mn(III)-peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)-peroxo is more localized on the peroxo in an antibonding π*(O-O) orbital, whereas the HOMO of the structurally analogous Mn(III)-peroxo is delocalized over both the metal d-orbitals and peroxo π*(O-O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O-O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O-O bond of the former relative to the latter.
Collapse
Affiliation(s)
- Maksym A Dedushko
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Dirk Schweitzer
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Maike N Blakely
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Rodney D Swartz
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Werner Kaminsky
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
10
|
Gers‐Barlag A, Goursot P, Li M, Dechert S, Meyer F. Sequential Double Dearomatization of the Pyrazolate‐Based “Two‐in‐One” Pincer Ligand in a Dinuclear Rhodium(I) Complex. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Gers‐Barlag
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Pierre Goursot
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Ming Li
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Franc Meyer
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
11
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
12
|
Abstract
Multimetallic cofactors supported by weak-field donors frequently function as reaction centers in metalloproteins, and many of these cofactors catalyze small molecule activation (e.g., N2, O2, CO2) with prominent roles in geochemical element cycles or detoxification. Notable examples include the iron-molybdenum cofactor of the molybdenum-dependent nitrogenases, which catalyze N2 fixation, and the NiFe4S4 cluster and the Mo(O)SCu site in various carbon monoxide dehydrogenases. The prevailing proposed reaction mechanisms for these multimetallic cofactors relies on a cooperative pathway, in which the oxidation state changes are distributed over the aggregate coupled with orbital overlap between the substrate and more than one metal ion within the cluster. Such cooperativity has also been proposed for chemical transformations at the surfaces of heterogeneous catalysts. However, the design details that afford cooperative effects and allow such reactivity to be harnessed effectively in homogeneous synthetic systems remain unclear. Relatedly, hydride donors ligated to these metal cluster cofactors are suggested as precursors to the state that reacts with substrates; here too, however, the reactivity of hydride-decorated clusters supported by weak-field ligands is underexplored. Inspired by the reactivity potential of multimetallic assemblies evidenced in biological systems, approaches to design, synthesize, and evaluate reactivity of polynuclear metal compounds have been actively explored. In a similar vein to the templating function afforded by enzyme active sites, a carefully engineered organic ligand can be employed to control metal nuclearity of the complex and the local coordination environment of each metal center. This Account presents our efforts within this field, beginning with ligand design considerations followed by a survey of observed small molecule activation by trimetallic cyclophanates. We highlight the distinct reactivity outcomes accessed by multimetallic compounds as compared to aggregates that assemble in reaction mixtures from monometallic precursors. Contributing to the opportunity for programmed cooperativity in these designed multimetallic compounds, the cyclophane also dictates the orientation of substrate binding and metal-substrate interactions, which has a prominent influence on reactivity. For example, the dinitrogen-tricopper(I) cyclophanate reacts with dioxygen with markedly different results as compared to monocopper compounds. As an unexpected outcome, one series of tricopper compounds were discovered to be competent catalysts for carbon dioxide reduction to oxalate-a formally one-electron process-hinting at an inherently broader reaction scope for weak-field clusters at lowering the barrier for one-electron pathways as well as multielectron redox transformations. Further reflecting the role of the ligand in tuning reactivity, the trimetallic trihydride cluster compounds, [M3(μ-H)3]3+ (M = FeII, CoII, ZnII), demonstrate substrate specificity for CO2 over various other unsaturated molecules and surprising stability toward water. This series reflects the role of the local environment of a shallow ligand pocket to control substrate access. Summed together, the systems described here evidence the anticipated cooperative reactivity accessed in designed multimetallic species vs self-assembled monometallic systems (e.g., O2 activation and O atom transfer) as well as control of substrate access by seemingly subtle structural effects. Indeed, future efforts aim to interrogate the limits of cooperativity in these systems as well as the role of ligand dynamics and sterics on reactivity.
Collapse
Affiliation(s)
- Ricardo B. Ferreira
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Leslie J. Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Wang D, Ekanayake DM, Lindeman SV, Verani CN, Fiedler AT. Multielectron Redox Chemistry of Transition Metal Complexes Supported by a Non‐Innocent N
3
P
2
Ligand: Synthesis, Characterization, and Catalytic Properties. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Denan Wang
- Department of Chemistry Marquette University 53201 Milwaukee Wisconsin United States
| | - Danushka M. Ekanayake
- Department of Chemistry Wayne State University 5101 Cass Ave 48202 Detroit MI United States
| | - Sergey V. Lindeman
- Department of Chemistry Marquette University 53201 Milwaukee Wisconsin United States
| | - Cláudio N. Verani
- Department of Chemistry Wayne State University 5101 Cass Ave 48202 Detroit MI United States
| | - Adam T. Fiedler
- Department of Chemistry Marquette University 53201 Milwaukee Wisconsin United States
| |
Collapse
|
14
|
Yu S, Liu S. Multifunctional Antioxidants with High Activity at Elevated Temperatures Based on Intramolecular Synergism. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shasha Yu
- Polymers and Composites Division; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; No. 1219 Zhongguan West Road 315201 Ningbo China
| | - Shenggao Liu
- Polymers and Composites Division; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; No. 1219 Zhongguan West Road 315201 Ningbo China
| |
Collapse
|
15
|
Viqueira J, Durán ML, García-Vázquez JA, Castro J, Platas-Iglesias C, Esteban-Gómez D, Alzuet-Piña G, Moldes A, Nascimento OR. Modulating the DNA cleavage ability of copper(ii) Schiff bases through ternary complex formation. NEW J CHEM 2018. [DOI: 10.1039/c8nj03292k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(ii) Schiff-bases were electrochemically synthesized and characterized. The presence of co-ligands such as 2,2′-bpy or phen in the metal coordination environment increases the DNA cleavage efficiency.
Collapse
Affiliation(s)
- Joaquín Viqueira
- Departamento de Química Inorgánica
- Campus Vida
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - María L. Durán
- Departamento de Química Inorgánica
- Campus Vida
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - José A. García-Vázquez
- Departamento de Química Inorgánica
- Campus Vida
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Jesús Castro
- Departamento de Química Inorgánica
- Facultade de Química
- Edificio de Ciencias Experimentais
- Universidade de Vigo
- 36310 Vigo
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- Campus da Zapateira
- 15008 A Coruña
- Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- Campus da Zapateira
- 15008 A Coruña
- Spain
| | - Gloria Alzuet-Piña
- Departament de Química Inorgànica
- Facultat de Farmàcia
- Universitat de València
- 46100 Burjassot
- Spain
| | - Angeles Moldes
- Departament de Química Inorgànica
- Facultat de Farmàcia
- Universitat de València
- 46100 Burjassot
- Spain
| | - Otaciro R. Nascimento
- Instituto de Física de Sao Carlos
- Universidade de Sao Paulo
- 13560-250 Sao Carlos
- Brazil
| |
Collapse
|
16
|
Casanova I, Durán ML, Viqueira J, Sousa-Pedrares A, Zani F, Real JA, García-Vázquez JA. Metal complexes of a novel heterocyclic benzimidazole ligand formed by rearrangement-cyclization of the corresponding Schiff base. Electrosynthesis, structural characterization and antimicrobial activity. Dalton Trans 2018; 47:4325-4340. [DOI: 10.1039/c8dt00532j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot electrochemical synthesis of metal complexes containing a novel heterocyclic benzimidazole ligand is reported and characterized.
Collapse
Affiliation(s)
- I. Casanova
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - M. L. Durán
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - J. Viqueira
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - A. Sousa-Pedrares
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - F. Zani
- Departamento di Farmacia
- Parco Area delle Scienze
- 43124 Parma
- Italy
| | - J. A. Real
- Institut de Ciencia Molecular Departament de Química Inorgánica
- Universitat de Valencia
- Valencia
- Spain
| | - J. A. García-Vázquez
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| |
Collapse
|
17
|
Kpogo KK, Mazumder S, Wang D, Schlegel HB, Fiedler AT, Verani CN. Bimetallic Cooperativity in Proton Reduction with an Amido‐Bridged Cobalt Catalyst. Chemistry 2017; 23:9272-9279. [DOI: 10.1002/chem.201701982] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Kenneth K. Kpogo
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Shivnath Mazumder
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
- Current address: Department of Chemistry Hofstra University, Berliner Hall Hempstead NY 11549 USA
| | - Denan Wang
- Department of Chemistry Marquette University 535 N. 14th St. Milwaukee WI 53233 USA
| | - H. Bernhard Schlegel
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Adam T. Fiedler
- Department of Chemistry Marquette University 535 N. 14th St. Milwaukee WI 53233 USA
| | - Cláudio N. Verani
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| |
Collapse
|
18
|
Frank P, Szilagyi RK, Gramlich V, Hsu HF, Hedman B, Hodgson KO. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer. Inorg Chem 2017; 56:1080-1093. [PMID: 28068071 PMCID: PMC5733802 DOI: 10.1021/acs.inorgchem.6b00991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [MII(itao)(SO4)(H2O)0,1] (M = Co, Ni, Cu) and [Cu(Me6tren)(SO4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO4)] but not of [Cu(Me6tren)(SO4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [MII(SO4)(H2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. This electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins.
Collapse
Affiliation(s)
- Patrick Frank
- Department of Chemistry, Stanford University, Stanford CA, 94305 USA
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Stanford CA, 94309 USA
| | - Robert K. Szilagyi
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 and MTA-ELTE “Momentum” Chemical Structure/Function Laboratory, Budapest, 1117, Hungary
| | - Volker Gramlich
- Laboratorium fuer Kristallographie, Sonneggstrasse 5, ETH-Zentrum, No. G 62, CH-8092 Zürich, Switzerland
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Stanford CA, 94309 USA
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford CA, 94305 USA
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
19
|
Yang YC, Wu R, Cai Y, Zhou ZH. Unusual N-oxide formation in the peroxidation of cobalt(ii) ethylenediaminetetraacetates. Dalton Trans 2017; 46:1290-1296. [PMID: 28067375 DOI: 10.1039/c6dt04346a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike the usual formations of peroxo and superoxo cobalt products as oxygen carriers, N-oxido cobalt(ii) ethylenediaminetetraacetates K4[Co2(edtaO2)2]·nH2O [n = 6.5 (1), 10 (2), H4edta = ethylenediaminetetraacetic acid, C10H16O8N2] and their aggregate [Co2(edtaO2)(H2O)6]n·2nH2O (3) were obtained as dioxygen insertion products. The cobalt ions in dimers 1 and 2 are hexa-coordinated by two edtaO2 ligands in different configurations respectively, which is attributed to the packing of an interesting (H2O)12 water cluster in 2. Further reaction of K4[Co2(edtaO2)2]·nH2O with hydrogen peroxide results in the final trivalent cobalt ethylenediaminetetraacetate K[Co(edta)]·2H2O (4). A water-soluble coordination polymer Na2n[Co(edta)]n·4nH2O (5) was also obtained with a one dimensional zigzag structure. Bond valence calculation is consistent with the products 1-5.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Rui Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Yan Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
20
|
Broere DLJ, Plessius R, Tory J, Demeshko S, de Bruin B, Siegler MA, Hartl F, van der Vlugt JI. Localized Mixed-Valence and Redox Activity within a Triazole-Bridged Dinucleating Ligand upon Coordination to Palladium. Chemistry 2016; 22:13965-13975. [PMID: 27531163 DOI: 10.1002/chem.201601900] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/31/2022]
Abstract
The new dinucleating redox-active ligand (LH4 ), bearing two redox-active NNO-binding pockets linked by a 1,2,3-triazole unit, is synthetically readily accessible. Coordination to two equivalents of PdII resulted in the formation of paramagnetic (S=1/2 ) dinuclear Pd complexes with a κ2 -N,N'-bridging triazole and a single bridging chlorido or azido ligand. A combined spectroscopic, spectroelectrochemical, and computational study confirmed Robin-Day Class II mixed-valence within the redox-active ligand, with little influence of the secondary bridging anionic ligand. Intervalence charge transfer was observed between the two ligand binding pockets. Selective one-electron oxidation allowed for isolation of the corresponding cationic ligand-based diradical species. SQUID (super-conducting quantum interference device) measurements of these compounds revealed weak anti-ferromagnetic spin coupling between the two ligand-centered radicals and an overall singlet ground state in the solid state, which is supported by DFT calculations. The rigid and conjugated dinucleating redox-active ligand framework thus allows for efficient electronic communication between the two binding pockets.
Collapse
Affiliation(s)
- Daniël L J Broere
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Raoul Plessius
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joanne Tory
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammanstrasse 4, 37077, Göttingen, Germany
| | - Bas de Bruin
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, John Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | - Frantisek Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Jarl Ivar van der Vlugt
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|