1
|
Das S, Pal P, Biswas R, Baitalik S. Design of Near-Infrared Emissive Molecular Switches Based on Stilbene-Appended Cyclometalated Bimetallic Ru(II)-Terpyridine Complexes. Inorg Chem 2024; 63:23725-23741. [PMID: 39614808 DOI: 10.1021/acs.inorgchem.4c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In the present study, we have synthesized and thoroughly characterized two Ru(II) dimers with compositions [(ttpy)Ru(tpvpt')Ru(ttpy)](ClO4)3 and [(ttpy)Ru(t'pvpvpt')Ru(ttpy)](ClO4)2 incorporating phenylene-vinylene-substituted terpyridine bridging ligands capable of coordinating in both an NNN- and cyclometalated NNC-fashion. The complexes display strong absorption across the entire UV-vis spectral domain and exhibit luminescence in the NIR region (820-850 nm). The N atoms in the outer coordination sphere were employed for alteration of the photoredox behaviors of the complexes via acid-base equilibria. Decoordination of the Ru-C bonds in the presence of acid, followed by recoordination in the presence of base and heat, is also possible. Additionally, the phenylene-vinylene units in the bridging ligands facilitate trans → cis and trans-trans → trans-cis isomerization under visible light irradiation. The reverse isomerization (cis → trans and trans-cis → trans-trans) is also achieved upon UV light irradiation. Thus, "on-off" and "off-on" emission switching is facilitated through a judicious choice of external stimuli like acid, base, temperature, or light of particular wavelengths. Interestingly, the rate of photoswitching is significantly faster in the presence of acid compared to that in the absence of acid. DFT and TD-DFT calculations were also conducted to clearly visualize the electronic environment around the complex backbone and also for accurate assignment of the absorption and emission bands.
Collapse
Affiliation(s)
- Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Raju Biswas
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Yin CW, Zhuo LT, Chen JY, Lin YH, Lin YT, Chen HY, Tsai MK, Chen YJ. Intrinsic 77 K Phosphorescence Characteristics and Computational Modeling of Ru(II)-(Bidentate Cyclometalated-Aromatic Ligand) Chromophores: Their Relatively Low Nonradiative Rate Constants Originating from Low Spin-Orbit Coupling Driven Vibronic Coupling Amplitudes between Emitting and Ground States. Inorg Chem 2024; 63:21981-21993. [PMID: 39509593 DOI: 10.1021/acs.inorgchem.4c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We investigated the photoinduced relaxation of Kasha-type emitting ruthenium-(bidentate cyclometalated aromatic ligand), Ru-CM, chromophores of [Ru(pzpy)2(CM)]+ ions (CM = 1-phenylisoquinoline, 2,3-diphenylpyrazine, and 1,4-diazatriphenylene and pzpy = 2-pyrazol-1-yl-pyridine). This is the first report of the phosphorescence behavior of pure Ru-(bidentate CM) chromophores. The 77 K photoinduced relaxation characteristics of phosphorescence chromophores showed emission quantum yields higher than those of reference Ru-bpy (bpy = 2,2'-bipyridine) chromophores in the emission region of 670-900 nm. This phenomenon of the Ru-CM chromophores could be attributed to their unusually low magnitudes for 77 K nonradiative rate constants (kNRD), although their radiative rate-constants (kRAD) are not remarkable. In order to examine the 77 K photoinduced behavioral relaxation difference between Ru-CM and Ru-bpy chromophores, we used computational simulation, applying the fundamental formalism of kRAD and temperature-independent kNRD equations, which included calculated spin-orbit coupling values.
Collapse
Affiliation(s)
- Chi-Wei Yin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Li-Ting Zhuo
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Jie Ying Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Hui Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Ting Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Ming-Kang Tsai
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, R.O.C
| | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| |
Collapse
|
3
|
Jiang J, Lv X, Cheng H, Yang D, Xu W, Hu Y, Song Y, Zeng G. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives. Acta Biomater 2024; 177:1-19. [PMID: 38336269 DOI: 10.1016/j.actbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The emergence of drug-resistant bacteria has significantly diminished the efficacy of existing antibiotics in the treatment of bacterial infections. Consequently, the need for finding a strategy capable of effectively combating bacterial infections has become increasingly urgent. Photodynamic therapy (PDT) is considered one of the most promising emerging antibacterial strategies due to its non-invasiveness, low adverse effect, and the fact that it does not lead to the development of drug resistance. However, bacteria at the infection sites often exist in the form of biofilm instead of the planktonic form, resulting in a hypoxic microenvironment. This phenomenon compromises the treatment outcome of oxygen-dependent type-II PDT. Compared to type-II PDT, type-I PDT is not constrained by the oxygen concentration in the infected tissues. Therefore, in the treatment of bacterial infections, type-I PDT exhibits significant advantages over type-II PDT. In this review, we first introduce the fundamental principles of type-I PDT in details, including its physicochemical properties and how it generates reactive oxygen species (ROS). Next, we explore several specific antimicrobial mechanisms utilized by type-I PDT and summarize the recent applications of type-I PDT in antimicrobial treatment. Finally, the limitations and future development directions of type-I photosensitizers are discussed. STATEMENT OF SIGNIFICANCE: The misuse and overuse of antibiotics have accelerated the development of bacterial resistance. To achieve the effective eradication of resistant bacteria, pathfinders have devised various treatment strategies. Among these strategies, type I photodynamic therapy has garnered considerable attention owing to its non-oxygen dependence. The utilization of non-oxygen-dependent photodynamic therapy not only enables the effective elimination of drug-resistant bacteria but also facilitates the successful eradication of hypoxic biofilms, which exhibits promising prospects for treating biofilm-associated infections. Based on the current research status, we anticipate that the novel type I photodynamic therapy agent can surmount the biofilm barrier, enabling efficient treatment of hypoxic biofilm infections.
Collapse
Affiliation(s)
- Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Huijuan Cheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wenjia Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China.
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Guisheng Zeng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648.
| |
Collapse
|
4
|
Gonzalo-Navarro C, Zafon E, Organero JA, Jalón FA, Lima JC, Espino G, Rodríguez AM, Santos L, Moro AJ, Barrabés S, Castro J, Camacho-Aguayo J, Massaguer A, Manzano BR, Durá G. Ir(III) Half-Sandwich Photosensitizers with a π-Expansive Ligand for Efficient Anticancer Photodynamic Therapy. J Med Chem 2024; 67:1783-1811. [PMID: 38291666 PMCID: PMC10859961 DOI: 10.1021/acs.jmedchem.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
One approach to reduce the side effects of chemotherapy in cancer treatment is photodynamic therapy (PDT), which allows spatiotemporal control of the cytotoxicity. We have used the strategy of coordinating π-expansive ligands to increase the excited state lifetimes of Ir(III) half-sandwich complexes in order to facilitate the generation of 1O2. We have obtained derivatives of formulas [Cp*Ir(C∧N)Cl] and [Cp*Ir(C∧N)L]BF4 with different degrees of π-expansion in the C∧N ligands. Complexes with the more π-expansive ligand are very effective photosensitizers with phototoxic indexes PI > 2000. Furthermore, PI values of 63 were achieved with red light. Time-dependent density functional theory (TD-DFT) calculations nicely explain the effect of the π-expansion. The complexes produce reactive oxygen species (ROS) at the cellular level, causing mitochondrial membrane depolarization, cleavage of DNA, nicotinamide adenine dinucleotide (NADH) oxidation, as well as lysosomal damage. Consequently, cell death by apoptosis and secondary necrosis is activated. Thus, we describe the first class of half-sandwich iridium cyclometalated complexes active in PDT.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Elisenda Zafon
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Juan Angel Organero
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímicas and INAMOL, Universidad
de Castilla-La Mancha, 45071 Toledo, Spain
| | - Félix A. Jalón
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Joao Carlos Lima
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gustavo Espino
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001 Burgos, Spain
| | - Ana María Rodríguez
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071 Ciudad Real, Spain
| | - Lucía Santos
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. C. J. Cela,
s/n, 13071 Ciudad
Real, Spain
| | - Artur J. Moro
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sílvia Barrabés
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Jessica Castro
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Javier Camacho-Aguayo
- Analytical
Chemistry Department, Analytic Biosensors Group, Instituto de Nanociencia
y Nanomateriales de Aragon, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Anna Massaguer
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R. Manzano
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gema Durá
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
5
|
Buttarazzi E, Perrella F, Rega N, Petrone A. Watching the Interplay between Photoinduced Ultrafast Charge Dynamics and Nuclear Vibrations. J Chem Theory Comput 2023; 19:8751-8766. [PMID: 37991892 PMCID: PMC10720350 DOI: 10.1021/acs.jctc.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Here is presented the ultrafast hole-electron dynamics of photoinduced metal to ligand charge-transfer (MLCT) states in a Ru(II) complex, [Ru(dcbpy)2(NCS)2]4- (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine), a photoactive molecule employed in dye sensitized solar cells. Via cutting-edge computational techniques, a tailored computational protocol is here presented and developed to provide a detailed analysis of the electronic manifold coupled with nuclear vibrations to better understand the nonradiative pathways and the resulting overall dye performances in light-harvesting processes (electron injection). Thus, the effects of different vibrational modes were investigated on both the electronic levels and charge transfer dynamics through a theoretical-computational approach. First, the linear response time-dependent density functional (LR-TDDFT) formalism was employed to characterize excitation energies and spacing among electronic levels (the electronic layouts). Then, to understand the ultrafast (femtosecond) charge dynamics on the molecular scale, we relied on the nonperturbative mean-field quantum electronic dynamics via real-time (RT-) TDDFT. Three vibrational modes were selected, representative for collective nuclear movements that can have a significant influence on the electronic structure: two involving NCS- ligands and one involving dcbpy ligands. As main results, we observed that such MLCT states, under vibrational distortions, are strongly affected and a faster interligand electron transfer mechanism is observed along with an increasing MLCT character of the adiabatic electronic states approaching closer in energy due to the vibrations. Such findings can help both in providing a molecular picture of multidimensional vibro-electronic spectroscopic techniques, used to characterize ultrafast coherent and noncoherent dynamics of complex systems, and to improve dye performances with particular attention to the study of energy or charge transport processes and vibronic couplings.
Collapse
Affiliation(s)
- Edoardo Buttarazzi
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
| | - Fulvio Perrella
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Nadia Rega
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario
di Monte S. Angelo ed. 6, Via Cintia, I-80126 Napoli, Italy
| | - Alessio Petrone
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario
di Monte S. Angelo ed. 6, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
6
|
Kang Y, Zhao Y, Wei Y, Zhang Y, Wang Z, Luo Q, Du J, Wang F. Ruthenium(II) polypyridyl complexes with visible light-enhanced anticancer activity and multimodal cell imaging. Dalton Trans 2023; 52:12478-12489. [PMID: 37602756 DOI: 10.1039/d3dt01661g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Ruthenium(II) polypyridyl complexes have drawn growing attention due to their photophysical properties and anticancer activity. Herein we report four ruthenium(II) polypyridyl complexes [(N^N)2RuII(L)]2+ (1-4, L = 4-anilinoquinazoline derivatives, N^N = bidentate ligands with bis-nitrogen donors) as multi-functional anticancer agents. The epidermal growth factor receptor (EGFR) is overexpressed in a broad range of cancer cells and related to many kinds of malignance. EGFR inhibitors, such as gefitinib and erlotinib, have been approved as clinical anticancer drugs. The EGFR-inhibiting 4-anilinoquinazoline ligands greatly enhanced the in vitro anticancer activity of these ruthenium(II) polypyridyl complexes against a series of human cancer cell lines compared to [Ru(bpy)2(phen)], but interestingly, these complexes were actually not potent EGFR inhibitors. Further mechanism studies revealed that upon irradiation with visible light, complexes 3 and 4 generated a high level of singlet oxygen (1O2), and their in vitro anticancer activities against human non-small-cell lung (A549), cervical (HeLa) and squamous (A431) cancer cells were significantly improved. Specifically, complex 3 displayed potent phototoxicity upon irradiation with blue light, of which the photo-toxicity indexes (PIs) against HeLa and A431 cells were 11 and 8.3, respectively. These complexes exhibited strong fluorescence emission at ca. 600 nm upon excitation at about 450 nm. A subcellular distribution study by fluorescence microscopy imaging and secondary ion mass spectrometry imaging (ToF-SIMS) demonstrated that complex 3 mainly localized at the cytoplasm and complex 4 mainly localized in the nuclei of cells. Competitive binding with ctDNA showed that complex 4 was more favorable to bind to the DNA minor groove than complex 3. These differences support that complex 3 possibly exerts its anticancer activities majorly by photo-induced 1O2 generation and complex 4 by binding to DNA.
Collapse
Affiliation(s)
- Yan Kang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China.
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Yuanyuan Wei
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Yang Zhang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaoying Wang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Du
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Yin CW, Tsai MK, Chen YJ. Low-Temperature Observation of the Excited-State Decay of Ruthenium-(Mono-2,2':6',2″-Terpyridine) Ions with Innocent Ligands: DFT Modeling of an 3MLCT- 3MC Intersystem Crossing Pathway. ACS OMEGA 2023; 8:11623-11633. [PMID: 37008138 PMCID: PMC10061511 DOI: 10.1021/acsomega.3c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The synthesis, electrochemistry, and photophysical characterization of five 2,2':6',2″-terpyridine ruthenium complexes (Ru-tpy complexes) is reported. The electrochemical and photophysical behavior varied depending on the ligands, i.e., amine (NH3), acetonitrile (AN), and bis(pyrazolyl)methane (bpm), for this series of Ru-tpy complexes. The target [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ complexes were found to have low-emission quantum yields in low-temperature observations. To better understand this phenomenon, density functional theory (DFT) calculations were performed to simulate the singlet ground state (S0), Te, and metal-centered excited states (3MC) of these complexes. The calculated energy barriers between Te and the low-lying 3MC state for [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ provided clear evidence in support of their emitting state decay behavior. Developing a knowledge of the underlying photophysics of these Ru-tpy complexes will allow new complexes to be designed for use in photophysical and photochemical applications in the future.
Collapse
Affiliation(s)
- Chi-Wei Yin
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Ming-Kang Tsai
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, ROC
| | - Yuan Jang Chen
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| |
Collapse
|
8
|
Shah D, Eroy M, Fakhry J, Moffat A, Fritz K, Cole HD, Cameron CG, McFarland SA, Obaid G. Enabling In Vivo Optical Imaging of an Osmium Photosensitizer by Micellar Formulation. Pharmaceutics 2022; 14:2426. [PMID: 36365244 PMCID: PMC9693841 DOI: 10.3390/pharmaceutics14112426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
Osmium (Os)-based photosensitizers (PSs) exhibit unique broad, red-shifted absorption, favoring PDT activity at greater tissue depths. We recently reported on a potent Os(II) PS, rac-[Os(phen)2(IP-4T)](Cl)2 (ML18J03) with submicromolar hypoxia activity. ML18J03 exhibits a low luminescence quantum yield of 9.8 × 10-5 in PBS, which limits its capacity for in vivo luminescence imaging. We recently showed that formulating ML18J03 into 10.2 nm DSPE-mPEG2000 micelles (Mic-ML18J03) increases its luminescence quantum yield by two orders of magnitude. Here, we demonstrate that Mic-ML18J03 exhibits 47-fold improved accumulative luminescence signals in orthotopic AT-84 head and neck tumors. We show, for the first time, that micellar formulation provides up to 11.7-fold tumor selectivity for ML18J03. Furthermore, Mic-ML18J03 does not experience the concentration-dependent quenching observed with unformulated ML18J03 in PBS, and formulation reduces spectral shifting of the emission maxima during PDT (variance = 6.5 and 27.3, respectively). The Mic-ML18J03 formulation also increases the production of reactive molecular species 2-3-fold. These findings demonstrate that micellar formulation is a versatile and effective approach to enable in vivo luminescence imaging options for an otherwise quenched, yet promising, PS.
Collapse
Affiliation(s)
- Drashti Shah
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Menitte Eroy
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - John Fakhry
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Azophi Moffat
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kevin Fritz
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
9
|
|
10
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
11
|
Burtsev ID, Egorov AE, Kostyukov AA, Shibaeva AV, Klimovich MA, Kosov AD, Seliverstov MY, Dubinina TV, Markova AA, Kuzmin VA. Photochemical Properties of Octaphenyl-Substituted Erbium Phthalocyanine. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mazuryk O, Janczy-Cempa E, Łagosz J, Rutkowska-Zbik D, Machnicka A, Krasowska A, Pietrzyk P, Stochel G, Brindell M. Relevance of the electron transfer pathway in photodynamic activity of Ru(II) polypyridyl complexes containing 4,7-diphenyl-1,10-phenanthroline ligands under normoxic and hypoxic conditions. Dalton Trans 2022; 51:1888-1900. [PMID: 35018930 DOI: 10.1039/d1dt02908h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to investigate the correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity in vitro. A series of Ru(II) polypyridyl complexes with 4,7-diphenyl-1,10-phenanthroline (dip) and 2,3-bis(2-pyridyl)quinoxaline (dpq) and its derivatives were synthesized and characterized regarding their photophysical, biological, and photodynamic properties. The complexes were evaluated not only in the context of 1O2 generation but also regarding other types of reactive oxygen species (ROS) to assess the possibility of Ru(II) complexes to induce phototoxicity via various ROS using fluorescence and EPR spectroscopy. The compounds were found to be moderately cytotoxic with IC50 values ranging from 1 to 35 μM and retained their cytotoxic activity under hypoxic conditions. The unraveled phototoxic activity is based mainly on the generation of H2O2 and 1O2, highlighting the importance of electron-transfer processes in the observed photodynamic activity of Ru polypyridyl complexes. A combination of photodynamic activity with cytotoxicity under decreased dioxygen concentrations may help overcome the current photodynamic therapy (PDT) limitation. The findings highlight the need for broadening the scope of tested Ru-based photosensitizers.
Collapse
Affiliation(s)
- Olga Mazuryk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Ewelina Janczy-Cempa
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Justyna Łagosz
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Agata Machnicka
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Aneta Krasowska
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Piotr Pietrzyk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Grażyna Stochel
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Małgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
13
|
Morelli Frin KP, Henrique de Macedo L, Santos de Oliveira S, Cunha RL, Calvo-Castro J. Improved singlet oxygen generation in rhenium(I) complexes functionalized with a pyridinyl selenoether ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Biral Silva C, Cesar Torres Antonio F, Homem-de-Mello P, Orzari Ribeiro A, Batista do Nascimento F, de Oliveira HPM. Photochemical and photophysical properties of tetracarboxylic acid phthalocyanines from glycolic and lactic acids in homogeneous and micro heterogeneous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120177. [PMID: 34340053 DOI: 10.1016/j.saa.2021.120177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Glycolic acid and lactic acid substituted zinc phthalocyanines were studied concerning their photophysical and photochemical properties in eight organic solvents (homogeneous medium) and in aqueous media with the presence of CTAB and PVP 360 surfactants. Solvent effects were investigated according to several physical solvent parameters, including studies that used more than one parameter at a time, such as the ET(30) scale and the Lippet-Mataga equation. Computational studies were realized and was found in good agreement with experimental data indicating J-type dimers' formation through hydrogen bonds, which may not affect the spectroscopic properties. Fluorescence lifetimes were recorded using a time-correlated single-photon counting setup (TCSPC) technique. The direct method (analyzing the phosphorescence decay curves of singlet oxygen at 1270 nm) was employed to study singlet oxygen quantum yields. Phthalocyanine macrocycle with lactic acid substituent showed better solvation arrangement than the glycolic derivative, which can be explained based on the presence of the methyl group bonded to the chain. The water solvation of Pc's in the presence of cationic surfactant (CTAB) and biocompatible polymer PVP 360 increses the importance of this study for appliance in photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Charles Biral Silva
- Federal University of ABC/Center for Natural and Human Sciences, Av. dos Estados, 5001 - Santo André, São Paulo CEP 09210-580, Brazil
| | - Felipe Cesar Torres Antonio
- Federal University of ABC/Center for Natural and Human Sciences, Av. dos Estados, 5001 - Santo André, São Paulo CEP 09210-580, Brazil
| | - Paula Homem-de-Mello
- Federal University of ABC/Center for Natural and Human Sciences, Av. dos Estados, 5001 - Santo André, São Paulo CEP 09210-580, Brazil
| | - Anderson Orzari Ribeiro
- Federal University of ABC/Center for Natural and Human Sciences, Av. dos Estados, 5001 - Santo André, São Paulo CEP 09210-580, Brazil
| | - Francisco Batista do Nascimento
- Federal University of ABC/Center for Natural and Human Sciences, Av. dos Estados, 5001 - Santo André, São Paulo CEP 09210-580, Brazil
| | - Hueder Paulo Moisés de Oliveira
- Federal University of ABC/Center for Natural and Human Sciences, Av. dos Estados, 5001 - Santo André, São Paulo CEP 09210-580, Brazil.
| |
Collapse
|
15
|
Toupin NP, Steinke SJ, Herroon MK, Podgorski I, Turro C, Kodanko JJ. Unlocking the Potential of Ru(II) Dual-action Compounds with the Power of the Heavy-atom Effect. Photochem Photobiol 2021; 98:378-388. [PMID: 34866185 DOI: 10.1111/php.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
We report the synthesis, photochemical and biological characterization of two new Ru(II) photoactivated complexes based on [Ru(tpy)(Me2 bpy)(L)]2+ (tpy = 2,2':6',2''-terpyridine, Me2 bpy = 6,6'-dimethyl-2,2'-bipyridine), where L = pyridyl-BODIPY (pyBOD). Two pyBOD ligands were prepared bearing flanking hydrogen or iodine atoms. Ru(II)-bound BODIPY dyes show a red-shift of absorption maxima relative to the free dyes and undergo photodissociation of BODIPY ligands with green light irradiation. Addition of iodine into the BODIPY ligand facilitates intersystem crossing, which leads to efficient singlet oxygen production in the free dye, but also enhances quantum yield of release of the BODIPY ligand from Ru(II). This represents the first report of a strategy to enhance photodissociation quantum yields through the heavy-atom effect in Ru(II) complexes. Furthermore, Ru(II)-bound BODIPY dyes display fluorescence turn-on once released, with a lead analog showing nanomolar EC50 values against triple negative breast cancer cells, >100-fold phototherapeutic indexes under green light irradiation, and higher selectivity toward cancer cells as compared to normal cells than the corresponding free BODIPY photosensitizer. Conventional Ru(II) photoactivated complexes require nonbiorthogonal blue light for activation and rarely show submicromolar potency to achieve cell death. Our study represents an avenue for the improved photochemistry and potency of future Ru(II) complexes.
Collapse
Affiliation(s)
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH
| | - Mackenzie K Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH
| | | |
Collapse
|
16
|
Biral Silva C, Torres Antonio FC, Homem-de-Mello P, Ribeiro AO, de Oliveira HPM. Concentration and solvent effects, photochemical and photophysical properties of methyl and tert-butyl zinc(II) and aluminum(III) phthalocyanines. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Lifshits LM, III JAR, Ramasamy E, Thummel RP, Cameron CG, McFarland SA. Ruthenium Photosensitizers for NIR PDT Require Lowest-Lying Triplet Intraligand (3IL) Excited States. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021; 8. [DOI: 10.1016/j.jpap.2021.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Dayanidhi PD, Vaidyanathan VG. Understanding the ancillary ligand effect on luminescent cyclometalated Ir(III) complex as a reporter for 2-acetylaminofluorene DNA(AAF-dG) adduct. J Biol Inorg Chem 2021; 27:189-199. [PMID: 34843001 DOI: 10.1007/s00775-021-01920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Mutagenic agents such as aromatic amines undergo metabolic activation and produce DNA adducts at C8 position of guanine bases. N-2-acetylaminofluorene (AAF) generates different mutational outcomes when placed at G1, G2, and G3 of a NarI sequence (-G1G2CG3CC/T-). These outcomes are dictated by the conformations adopted by these adducts. Detection of such lesions is of considerable interest owing to their hazardous effects. Here, we report the synthesis of three cyclometalated [Ir(L)2dppz]+ complexes (L = 2-phenylpyridine (ppy) 1; benzo[h]quinoline (bhq) 2; 2-phenylquinoline (pq) 3; dppz = dipyrido[3,2-a:2',3'-c]phenazine) and their interaction with AAF adducted NarI DNA. Remarkably, complexes 1 and 2 displayed dominant 3LC transition characteristic of polar environment despite binding to the adducted sites. On the other hand, complex 3 binds to NarI sequences and behaves as a luminescent reporter for AAF-modified DNA. The results reported here emphasize that molecular light switching phenomenon can be stimulated by switching ancillary ligands and might act as potential probes for covalent-DNA defects.
Collapse
Affiliation(s)
- P David Dayanidhi
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 686] [Impact Index Per Article: 171.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
20
|
Loftus LM, Olson EC, Stewart DJ, Phillips AT, Arumugam K, Cooper TM, Haley JE, Grusenmeyer TA. Zn Coordination and the Identity of the Halide Ancillary Ligand Dramatically Influence the Excited-State Dynamics and Bimolecular Reactions of 2,3-Di(pyridin-2-yl)benzo[ g]quinoxaline. Inorg Chem 2021; 60:16570-16583. [PMID: 34662517 DOI: 10.1021/acs.inorgchem.1c02484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The optical properties of coordination complexes with ligands containing nitrogen heterocycles have been extensively studied for decades. One subclass of these materials, metal complexes utilizing substituted pyrazines and quinoxalines as ligands, has been employed in a variety of photochemical applications ranging from photodynamic therapy to organic light-emitting diodes. A vast majority of this work focuses on characterization of the metal-to-ligand charge-transfer states in these metal complexes; however, literature reports rarely investigate the photophysics of the parent pyrazine or quinoxaline ligand or perform control experiments utilizing metal complexes that lack low-lying charge-transfer (CT) states in order to determine how metal-atom coordination influences the photophysical properties of the ligand. With this in mind, we examined the steady-state and time-resolved photophysics of 2,3-di(pyridin-2-yl)benzo[g]quinoxaline (dpb) and explored how the coordination of ZnX2 (X = Cl-, Br-, I-) affects the photophysical properties of dpb. In dpb, we find that the dominant mode of deactivation from the singlet excited state is intersystem crossing (ISC). Coordination of ZnX2 perturbs the relative energies of the ππ* and nπ* excited states of dpb, leading to drastically different rates of ISC as well as radiative and nonradiative decay in the [Zn(dpb)X2] complexes compared to dpb. These differences in the rates change the dominant singlet-excited-state decay pathway from ISC in dpb to a mixture of ISC and fluorescence in [Zn(dpb)Cl2] and [Zn(dpb)Br2] and to nonradiative decay in [Zn(dpb)I2]. Coordination of ZnX2 and the choice of the halide ligand also have profound effects on the rate constants for excited-state bimolecular reactions, including triplet-triplet annihilation and oxygen quenching. These results demonstrate that metal coordination, even in complexes lacking low-lying CT states, and the choice of the ancillary ligand can dramatically alter the photophysical properties of chromophores containing nitrogen heterocycles.
Collapse
Affiliation(s)
- Lauren M Loftus
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,General Dynamics Information Technology, 5100 Springfield Pike, Dayton, Ohio 45431, United States
| | - Emma C Olson
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - David J Stewart
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Alexis T Phillips
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Kuppuswamy Arumugam
- Wright State University, Department of Chemistry, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, United States
| | - Thomas M Cooper
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Joy E Haley
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Tod A Grusenmeyer
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| |
Collapse
|
21
|
Antitumor Immune Response Triggered by Metal-Based Photosensitizers for Photodynamic Therapy: Where Are We? Pharmaceutics 2021; 13:pharmaceutics13111788. [PMID: 34834202 PMCID: PMC8620627 DOI: 10.3390/pharmaceutics13111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Metal complexes based on transition metals have rich photochemical and photophysical properties that are derived from a variety of excited state electronic configurations triggered by visible and near-infrared light. These properties can be exploited to produce powerful energy and electron transfer processes that can lead to oxygen-(in)dependent photobiological activity. These principles are the basis of photodynamic therapy (PDT), which is a clinically approved treatment that offers a promising, effective, and noninvasive complementary treatment or even an alternative to treat several types of cancers. PDT is based on a reaction involving a photosensitizer (PS), light, and oxygen, which ultimately generates cytotoxic reactive oxygen species (ROS). However, skin photosensitivity, due to the accumulation of PSs in skin cells, has hampered, among other elements, its clinical development and application. Therefore, these is an increasing interest in the use of (metal-based) PSs that are more specific to tumor cells. This may increase efficacy and corollary decrease side-effects. To this end, metal-containing nanoparticles with photosensitizing properties have recently been developed. In addition, several studies have reported that the use of immunogenic/immunomodulatory metal-based nanoparticles increases the antitumor efficacy of immune-checkpoint inhibitor-based immunotherapy mediated by anti-PD-(L)1 or CTLA-4 antibodies. In this review, we discuss the main metal complexes used as PDT PSs. Lastly, we review the preclinical studies associated with metal-based PDT PSs and immunotherapies. This therapeutic association could stimulate PDT.
Collapse
|
22
|
Li G, Wang Q, Liu J, Wu M, Ji H, Qin Y, Zhou X, Wu L. Innovative strategies for enhanced tumor photodynamic therapy. J Mater Chem B 2021; 9:7347-7370. [PMID: 34382629 DOI: 10.1039/d1tb01466h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is an approved and promising treatment approach that utilizes a photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS) through irradiation to achieve tumor noninvasive therapy. However, the limited singlet oxygen generation, the nonspecific uptake of PS in normal cells, and tumor hypoxia have become major challenges in conventional PDT, impeding its development and further clinical application. This review summarizes an overview of recent advances for the enhanced PDT. The development of PDT with innovative strategies, including molecular engineering and heavy atom-free photosensitizers is presented and future directions in this promising field are also provided. This review aims to highlight the recent advances in PDT and discuss the potential strategies that show promise in overcoming the challenges of PDT.
Collapse
Affiliation(s)
- Guo Li
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Qi Wang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Jinxia Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Mingmin Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Haiwei Ji
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Yuling Qin
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Xiaobo Zhou
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Li Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| |
Collapse
|
23
|
Ramos LD, de Macedo LH, Gobo NRS, de Oliveira KT, Cerchiaro G, Morelli Frin KP. Understanding the photophysical properties of rhenium(I) compounds coordinated to 4,7-diamine-1,10-phenanthroline: synthetic, luminescence and biological studies. Dalton Trans 2021; 49:16154-16165. [PMID: 32270852 DOI: 10.1039/d0dt00436g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, the photophysical properties and preliminary time-dependent density functional theory (TD-DFT) data of new rhenium(i) polypyridyl compounds, fac-[Re(L)(Am2phen)(CO)3]0/+, where Am2phen = 4,7-diamine-1,10-phenanthroline and L = Cl and ethyl isonicotinate (et-isonic), provided new insights into excited-state deactivation through an unusual inversion between two metal-to-ligand charge-transfer excited states. In addition, their cellular uptake using breast cancer (MCF-7) and melanoma (SkMel-147 and SkMel-29) cell lines and bioactivity were investigated and their cell-killing mechanism and protein expression were also studied. Preliminary TD-DFT results showed that both compounds exhibited a strong and broad absorption band around 300-400 nm which corresponds to a combination of ILAm2phen and MLCTRe→Am2phen transitions, and a strong contribution of charge transfer transition MLCTRe→et-isonic for fac-[Re(et-isonic)(Am2phen)(CO)3]+ is also observed. In contrast to typical Re(i) polypyridyl complexes, the substitution of Cl with the et-isonic ligand showed a bathochromic shift of the emission maxima, relatively low emission quantum yield and fast lifetime. Photophysical investigation of the fac-[ReCl(et-isonic)2(CO)3] compound provided meaningful information on the excited state manifold of the fac-[Re(L)(Am2phen)(CO)3]0/+ complexes. As shown in the absorption profile, a remarkable inversion of the lowest-lying excited state takes place from the usually observed MLCTRe→Am2phen to the unusual MLCTRe→et-isonic. The lipophilicity of the positive-complex was higher than that of the non-charge compound and the same trend for the activity against cells was observed, in the absence of light. In addition, flow cytometry and Western Blot analyses showed an overexpression of pro-caspase-9, suggesting a caspase proteolytic cascade through an intrinsic-pathway apoptosis mechanism. The photophysical properties of these compounds reported herein provide new fundamental insights into the understanding of substituent groups on polypyridyl ligands which are relevant to practical development.
Collapse
Affiliation(s)
- Luiz D Ramos
- Federal University of ABC - UFABC, Av. dos Estados 5001, Santo Andre, SP, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Mo J, Mai Le NP, Priefer R. Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers. Eur J Med Chem 2021; 225:113770. [PMID: 34403979 DOI: 10.1016/j.ejmech.2021.113770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023]
Abstract
The identification of ruthenium(II) polypyridyl complexes as photosensitizers in photodynamic therapy (PDT) for the treatment of cancer is progressing rapidly. Due to their favorable photophysical and photochemical properties, Ru(II)-based photosensitizers have absorption in the visible spectrum, can be irradiated via one- and two-photon excitation within the PDT window, and yield potent oxygen-dependent and/or oxygen-independent photobiological activities. Herein, we present a current overview of the mechanisms of action and subcellular localization of Ru(II)-based photosensitizers in the treatment of cancer. These photosensitizers are highlighted from a medicinal chemistry and chemical biology perspective. However, although this field is burgeoning, challenges and limitations remain in the photosensitization strategies and clinical translation.
Collapse
Affiliation(s)
- Jiancheng Mo
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ngoc Phuong Mai Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
25
|
Liu X, Li G, Xie M, Guo S, Zhao W, Li F, Liu S, Zhao Q. Rational design of type I photosensitizers based on Ru(ii) complexes for effective photodynamic therapy under hypoxia. Dalton Trans 2021; 49:11192-11200. [PMID: 32748922 DOI: 10.1039/d0dt01684e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photodynamic therapy (PDT) has been widely used in conjunction with molecular oxygen to cause cancer cell death. Hypoxia, the inherent property in solid tumors, is the obstacle during the process of PDT. It is urgent to develop PDT photosensitizers independent of the oxygen concentration. Herein, triphenylamine-modified Ru(ii) complexes have been used as photosensitizers to produce superoxide anions (O2-˙) and hydroxyl radicals (˙OH) through a type I photochemical process. Ru(ii) complexes with triphenylamine can provide a possibility to drive the reactive oxygen species production through low oxidation potential and good light-harvesting abilities. The investigation on light-mediated radical production showed that Ru4 could produce abundant ˙OH and O2-˙ compared to Ru1-Ru3 under hypoxic environments owing to the strong absorption. These radicals exhibit potent toxicity, which can damage the neighbouring biomolecules and cause the apoptosis of cancer cells. The PDT effect was evaluated in vitro under hypoxia, suggesting that Ru4 could maintain excellent performance in inducing a sharp decrease in the activity of cancer cells.
Collapse
Affiliation(s)
- Xue Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Mingjuan Xie
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Song Guo
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| |
Collapse
|
26
|
Rodrigues CV, Johnson KR, Lombardi VC, Rodrigues MO, Sobrinho JA, de Bettencourt-Dias A. Photocytotoxicity of Thiophene- and Bithiophene-Dipicolinato Luminescent Lanthanide Complexes. J Med Chem 2021; 64:7724-7734. [PMID: 34018753 DOI: 10.1021/acs.jmedchem.0c01805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New thiophene-dipicolinato-based compounds, K2nTdpa (n = 1, 2), were isolated. Their anions are sensitizers of lanthanide ion (LnIII) luminescence and singlet oxygen generation (1O2). Emission in the visible and near-infrared regions was observed for the LnIII complexes with efficiencies (ϕLn) ϕEu = 33% and ϕYb = 0.31% for 1Tdpa2- and ϕYb = 0.07% for 2Tdpa2-. The latter does not sensitize EuIII emission. Fluorescence imaging of HeLa live cells incubated with K3[Eu(1Tdpa)3] indicates that the complex permeates the cell membrane and localizes in the mitochondria. All complexes generate 1O2 in solution with efficiencies (ϕO12) as high as 13 and 23% for the GdIII complexes of 1Tdpa2- and 2Tdpa2-, respectively. [Ln(nTdpa)3]3- (n = 1, 2) are phototoxic to HeLa cells when irradiated with UV light with IC50 values as low as 4.2 μM for [Gd(2Tdpa)3]3- and 91.8 μM for [Eu(1Tdpa)3]3-. Flow cytometric analyses indicate both apoptotic and necrotic cell death pathways.
Collapse
Affiliation(s)
- Carime V Rodrigues
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States.,Laboratório de Inorgânica e Materiais, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasilia 70910-900 DF, Brazil
| | - Katherine R Johnson
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Vincent C Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Marcelo O Rodrigues
- Laboratório de Inorgânica e Materiais, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasilia 70910-900 DF, Brazil
| | - Josiane A Sobrinho
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | |
Collapse
|
27
|
Chettri A, Roque JA, Schneider KRA, Cole HD, Cameron CG, McFarland SA, Dietzek B. It Takes Three to Tango - the length of the oligothiophene determines the nature of the long-lived excited state and the resulting photocytotoxicity of a Ru(II) photodrug. CHEMPHOTOCHEM 2021; 5:421-425. [PMID: 34337147 PMCID: PMC8323708 DOI: 10.1002/cptc.202000283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 02/06/2023]
Abstract
TLD1433 is the first Ru(II) complex to be tested as a photodynamic therapy agent in a clinical trial. In this contribution we study TLD1433 in the context of structurally-related Ru(II)-imidozo[4,5-f][1,10]phenanthroline (ip) complexes appended with thiophene rings to decipher the unique photophysical properties which are associated with increasing oligothiophene chain length. Substitution of the ip ligand with ter- or quaterthiophene changes the nature of the long-lived triplet state from metal-to-ligand charge-transfer to 3ππ* character. The addition of the third thiophene thus presents a critical juncture which not only determines the photophysics of the complex but most importantly its capacity for 1O2 generation and hence the potential of the complex to be used as a photocytotoxic agent. ENTRY FOR THE TABLE OF CONTENTS A low-lying triplet intraligand state (3IL) determines the properties of the long-lived excited states in a series of Ru(II) complexes. The 3IL state can be accessed by increasing the length of an oligothiophene chain. The 3IL state is extremely efficient at generating 1O2 and thus enhances the potency of the complexes as PDT agents.
Collapse
Affiliation(s)
- Avinash Chettri
- Department Functional Interfaces Department, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas Arlington, Arlington, TX 76019, USA
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Kilian R. A. Schneider
- Department Functional Interfaces Department, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas Arlington, Arlington, TX 76019, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas Arlington, Arlington, TX 76019, USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas Arlington, Arlington, TX 76019, USA
| | - Benjamin Dietzek
- Department Functional Interfaces Department, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
28
|
Xu Q, Ji Y, Chen M, Shao X. 4-Hydroxyl-oxoisoaporphine, one small molecule as theranostic agent for simultaneous fluorescence imaging and photodynamic therapy as type II photosensitizer. Photochem Photobiol Sci 2021; 20:501-512. [PMID: 33743176 DOI: 10.1007/s43630-021-00030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022]
Abstract
Oxoisoaporphine (OA) is a plant phototoxin isolated from Menispermaceae, however, its weak fluorescence and low water solubility impede it for theranostics. We developed here 4-hydroxyl-oxoisoaporphine (OHOA), which has good singlet oxygen-generating ability (0.06), strong fluorescence (0.72) and improved water solubility. OHOA displays excellent fluorescence for cell imaging and exhibits light-induced cytotoxicity against cancer cell. In vitro model of human cervical carcinoma (HeLa) cell proved that singlet oxygen generated by OHOA triggered photosensitized oxidation reactions and exert toxic effect on tumor cells. The MTT assay using HeLa cells verified the low cytotoxicity of OHOA in the dark and high phototoxicity. Confocal experiment indicates that OHOA mainly distributes in mitochondria and western blotting demonstrated that OHOA induces cell apoptosis via the mitochondrial pathway in the presence of light. Our molecule provides an alternative choice as a theranostic agent against cancer cells which usually are in conflict with each other for most traditional theranostic agents.
Collapse
Affiliation(s)
- Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunfan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Meijun Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. .,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
29
|
Qu F, Lamb RW, Cameron CG, Park S, Oladipupo O, Gray JL, Xu Y, Cole HD, Bonizzoni M, Kim Y, McFarland SA, Webster CE, Papish ET. Singlet Oxygen Formation vs Photodissociation for Light-Responsive Protic Ruthenium Anticancer Compounds: The Oxygenated Substituent Determines Which Pathway Dominates. Inorg Chem 2021; 60:2138-2148. [PMID: 33534562 DOI: 10.1021/acs.inorgchem.0c02027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ruthenium complexes bearing protic diimine ligands are cytotoxic to certain cancer cells upon irradiation with blue light. Previously reported complexes of the type [(N,N)2Ru(6,6'-dhbp)]Cl2 with 6,6'-dhbp = 6,6'-dihydroxybipyridine and N,N = 2,2'-bipyridine (bipy) (1A), 1,10-phenanthroline (phen) (2A), and 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (dop) (3A) show EC50 values as low as 4 μM (for 3A) vs breast cancer cells upon blue light irradiation ( Inorg. Chem. 2017, 56, 7519). Herein, subscript A denotes the acidic form of the complex bearing OH groups, and B denotes the basic form bearing O- groups. This photocytotoxicity was originally attributed to photodissociation, but recent results suggest that singlet oxygen formation is a more plausible cause of photocytotoxicity. In particular, bulky methoxy substituents enhance photodissociation but these complexes are nontoxic ( Dalton Trans 2018, 47, 15685). Cellular studies are presented herein that show the formation of reactive oxygen species (ROS) and apoptosis indicators upon treatment of cells with complex 3A and blue light. Singlet oxygen sensor green (SOSG) shows the formation of 1O2 in cell culture for cells treated with 3A and blue light. At physiological pH, complexes 1A-3A are deprotonated to form 1B-3B in situ. Quantum yields for 1O2 (ϕΔ) are 0.87 and 0.48 for 2B and 3B, respectively, and these are an order of magnitude higher than the quantum yields for 2A and 3A. The values for ϕΔ show an increase with 6,6'-dhbp derived substituents as follows: OMe < OH < O-. TD-DFT studies show that the presence of a low lying triplet metal-centered (3MC) state favors photodissociation and disfavors 1O2 formation for 2A and 3A (OH groups). However, upon deprotonation (O- groups), the 3MLCT state is accessible and can readily lead to 1O2 formation, but the dissociative 3MC state is energetically inaccessible. The changes to the energy of the 3MLCT state upon deprotonation have been confirmed by steady state luminescence experiments on 1A-3A and their basic analogs, 1B-3B. This energy landscape favors 1O2 formation for 2B and 3B and leads to enhanced toxicity for these complexes under physiological conditions. The ability to convert readily from OH to O- groups allowed us to investigate an electronic change that is not accompanied by steric changes in this fundamental study.
Collapse
Affiliation(s)
- Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Robert W Lamb
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, Texas 76019, United States
| | - Seungjo Park
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Olaitan Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jessica L Gray
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yifei Xu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Houston D Cole
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, Texas 76019, United States
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, Texas 76019, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Elizabeth T Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
30
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Hua W, Xu G, Zhao J, Wang Z, Lu J, Sun W, Gou S. DNA‐Targeting Ru
II
‐Polypyridyl Complex with a Long‐Lived Intraligand Excited State as a Potential Photodynamic Therapy Agent. Chemistry 2020; 26:17495-17503. [DOI: 10.1002/chem.202003031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Wuyang Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Z. Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Jiapeng Lu
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108-6050 USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108-6050 USA
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| |
Collapse
|
32
|
Roque JA, Barrett PC, Cole HD, Lifshits LM, Bradner E, Shi G, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorg Chem 2020; 59:16341-16360. [PMID: 33126792 PMCID: PMC7669743 DOI: 10.1021/acs.inorgchem.0c02137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypoxia presents a challenge to anticancer therapy, reducing the efficacy of many available treatments. Photodynamic therapy is particularly susceptible to hypoxia, given that its mechanism relies on oxygen. Herein, we introduce two new osmium-based polypyridyl photosensitizers that are active in hypoxia. The lead compounds emerged from a systematic study of two Os(II) polypyridyl families derived from 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmb) as coligands combined with imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophenes (IP-nT). The compounds were characterized and investigated for their spectroscopic and (photo)biological activities. The two hypoxia-active Os(II) photosensitizers had n = 4 thiophenes, with the bpy analogue 1-4T being the most potent. In normoxia, 1-4T had low nanomolar activity (half-maximal effective concentration (EC50) = 1-13 nM) with phototherapeutic indices (PI) ranging from 5500 to 55 000 with red and visible light, respectively. A sub-micromolar potency was maintained even in hypoxia (1% O2), with light EC50 and PI values of 732-812 nM and 68-76, respectively -currently among the largest PIs for hypoxic photoactivity. This high degree of activity coincided with a low-energy, long-lived (0.98-3.6 μs) mixed-character intraligand charge-transfer (3ILCT)/ligand-to-ligand charge-transfer (3LLCT) state only accessible in quaterthiophene complexes 1-4T and 2-4T. The coligand identity strongly influenced the photophysical and photobiological results in this study, whereby the bpy coligand led to longer lifetimes (3.6 μs) and more potent photo-cytotoxicity relative to those of dmb. The unactivated compounds were relatively nontoxic both in vitro and in vivo. The maximum tolerated dose for 1-4T and 2-4T in mice was greater than or equal to 200 mg kg-1, an excellent starting point for future in vivo validation.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Evan Bradner
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Ge Shi
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 1×5, Canada
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| |
Collapse
|
33
|
Xu H, Zhang X, Li X, Zhang X, Deng J, Zou D, Yang J. Two Ru(II) compounds with aggregation induced emission as promising photosensitizers for photodynamic therapy. J Inorg Biochem 2020; 212:111233. [PMID: 33010531 DOI: 10.1016/j.jinorgbio.2020.111233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 12/29/2022]
Abstract
Design and preparation of photosensitizers (PSs) play an important role in photodynamic therapy (PDT). PDT mainly relies on the production of toxic reactive oxygen species (ROS) of the PSs. Conventional fluorophores, however, often suffer from aggregation caused quenching (ACQ), which limits the potential of PSs as fluorescent imaging agents. Molecules with aggregation-induced emission (AIE) properties maintain high fluorescence and dispersity in aqueous solutions, overcoming the ACQ effect. Ruthenium (II)-based AIE compounds are highly biocompatible molecules and can be used for response cell imaging. In the current study, two novel Ru(II)-based AIE compounds with main ligands 1,3-di(2H-tetrazol-5-yl)benzene (Hphbtz) by changing auxiliary ligand 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) have been successfully synthesized and characterized, [Ru(Hphbtz)(bipy)2][PF6] (1) and [Ru(Hphbtz)(phen)2][PF6] (2). The NPs show strong intra-cellular fluorescence and also simultaneously exhibited potent cytotoxic activity. These compounds can self-assemble to form nanoparticles (NPs) by nanoprecipitation. The compounds are found to exhibit a high AIE property with emission maxima at 353 nm and 380 nm, respectively. And the compounds have the low IC50 (half maximal inhibitory concentration) of only 15 μg/mL (1.94 μM) and 13 μg/mL (1.58 μM) on HeLa cells, respectively. Meanwhile, negligible dark toxicity has been also observed for these NPs. The results show that [Ru(Hphbtz)(bipy)2][PF6] (1) and [Ru(Hphbtz)(phen)2][PF6] (2) NPs can inhibit cell proliferation in vitro, and may be potential candidates for photodynamic therapy.
Collapse
Affiliation(s)
- Hongliang Xu
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China; Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xujing Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China
| | - Xinchen Li
- Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xiaochuan Zhang
- Department of Thoracic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, PR China
| | - Jun Deng
- Department of Thoracic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, PR China.
| | - Dengfeng Zou
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China.
| | - Jie Yang
- Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China; College of Chemical Engineering, State Key Laboratory of Material-Oriented, Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
34
|
Xia XL, Zhang DB, Zhang JL, Pu SZ. Highly sensitive ruthenium complex-based fluorescent probe for copper ion detection. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Wolcan E. Photosensitized generation of singlet oxygen from rhenium(I) complexes: A review. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Li S, Zhao J, Wang X, Xu G, Gou S, Zhao Q. Design of a Tris-Heteroleptic Ru(II) Complex with Red-Light Excitation and Remarkably Improved Photobiological Activity. Inorg Chem 2020; 59:11193-11204. [DOI: 10.1021/acs.inorgchem.0c01860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| | - Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| |
Collapse
|
38
|
Solís-Ruiz JA, Barthe A, Riegel G, Saavedra-Díaz RO, Gaiddon C, Le Lagadec R. Light activation of cyclometalated ruthenium complexes drives towards caspase 3 dependent apoptosis in gastric cancer cells. J Inorg Biochem 2020; 208:111080. [PMID: 32330762 DOI: 10.1016/j.jinorgbio.2020.111080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Polypyridyl ruthenium complexes have been intensively investigated for their remarkable antiproliferative properties and some are currently being tested in clinical trials. Here, we investigated the impact of illumination on the biological properties of a series of new cyclometalated ruthenium compounds with increased π-conjugation. We determined that various of these complexes display a bivalent biological activity as they are highly cytotoxic by themselves in absence of light while their cytotoxicity can significantly be elevated towards an IC50 in the nanomolar range upon illumination. In particular, we showed that these complexes are particularly active (IC50 < 1 μM) on two gastric cancer cell lines (AGS, KATO III) that are resistant towards cisplatin (IC50 > 25 μM). As expected, light activation leads to increased production of singlet oxygen species in vitro and accumulation of reactive oxygen species in vivo. Importantly, we established that light exposure shifts the mode of action of the complexes towards activation of a caspase 3-dependent apoptosis that correlates with increased DNA damage. Altogether, this study characterizes novel ruthenium complexes with dual activity that can be tuned towards different mode of action in order to bypass cancer cell resistance mechanisms.
Collapse
Affiliation(s)
- Jorge Andrés Solís-Ruiz
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Anaïs Barthe
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - Gilles Riegel
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - Rafael Omar Saavedra-Díaz
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Carretera Cunduacán-Jalpa Km. 1, 86690 Cunduacán, Tabasco, Mexico
| | - Christian Gaiddon
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, 3 Avenue Molière, 67200 Strasbourg, France.
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
39
|
Toupin NP, Nadella S, Steinke SJ, Turro C, Kodanko JJ. Dual-Action Ru(II) Complexes with Bulky π-Expansive Ligands: Phototoxicity without DNA Intercalation. Inorg Chem 2020; 59:3919-3933. [PMID: 32096986 DOI: 10.1021/acs.inorgchem.9b03585] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and photochemical and biological characterization of Ru(II) complexes containing π-expansive ligands derived from dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2dppn) adorned with flanking aryl substituents. Late-stage Suzuki couplings produced Me2dppn ligands substituted at the 10 and 15 positions with phenyl (5), 2,4-dimethylphenyl (6), and 2,4-dimethoxyphenyl (7) groups. Complexes of the general formula [Ru(tpy)(L)(py)](PF6)2 (8-10), where L = 4-7, were characterized and shown to have dual photochemotherapeutic (PCT) and photodynamic therapy (PDT) behavior. Quantum yields for photodissociation of monodentate pyridines from 8-10 were about 3 times higher than that of parent complex [Ru(tpy)(Me2dppn)(py)](PF6)2 (1), whereas quantum yields for singlet oxygen (1O2) production were ∼10% lower than that of 1. Transient absorption spectroscopy indicates that 8-10 possess long excited state lifetimes (τ = 46-50 μs), consistent with efficient 1O2 production through population and subsequent decay of ligand-centered 3ππ* excited states. Complexes 8-10 displayed greater lipophilicity relative to 1 and association to DNA but do not intercalate between the duplex base pairs. Complexes 1 and 8-10 showed photoactivated toxicity in breast and prostate cancer cell lines with phototherapeutic indexes, PIs, as high as >56, where the majority of cell death was achieved 4 h after treatment with Ru(II) complexes and light. Flow cytometric data and rescue experiments were consistent with necrotic cell death mediated by the production of reactive oxygen species, especially 1O2. Collectively, this study confirms that DNA intercalation by Ru(II) complexes with π-expansive ligands is not required to achieve photoactivated cell death.
Collapse
Affiliation(s)
- Nicholas P Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sandeep Nadella
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
40
|
Rhenium(I) polypyridine complexes coordinated to an ethyl-isonicotinate ligand: Luminescence and in vitro anti-cancer studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Soliman N, McKenzie LK, Karges J, Bertrand E, Tharaud M, Jakubaszek M, Guérineau V, Goud B, Hollenstein M, Gasser G, Thomas CM. Ruthenium-initiated polymerization of lactide: a route to remarkable cellular uptake for photodynamic therapy of cancer. Chem Sci 2020; 11:2657-2663. [PMID: 34084324 PMCID: PMC8157674 DOI: 10.1039/c9sc05976h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ruthenium complexes have attracted a lot of attention as potential photosensitizers (PSs) for photodynamic therapy (PDT). However, some of these PSs are unsuitable for PDT applications due to their low cellular uptake, which is possibly the consequence of their relatively low degree of lipophilicity, which prevents them from penetrating into tumor cells. Here, we report the simple one-pot synthesis of ruthenium-containing nanoconjugates from a non-cell-penetrating, non-phototoxic ruthenium(ii) polypyridyl complex (RuOH), by a drug-initiated ring-opening polymerization of lactide through the formation of a zinc initiator. These conjugates were then formulated into nanoparticles by nanoprecipitation and characterized by means of nuclear magnetic resonance spectroscopy (NMR), matrix-assisted laser desorption/ionization – time of flight mass spectrometry (MALDI-TOF MS) and dynamic light scattering (DLS). Finally, their photo-therapeutic activity (λexc = 480 nm, 3.21 J cm−2) in cancerous human cervical carcinoma (HeLa) and non-cancerous retinal pigment epithelium (RPE-1) cells was tested alongside that of RuOH and their cellular uptake in HeLa cells was assessed by confocal microscopy and inductively coupled plasma – mass spectrometry (ICP-MS). All nanoparticles showed improved photophysical properties including luminescence and singlet oxygen generation, enhanced cellular uptake and, capitalizing on this, an improved photo-toxicity. Overall, this study demonstrates how it is possible to transform a non-phototoxic PDT PS into an active PS using an easy, versatile polymerization technique. This study shows the transformation of a non-phototoxic PDT photosensitizer into an active photosensitizer using an easy, versatile and generalizable one-pot ruthenium-initiated polymerization technique.![]()
Collapse
Affiliation(s)
- Nancy Soliman
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France .,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Luke K McKenzie
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France .,Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523 75015 Paris France
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Emilie Bertrand
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France .,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Mickaël Tharaud
- Université de Paris, Institut de Physique du Globe de Paris, CNRS 75005 Paris France
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France .,Institut Curie, PSL University, CNRS UMR 144 75005 Paris France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Bruno Goud
- Institut Curie, PSL University, CNRS UMR 144 75005 Paris France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523 75015 Paris France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Christophe M Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| |
Collapse
|
42
|
Ghosh G, Yin H, Monro SMA, Sainuddin T, Lapoot L, Greer A, McFarland SA. Synthesis and Characterization of Ru(II) Complexes with π-Expansive Imidazophen Ligands for the Photokilling of Human Melanoma Cells. Photochem Photobiol 2020; 96:349-357. [PMID: 31730278 DOI: 10.1111/php.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Ru(II) complexes were synthesized with π-expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen-1-yl, naphthalene-2-yl, anthryl and pyrenyl groups) attached at a 1H-imidazo[4,5-f][1,10]phenanthroline ligand and 4,4'-dimethyl-2,2'-bipyridine (4,4'-dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK-MEL-28 cells. In the SK-MEL-28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2-0.5 µm) and have low dark toxicity (EC50 = 58-230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2-(pyren-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline ligand. This high PI is in part attributed to the π-rich character added by the pyrenyl group, and a possible low-lying and longer-lived 3 IL state due to equilibration with the 3 MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ∆ = 0.84), contributions from type-I processes (oxygen radicals and radical ions) are competitive with the type-II (1 O2 ) process based on effects of added sodium azide and solvent deuteration.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY
| | - Huimin Yin
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Susan M A Monro
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Tariq Sainuddin
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Lloyd Lapoot
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Sherri A McFarland
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, TX.,Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, NC
| |
Collapse
|
43
|
Estalayo-Adrián S, Blasco S, Bright SA, McManus GJ, Orellana G, Williams DC, Kelly JM, Gunnlaugsson T. Water-soluble amphiphilic ruthenium(ii) polypyridyl complexes as potential light-activated therapeutic agents. Chem Commun (Camb) 2020; 56:9332-9335. [DOI: 10.1039/d0cc04397d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new water-soluble amphiphilic Ru(ii) polypyridyl complexes were synthesised and their photophysical and photobiological properties evaluated; both complexes showed a rapid cellular uptake and phototoxicity against HeLa cervical cancer cells.
Collapse
Affiliation(s)
- Sandra Estalayo-Adrián
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Salvador Blasco
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Sandra A. Bright
- School of Biochemistry and Immunology
- Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
| | - Gavin J. McManus
- School of Biochemistry and Immunology
- Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
| | - Guillermo Orellana
- Department of Organic Chemistry
- Faculty of Chemistry, Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - D. Clive Williams
- School of Biochemistry and Immunology
- Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
| | - John M. Kelly
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| |
Collapse
|
44
|
Ballester FJ, Ortega E, Bautista D, Santana MD, Ruiz J. Ru(ii) photosensitizers competent for hypoxic cancers via green light activation. Chem Commun (Camb) 2020; 56:10301-10304. [DOI: 10.1039/d0cc02417a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii) complexes exhibit phototherapeutic indexes higher than 750 in cancer HeLa cells with low nanomolar IC50 values under low doses of non-harmful green light and are active in normoxia and hypoxia conditions.
Collapse
Affiliation(s)
- Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|
45
|
McFarland SA, Mandel A, Dumoulin-White R, Gasser G. Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology? Curr Opin Chem Biol 2019; 56:23-27. [PMID: 31759225 DOI: 10.1016/j.cbpa.2019.10.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Photodynamic therapy (PDT) is an approved medical technique to treat certain forms of cancer. It has been used to complement traditional anticancer modalities such as surgery, chemotherapy or radiotherapy, and in certain cases, to replace these treatments. One critical parameter of PDT is the photosensitizer (PS); historically, a purely organic macrocyclic tetrapyrrole-based structure. This short review surveys two recent clinical examples of metal complexes, namely TOOKAD®-Soluble and TLD-1433, which have ideal photophysical properties to act as PDT PSs. We highlight the important role played by the metal ions in the PS for PDT activity.
Collapse
Affiliation(s)
- Sherri A McFarland
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, TX 76019-0065, USA; The University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, NC 27402-6170, USA.
| | - Arkady Mandel
- Theralase Technologies Inc., Toronto, Ontario, Canada
| | | | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France.
| |
Collapse
|
46
|
Zhang XZ, Cheng CC, Chih YR, Lin YT, Chen HY, Chen YJ, Endicott JF. Low-Temperature Spectra and Density Functional Theory Modeling of Ru(II)-Bipyridine Complexes with Cyclometalated Ancillary Ligands: The Excited State Spin-Orbit Coupling Origin of Variations in Emission Efficiencies. J Phys Chem A 2019; 123:9431-9449. [PMID: 31557033 DOI: 10.1021/acs.jpca.9b05695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The 77 K emission spectra of cyclometalated ruthenium(II)-2,2'-bipyridine (CM-Ru-bpy) chromophores are very similar to those of related Ru-bpy complexes with am(m)ine or diimmine ancillary ligands, and density functional theory (DFT) modeling confirms that the lowest energy triplet metal to ligand charge transfer (3MLCT) excited states of CM-Ru-bpy and related Ru-bpy complexes have very similar electronic configurations. However, the phosphorescence decay efficiencies of CM-Ru-bpy excited states are about twice those of the conventional Ru-bpy analogues. In contrast to the similar 3MLCT excited state electronic configurations of the two classes of complexes, the CM-Ru-bpy chromophores have much broader visible region MLCT absorptions resulting from several overlapping transitions, even at 87 K. The emitting excited-state emission efficiencies depend on spin-orbit coupling (SOC) mediated intensity stealing from singlet excited states, and this work explores the relationship between the phosphorescence efficiency and visible region absorption spectra of Ru-bpy 3MLCT excited states in the weak SOC limit. The intrinsic 3MLCT emission efficiency, ιem, depends on mixing with singlet excited states whose RuIII-dπ-orbital angular momenta differ from that of the emitting state. DFT modeling of the 1MLCT excited-state electronic configurations that contribute significantly to the lowest energy absorption bands have RuIII-dπ orbitals that differ from those of their emitting 3MLCT excited states. This leads to a very close relationship between ιem and the lowest energy MLCT band absorptivities in Ru-bpy chromophores. Thus, the larger number of 1MLCT transitions that contribute to the lowest energy absorption bands accounts for the enhanced phosphorescence efficiency of Ru-bpy complexes with cyclometalated ancillary ligands.
Collapse
Affiliation(s)
- Xiu Zhu Zhang
- Department of Chemistry , Fu-Jen Catholic University , New Taipei City 24205 , Taiwan , ROC
| | - Ching Chia Cheng
- Department of Chemistry , Fu-Jen Catholic University , New Taipei City 24205 , Taiwan , ROC
| | - Yu Ru Chih
- Department of Chemistry , Fu-Jen Catholic University , New Taipei City 24205 , Taiwan , ROC
| | - Yu-Ting Lin
- Department of Chemistry , Fu-Jen Catholic University , New Taipei City 24205 , Taiwan , ROC
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 80708 , Taiwan , ROC
| | - Yuan Jang Chen
- Department of Chemistry , Fu-Jen Catholic University , New Taipei City 24205 , Taiwan , ROC
| | - John F Endicott
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
47
|
Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
McCain J, Colón KL, Barrett PC, Monro SMA, Sainuddin T, Roque Iii J, Pinto M, Yin H, Cameron CG, McFarland SA. Photophysical Properties and Photobiological Activities of Ruthenium(II) Complexes Bearing π-Expansive Cyclometalating Ligands with Thienyl Groups. Inorg Chem 2019; 58:10778-10790. [PMID: 31386351 DOI: 10.1021/acs.inorgchem.9b01044] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new family of cyclometalated ruthenium(II) complexes [Ru(N^N)2(C^N)]+ derived from the π-extended benzo[h]imidazo[4,5-f]quinolone ligand appended with thienyl groups (n = 1-4, compounds 1-4) was prepared and its members were characterized for their chemical, photophysical, and photobiological properties. The lipophilicities of 1-4, determined as octanol-water partition coefficients (log Po/w), were positive and increased with the number of thienyl units. The absorption and emission bands of the C^N compounds were red-shifted by up to 200 nm relative to the analogous Ru(II) diimine systems. All of the complexes exhibited dual emission with the intraligand fluorescence (1IL, C^N-based) shifting to lower energies with increasing n and the metal-to-ligand charge transfer phosphorescence (3MLCT, N^N-based) remaining unchanged. Compounds 1-3 exhibited excited state absorption (ESA) profiles consistent with lowest-lying 3MLCT states when probed by nanosecond transient absorption (TA) spectroscopy with 532 nm excitation and had contributions from 1IL(C^N) states with 355 nm excitation. These assignments were supported by the lifetimes observed (<10 ns for the 1IL states and around 20 ns for the 3MLCT states) as well as a noticeable ESA for 3 with 355 nm excitation that did not occur with 532 nm excitation. Compound 4 was the only member of the family with two 3MLCT emissive lifetimes (15, 110 ns), and the TA spectra collected with both 355 and 532 nm excitation was assigned to the 3IL state, which was corroborated by its 4-6 μs lifetime. The ESA for 4 had a rise time of approximately 10 ns and an initial decay of 110 ns, which suggests a possible 3MLCT-3IL excited state equilibrium that results in delayed emission from the 3MLCT state. Compound 4 was nontoxic toward human skin melanoma cells (SKMEL28) in the dark (EC50 = >300 μM); 1-3 were cytotoxic and yielded EC50 values between 1 and 20 μM. The photocytotoxicites with visible light ranged from 87 nM with a phototherapeutic index (PI) of 13 for 1 to approximately 1 μM (PI = >267) for 4. With red light, EC50 values varied from 270 nM (PI = 21) for 3 to 12 μM for 4 (PI = >25). The larger PIs for 4, especially with visible light, were attributed to the much lower dark cytotoxicity for this compound. Because the dark cytotoxicity contributes substantially to the observed photocytotoxicity for 1-3, it was not possible to assess whether the 3IL state of 4 led to a much more potent phototoxic mechanism in the absence of dark toxicity. There was no stark contrast in cellular uptake and accumulation by laser scanning confocal and differential interference contrast microscopy to explain the large differences in dark toxicities between 1-3 and 4. Nevertheless, the study highlights a new family of Ru(II) C^N complexes where π-conjugation beyond a certain point results in low dark cytotoxicity with high photocytotoxicity, opposing the notion that cyclometalated Ru(II) systems are too toxic to be phototherapeutic agents.
Collapse
Affiliation(s)
- Julia McCain
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia B4P 2R6 , Canada
| | - Katsuya L Colón
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Patrick C Barrett
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Susan M A Monro
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia B4P 2R6 , Canada
| | - Tariq Sainuddin
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia B4P 2R6 , Canada
| | - John Roque Iii
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Mitch Pinto
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia B4P 2R6 , Canada
| | - Huimin Yin
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia B4P 2R6 , Canada
| | - Colin G Cameron
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Sherri A McFarland
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia B4P 2R6 , Canada.,Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| |
Collapse
|
49
|
Lan M, Zhao S, Liu W, Lee C, Zhang W, Wang P. Photosensitizers for Photodynamic Therapy. Adv Healthc Mater 2019; 8:e1900132. [PMID: 31067008 DOI: 10.1002/adhm.201900132] [Citation(s) in RCA: 551] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Indexed: 12/12/2022]
Abstract
As an emerging clinical modality for cancer treatment, photodynamic therapy (PDT) takes advantage of the cytotoxic activity of reactive oxygen species (ROS) that are generated by light irradiating photosensitizers (PSs) in the presence of oxygen (O2 ). However, further advancements including tumor selectivity and ROS generation efficiency are still required. Substantial efforts are devoted to design and synthesize smart PSs with optimized properties for achieving a desirable therapeutic efficacy. This review summarizes the recent progress in developing intelligent PSs for efficient PDT, ranging from single molecules to delicate nanomaterials. The strategies to improve ROS generation through optimizing photoinduced electron transfer and energy transfer processes of PSs are highlighted. Moreover, the approaches that combine PDT with other therapeutics (e.g., chemotherapy, photothermal therapy, and radiotherapy) and the targeted delivery in cancer cells or tumor tissue are introduced. The main challenges for the clinical application of PSs are also discussed.
Collapse
Affiliation(s)
- Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCollege of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCollege of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and EngineeringCity University of Hong Kong Hong Kong SAR CN P. R. China
| | - Wenjun Zhang
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and EngineeringCity University of Hong Kong Hong Kong SAR CN P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
50
|
Yuan B, Liu J, Guan R, Jin C, Ji L, Chao H. Endoplasmic reticulum targeted cyclometalated iridium(iii) complexes as efficient photodynamic therapy photosensitizers. Dalton Trans 2019; 48:6408-6415. [PMID: 30994678 DOI: 10.1039/c9dt01072f] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The endoplasmic reticulum (ER) is an indispensable organelle that undertakes the synthesis and export of proteins and membrane lipids. Subtle interferences of the ER redox signaling pathway are very likely to cause ER-stress induced apoptosis. In view of this, we herein present a series of ER-targeted Ir(iii) complexes (Ir1-Ir3) as photodynamic therapy (PDT) photosensitizers with a gradually extended conjugation area in the main ligand, and study the correlation between the conjugation area and PDT performance. The results showed that all of these complexes can accumulate in the ER and effectively induce cell apoptosis after PDT therapeutics (405 nm, 6 J cm-2) by an ER stress mechanism, and both their singlet oxygen quantum yields and cytotoxicities increase as the conjugation area extends. All complexes showed PDT efficacy towards different cancer cell lines. Among them, Ir2 exhibited the highest PI value (94.3) against A549 cells with an IC50 down to 0.65 μM. In addition, the post PDT ER-stress induced apoptosis along with the efflux of Ca2+ from the ER system in A549 cells in a short period of time (45-90 min) with the pretreatment of Ir2 was demonstrated. All of these results indicate the promising potential of Ir2 as an effective PDT photosensitizer.
Collapse
Affiliation(s)
- Bo Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | |
Collapse
|