1
|
Kormschikov ID, Polovkova MA, Kirakosyan GA, Martynov AG, Gorbunova YG, Tsivadze AY. Magnetic Anisotropy of Homo- and Heteronuclear Terbium(III) and Dysprosium(III) Trisphthalocyaninates Derived from Paramagnetic 1H-NMR Investigation. Molecules 2024; 29:510. [PMID: 38276588 PMCID: PMC11154240 DOI: 10.3390/molecules29020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
1H-NMR spectroscopy of lanthanide complexes is a powerful tool for deriving spectral-structural correlations, which provide a clear link between the symmetry of the coordination environment of paramagnetic metal centers and their magnetic properties. In this work, we have first synthesized a series of homo- (M = M* = Dy) and heteronuclear (M ≠ M* = Dy/Y and Dy/Tb) triple-decker complexes [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc], where BuO- and 15C5- are, respectively, butoxy and 15-crown-5 substituents on phthalocyanine (Pc) ligands. We provide an algorithmic approach to assigning the 1H-NMR spectra of these complexes and extracting the axial component of the magnetic susceptibility tensor, χax. We show how this term is related to the nature of the lanthanide ion and the shape of its coordination polyhedron, providing an experimental basis for further theoretical interpretation of the revealed correlations.
Collapse
Affiliation(s)
- Ilya D. Kormschikov
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia;
| | - Marina A. Polovkova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, 119071 Moscow, Russia; (M.A.P.); (G.A.K.); (Y.G.G.); (A.Y.T.)
| | - Gayane A. Kirakosyan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, 119071 Moscow, Russia; (M.A.P.); (G.A.K.); (Y.G.G.); (A.Y.T.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Alexander G. Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, 119071 Moscow, Russia; (M.A.P.); (G.A.K.); (Y.G.G.); (A.Y.T.)
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, 119071 Moscow, Russia; (M.A.P.); (G.A.K.); (Y.G.G.); (A.Y.T.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Aslan Yu. Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, 119071 Moscow, Russia; (M.A.P.); (G.A.K.); (Y.G.G.); (A.Y.T.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| |
Collapse
|
2
|
Santana FS, Perfetti M, Briganti M, Sacco F, Poneti G, Ravera E, Soares JF, Sessoli R. A dysprosium single molecule magnet outperforming current pseudocontact shift agents. Chem Sci 2022; 13:5860-5871. [PMID: 35685802 PMCID: PMC9132026 DOI: 10.1039/d2sc01619b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 12/19/2022] Open
Abstract
A common criterion for designing performant single molecule magnets and pseudocontact shift tags is a large magnetic anisotropy. In this article we present a dysprosium complex chemically designed to exhibit strong easy-axis type magnetic anisotropy that is preserved in dichloromethane solution at room temperature. Our detailed theoretical and experimental studies on the magnetic properties allowed explaining several features typical of highly performant SMMs. Moreover, the NMR characterization shows remarkably large chemical shifts, outperforming the current state-of-the art PCS tags.
Collapse
Affiliation(s)
- Francielli S Santana
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Research Unit Firenze, INSTM I-50019 Sesto Fiorentino Firenze Italy
| | - Matteo Briganti
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
| | - Francesca Sacco
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia - Cidade Universitária Avenida Athos da Silveira Ramos, 149 21941-909 Rio de Janeiro Brazil
| | - Enrico Ravera
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
| | - Jaísa F Soares
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Research Unit Firenze, INSTM I-50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
3
|
Martynov AG, Horii Y, Katoh K, Bian Y, Jiang J, Yamashita M, Gorbunova YG. Rare-earth based tetrapyrrolic sandwiches: chemistry, materials and applications. Chem Soc Rev 2022; 51:9262-9339. [DOI: 10.1039/d2cs00559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarises advances in chemistry of tetrapyrrole sandwiches with rare earth elements and highlights the current state of their use in single-molecule magnetism, organic field-effect transistors, conducting materials and nonlinear optics.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Leninskiy pr., 31, Moscow, Russia
| |
Collapse
|
4
|
Comba P, Enders M, Großhauser M, Hiller M, Klingeler R, Koo C, Müller D, Rajaraman G, Swain A, Tavhelidse M, Wadepohl H. Validation of Ab-Initio-Predicted Magnetic Anisotropies and Magneto-structural Correlations in Linear Hetero-trinuclear Dy III -Ni II 2 Compounds. Chemistry 2021; 27:9372-9382. [PMID: 33884678 PMCID: PMC8359843 DOI: 10.1002/chem.202100626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/20/2022]
Abstract
Reported are single crystal SQUID and single crystal high-frequency/high-field EPR data of a trinuclear complex with a rare six-coordinate coordination sphere of a DyIII center coupled to two terminal six-coordinate NiII ions. The analysis of the single crystal spectroscopic parameters allows for an accurate description of the ground state wavefunction. The experimental analysis is supplemented by the analysis of the paramagnetic NMR spectra, allowing for a thorough description of the DyIII center. The experimental data are interpreted on the basis of an ab initio ligand field analysis, and the computed parameters are in good agreement with the experimental observations. This supports the quality of the theoretical approach based on a pseudo-spin Hamiltonian for the electronic ground state. Further support emerges from the ab initio ligand field theory based analysis of a structurally very similar system that, in contrast to the complex reported here, shows single molecule magnetic properties, and this is in agreement with the quantum-chemical prediction and analysis.
Collapse
Affiliation(s)
- Peter Comba
- Universität Heidelberg Anorganisch-Chemisches Institut INF 27069120HeidelbergGermany
- Interdisziplinäres Zentrum für Wissenschaftliches RechnenIWRUniversität Heidelberg INF 27069120HeidelbergGermany
| | - Markus Enders
- Universität Heidelberg Anorganisch-Chemisches Institut INF 27069120HeidelbergGermany
| | - Michael Großhauser
- Universität Heidelberg Anorganisch-Chemisches Institut INF 27069120HeidelbergGermany
| | - Markus Hiller
- Universität Heidelberg Anorganisch-Chemisches Institut INF 27069120HeidelbergGermany
| | - Rüdiger Klingeler
- Kirchhoff-Institut für PhysikUniversität Heidelberg, INF 22769120HeidelbergGermany
- Centre for Advanced Materials (CAM), INF 22569120HeidelbergGermany
| | - Changhyun Koo
- Kirchhoff-Institut für PhysikUniversität Heidelberg, INF 22769120HeidelbergGermany
| | - Dennis Müller
- Universität Heidelberg Anorganisch-Chemisches Institut INF 27069120HeidelbergGermany
- Interdisziplinäres Zentrum für Wissenschaftliches RechnenIWRUniversität Heidelberg INF 27069120HeidelbergGermany
| | - Gopalan Rajaraman
- Department of ChemistryIndian Institute of Technology Bombay PowaiMumbai400076India
| | - Abinash Swain
- Department of ChemistryIndian Institute of Technology Bombay PowaiMumbai400076India
| | - Msia Tavhelidse
- Kirchhoff-Institut für PhysikUniversität Heidelberg, INF 22769120HeidelbergGermany
| | - Hubert Wadepohl
- Universität Heidelberg Anorganisch-Chemisches Institut INF 27069120HeidelbergGermany
| |
Collapse
|
5
|
Abd El-Mageed AIA, Ogawa T. Supramolecular structures of terbium(iii) porphyrin double-decker complexes on a single-walled carbon nanotube surface. RSC Adv 2019; 9:28135-28145. [PMID: 35530484 PMCID: PMC9071046 DOI: 10.1039/c9ra05818d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
This work mainly reports the observation of novel supramolecular structures of TbIII-5,15-bisdodecylporphyrin (BDP, C12P) double-decker complexes on the surfaces of single-walled carbon nanotubes (SWNTs) performed by scanning tunneling microscopy under an ultra-high vacuum and low temperature, atomic force microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, and ultraviolet-visible spectroscopy. The molecules formed a well-ordered self-assembled helix-shaped array with regular periodicity on the tube surface. Additionally, some magnetic properties of the BDP-molecule as well as the resulting BDP-SWNT composites were investigated by superconducting quantum interference measurements. The molecule exhibits single-molecule magnetic (SMM) properties and the composite's magnetization increases almost linearly with decreasing temperature which is possibly due to the coupling between porphyrin molecules and SWNTs. Consequently, this may enable the development of more advanced spintronic devices based on porphyrin-nanocarbon composites. For the first time, using scanning probe microscopy, the supramolecular structures of terbium porphyrin double-decker complexes were observed on single-walled carbon nanotubes surfaces, where the molecules formed a well-ordered self-assembled array.![]()
Collapse
Affiliation(s)
- Ahmed I A Abd El-Mageed
- Chemistry Department, Graduate School of Science, Osaka University Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan .,Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Takuji Ogawa
- Chemistry Department, Graduate School of Science, Osaka University Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
6
|
Zhi Q, Ma F, Wang C, Chen Y, Wang H, Sun H, Jiang J. Single‐Ion Magnet Investigation of ABAB‐Type Tetrachloro‐ and Tetraalkoxy‐Substituted Bis(phthalocyaninato) Terbium Double‐Decker with
D
2
Symmetrical Ligand Field. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Qianjun Zhi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials Beijing Normal University Beijing 100875 China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Haoling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials Beijing Normal University Beijing 100875 China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
7
|
Chen Y, Ma F, Chen X, Zhang Y, Wang H, Wang K, Qi D, Sun HL, Jiang J. Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato]terbium Double-Decker Single-Ion Magnets. Inorg Chem 2019; 58:2422-2429. [PMID: 30721033 DOI: 10.1021/acs.inorgchem.8b02949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the purpose of further exploring the effect of nonperipherally attached substituents on single-ion magnet (SIMs) performance, tetrasubstituted bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato]terbium double-deckers, in both the reduced form TbH[Pc(α-OC5H11)4]2 (1) and the neutral form Tb[Pc(α-OC5H11)4]2 (2), were prepared. Single-crystal X-ray diffraction analysis for 2 unambiguously demonstrates the pinwheellike molecular structure with C4 symmetry. Magnetic investigations of the two bis(phthalocyaninato)terbium double-deckers reveal their characteristic SIM nature. 2 exhibits SIM performance superior to that of 1, as revealed by the larger energy barrier of 466 K for the former species and 431 K for the latter species due to the presence of organic radical-f (radical-Tb) interactions. The enhanced SIM performance of 2 in comparison to 1 actually stems from the presence of radical-f interactions and an enhanced ligand field strength. The latter positive factor is indicated by the electrostatic potential around the terbium ion on the basis of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Yuehong Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| |
Collapse
|
8
|
Inose T, Tanaka D, Liu J, Kajihara M, Mishra P, Ogawa T, Komeda T. Coordination structure conversion of protonated bisporphyrinato terbium(iii) double-decker complexes and creation of a Kondo assembly by electron injection on the Au(111) surface. NANOSCALE 2018; 10:19409-19417. [PMID: 30307449 DOI: 10.1039/c8nr04630a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The first step towards the synthesis of single-molecule magnet (SMM)-based spintronics devices is the organization and manipulation of magnetic molecules on surfaces. Our previous studies on bulk crystals demonstrated that protonated porphyrinato double-decker complexes [Tb(Hoep)(oep)] (oep = 2,3,7,8,12,13,17,18-octaethylporphyrinato) are not SMMs; however, once a hydrogen is removed to produce their neutral radical forms, [Tb(oep)2], they convert to SMMs. These intriguing properties encouraged us to examine the electronic/spin properties of these complexes and their chemical conversion ability after their transfer onto a metal substrate, similar to the environment required for the practical application of SMMs. Herein, we conducted a single-molecule-scale conversion of the protonated bis(porphyrinato)terbium(iii) double-decker complex [Tb(Hoep)(oep)], whose hepta-coordinated terbium ion changes into octa-coordinated [Tb(oep)2] on detaching a hydrogen atom by scanning tunnelling microscopy. This conversion can be caused by the injection of tunnelling electrons of energy 1.5-2.5 eV. We confirmed the conversion by analysing the topographic image and the spin state of the molecule. The latter was achieved by examining the Kondo resonance, which originated from the screening of the molecular spin by the conduction electrons of the metal. The Kondo resonance was not observed for [Tb(Hoep)(oep)] but was observed for the converted species, which agrees well with a model containing the [Tb(oep)2] molecule and Kondo resonance originating from the π-electron spin of the porphyrin ligand. Even though it is not possible to provide complete evidence of the SMM properties of the transferred molecule, we have demonstrated a possible path to realize the switch-on SMM properties of a single molecule.
Collapse
Affiliation(s)
- Tomoko Inose
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Morita T, Damjanović M, Katoh K, Kitagawa Y, Yasuda N, Lan Y, Wernsdorfer W, Breedlove BK, Enders M, Yamashita M. Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement. J Am Chem Soc 2018; 140:2995-3007. [PMID: 29400960 DOI: 10.1021/jacs.7b12667] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Herein we report the synthesis and characterization of a dinuclear TbIII single-molecule magnet (SMM) with two [TbPc2]0 units connected via a fused-phthalocyaninato ligand. The stable and robust complex [(obPc)Tb(Fused-Pc)Tb(obPc)] (1) was characterized by using synchrotron radiation measurements and other spectroscopic techniques (ESI-MS, FT-IR, UV). The magnetic couplings between the TbIII ions and the two π radicals present in 1 were explored by means of density functional theory (DFT). Direct and alternating current magnetic susceptibility measurements were conducted on magnetically diluted and nondiluted samples of 1, indicating this compound to be an SMM with improved properties compared to those of the well-known [TbPc2]-/0/+ and the axially symmetric dinuclear TbIII phthalocyaninato triple-decker complex (Tb2(obPc)3). Assuming that the probability of quantum tunneling of the magnetization (QTM) occurring in one TbPc2 unit is PQTM, the probability of QTM simultaneously occurring in 1 is PQTM2, meaning that QTM is effectively suppressed. Furthermore, nondiluted samples of 1 underwent slow magnetic relaxation times (τ ≈ 1000 s at 0.1 K), and the blocking temperature (TB) was determined to be ca. 16 K with an energy barrier for spin reversal (Ueff) of 588 cm-1 (847 K) due to D4d geometry and weak inter- and intramolecular magnetic interactions as an exchange bias (Hbias), reducing QTM. Four hyperfine steps were observed by micro-SQUID measurement. Furthermore, solution NMR measurements (one-dimensional, two-dimensional, and dynamic) were done on 1, which led to the determination of the high rotation barrier (83 ± 10 kJ/mol) of the obPc ligand. A comparison with previously reported TbIII triple-decker compounds shows that ambient temperature NMR measurements can indicate improvements in the design of coordination environments for SMMs. A large Ueff causes strong uniaxial magnetic anisotropy in 1, leading to a χax value (1.39 × 10-30 m3) that is larger than that for Tb2(obPc)3 (0.86 × 10-30 m3). Controlling the coordination environment and spin arrangement is an effective technique for suppressing QTM in TbPc2-based SMMs.
Collapse
Affiliation(s)
- Takaumi Morita
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Marko Damjanović
- Institute of Inorganic Chemistry, Heidelberg University , Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.,Physikalisches Institut and Institute of Nanotechnology, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yanhua Lan
- Physikalisches Institut and Institute of Nanotechnology, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Wolfgang Wernsdorfer
- Physikalisches Institut and Institute of Nanotechnology, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.,CNRS and Université Grenoble Alpes, Institut Néel , 38042 Grenoble, France
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Markus Enders
- Institute of Inorganic Chemistry, Heidelberg University , Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,WPI Research Center, Advanced Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.,School of Materials Science and Engineering, Nankai University , Tianjin 300350, China
| |
Collapse
|
10
|
Horii Y, Horie Y, Katoh K, Breedlove BK, Yamashita M. Changing Single-Molecule Magnet Properties of a Windmill-Like Distorted Terbium(III) α-Butoxy-Substituted Phthalocyaninato Double-Decker Complex by Protonation/Deprotonation. Inorg Chem 2017; 57:565-574. [PMID: 29027796 DOI: 10.1021/acs.inorgchem.7b02124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis, structures, and magnetic properties of α-butoxy-substituted phthalocyaninato double-decker complexes Tb(α-obPc)2 (1-) (α-obPc: dianion of 1,4,8,11,15,18,22,25-octa(n-butoxy)phthalocyaninato) with protonated (1H), deprotonated (1[HDBU]), and diprotonated forms (1H2+) are discussed. X-ray analysis was used to confirm the position of the proton in 1H, and it was revealed that the protonation induced asymmetric distortion in 1H. In contrast, 1[HDBU] was distorted in a highly symmetric windmill-like fashion. 1H is arranged in a slipped column array in the crystal packing, whereas 1[HDBU] is arranged in a one-dimensional fashion, in which the magnetic easy axes of 1[HDBU] lie along the same line. From direct-current (dc) magnetic measurements, ferromagnetic Tb-Tb interactions occur in both 1H and 1[HDBU], and magnetic hysteresis was observed. However, the area of the magnetic hysteresis in 1[HDBU] is larger than that in 1H, meaning that magnetic relaxation time (τ) is longer in 1[HDBU]. In addition, the results of alternating-current magnetic measurements in a zero dc magnetic field indicate that τ of 1[HDBU] is longer as compared to 1H. In other words, protonation/deprotonation affects not only the molecular structures and crystal packing but also the single-molecule magnet properties.
Collapse
Affiliation(s)
- Yoji Horii
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yusuke Horie
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.,WPI Research Center, Advanced Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.,School of Materials Science and Engineering, Nankai University , Tianjin 300350, China
| |
Collapse
|
11
|
Liang Z, Damjanović M, Kamila M, Cosquer G, Breedlove BK, Enders M, Yamashita M. Proton Control of the Lanthanoid Single-Ion Magnet Behavior of a Double-Decker Complex with an Indolenine-Substituted Annulene Ligand. Inorg Chem 2017; 56:6512-6521. [PMID: 28537712 DOI: 10.1021/acs.inorgchem.7b00626] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two double-decker complexes with annulene ligands functionalized with indolenine groups were synthesized and characterized. The position of the proton acting as a counterion on one of the four indolenine nitrogen atoms was determined by using DFT calculations. Deprotonation and protonation of the complex induced by adding a base and an acid, respectively, were monitored by using NMR spectroscopy. Moreover, a correlation among the degree of protonation of the complex, the opening of the hysteresis, and the slow relaxation time is discussed.
Collapse
Affiliation(s)
- Zhifu Liang
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan
| | - Marko Damjanović
- Institute of Inorganic Chemistry, Heidelberg University , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Mritunjoy Kamila
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan
| | - Goulven Cosquer
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan.,CREST, JST , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan
| | - Markus Enders
- Institute of Inorganic Chemistry, Heidelberg University , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan.,CREST, JST , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,WPI Research Center, Advanced Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.,School of Materials Science and Engineering, Nankai University , Tianjin 300350, China
| |
Collapse
|
12
|
Comba P, Enders M, Großhauser M, Hiller M, Müller D, Wadepohl H. Solution and solid state structures and magnetism of a series of linear trinuclear compounds with a hexacoordinate Ln III and two terminal Ni II centers. Dalton Trans 2016; 46:138-149. [PMID: 27924993 DOI: 10.1039/c6dt03488h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported are the syntheses, structures and magnetic properties, also by NMR spectroscopy in solution, of a series of 13 linear trinuclear 3d-4f compounds with a lanthanide(iii) surrounded by two NiII ions, NiLnIII, where the central LnIII is hexacoordinate. For three of the crystal structures, an additional H2O molecule is coordinated to the central LnIII ion, leading to a monocapped trigonal prismatic structure. However, NMR spectroscopy indicates that in solution, these complexes also have a hexacoordinate LnIII center. The solution magnetic anisotropies, determined by NMR spectroscopy, indicate that the axial components of the anisotropies are relatively small and that the DyIII derivative might therefore not exhibit single molecule magnetism. The axial anisotropies determined by NMR spectroscopy are in good agreement with the expectations based on the distorted trigonal prismatic ligand field.
Collapse
Affiliation(s)
- Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut INF 270, D-69120 Heidelberg, Germany. and Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, IWR, INF 270, D-69120 Heidelberg, Germany
| | - Markus Enders
- Universität Heidelberg, Anorganisch-Chemisches Institut INF 270, D-69120 Heidelberg, Germany.
| | - Michael Großhauser
- Universität Heidelberg, Anorganisch-Chemisches Institut INF 270, D-69120 Heidelberg, Germany.
| | - Markus Hiller
- Universität Heidelberg, Anorganisch-Chemisches Institut INF 270, D-69120 Heidelberg, Germany.
| | - Dennis Müller
- Universität Heidelberg, Anorganisch-Chemisches Institut INF 270, D-69120 Heidelberg, Germany. and Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, IWR, INF 270, D-69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut INF 270, D-69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Gendron F, Autschbach J. Ligand NMR Chemical Shift Calculations for Paramagnetic Metal Complexes: 5f1 vs 5f2 Actinides. J Chem Theory Comput 2016; 12:5309-5321. [DOI: 10.1021/acs.jctc.6b00462] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|