1
|
Paul D, Sahoo P, Sengupta A, Tripathy U, Chatterjee S. Revealing the Role of Electronic Effect to Modulate the Photophysics and Z-Scan Responses of o-Locked GFP Chromophores. J Phys Chem B 2025; 129:692-711. [PMID: 39480189 DOI: 10.1021/acs.jpcb.4c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Three novel core green fluorescent protein (GFP) chromophore analogues, based on a doubly locked conformation and variable electronic effects by replacing one hydrogen with bromine, iodine, and methyl, respectively, have been synthesized to modulate the push-pull effect. These chromophores exhibited intramolecular H-bonding, as evidenced by single-crystal X-ray and 1H NMR studies. The fluorescence quantum yields (ϕf) of all of the chromophores were found to be more than an order of magnitude higher (∼0.2) than the unlocked chromophores (∼0.01). It was found that the electronic effect did affect the nonradiative rates, as the quantum yields were found to vary with respect to different analogues in the same solvents. The effect of the push-pull effect was also evident by a higher Stokes-shifted emission in the case of the methyl derivative with respect to the bromo- and iodo-analogues. Furthermore, the emission spectra of these GFP chromophores were found to show positive solvatochromism, which was supported by a quantum chemical calculation. A detailed study, correlating the observed spectral changes with various solvent functions and supported by computational results, established a facile proton transfer, followed by twisted intramolecular charge transfer (TICT) to be the major nonradiative channels of these chromophores. Besides, a completely novel usage of these chromophores was explored for the first time by studying their third-order nonlinear optical characteristics in DMSO using a single-beam Z-scan technique. All of the chromophores exhibited tunable nonlinear refraction (NLR) and nonlinear absorption (NLA) properties that depend upon different substituent groups present in the chromophores. Here, the NLR was due to the effect of self-defocusing, whereas the NLA was triggered by reverse saturable absorption, which is attributed to the two-photon absorption (TPA) process. Surprisingly, the efficiency of the TPA ability of the chromophores was found to be a function of the induced electronic effect. Hence, this work opens a new route for the utility of the ortho-locked GFP chromophores in the field of nonlinear optical applications.
Collapse
Affiliation(s)
- Debasish Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Soumit Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| |
Collapse
|
2
|
Rajasree SS, Fry HC, Gosztola DJ, Saha B, Krishnan R, Deria P. Symmetry-Breaking Charge Transfer in Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5543-5549. [PMID: 38354300 DOI: 10.1021/jacs.3c13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
High quantum-yield charge carrier generation from the initially prepared excitons defines a key step in the light-harvesting and conversion scheme. Photoinduced charge transfer in molecular electron donor-acceptor assemblies is driven by a sizable ΔG0, which compromises the potential of the generated carriers. Reminiscent of the special pair at the reaction center of the natural light-harvesting complex, symmetry-breaking charge transfer (SBCT) within a pair of identical struts of metal-organic framework (MOF) will facilitate the efficient generation of long-lived charge carriers with maximized potentials without incorporating any foreign redox species. We report SBCT in pyrene-based zirconium metal-organic framework (MOF) NU-1000 that leads to efficient generation of radical ions in a polar solvent and bound CT states in a low-polar solvent. The probe unveils the role of the low-lying non-Franck-Condon excitonic states as intermediates in the formation of the SBCT state from the initially prepared Franck-Condon S1 states. Ultrafast and transient spectroscopy─probed over 200 fs-30 μs time scale─evinces a kSBCT = (110 ps)-1 in polar media (εs = 37.5) forming solvated radical ions with recombination rate kCR = (∼45 ns)-1. A slower rate with kSBCT = (203 ps)-1 was recorded in low-polar (εs = 7.0) solvent manifesting a bound [TBAPy•+ TBAPy•-] state with kCR ≈ (17 μs)-1. This discovery, along with other unique photophysical features relevant to light harvesting, should define a MOF-based platform for developing heterogeneous artificial photon energy conversion systems.
Collapse
Affiliation(s)
- Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Bapan Saha
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Riya Krishnan
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Pravas Deria
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| |
Collapse
|
3
|
Dalmau D, Crespo O, Matxain JM, Urriolabeitia EP. Fluorescence Amplification of Unsaturated Oxazolones Using Palladium: Photophysical and Computational Studies. Inorg Chem 2023. [PMID: 37315074 DOI: 10.1021/acs.inorgchem.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Weakly fluorescent (Z)-4-arylidene-5-(4H)-oxazolones (1), ΦPL < 0.1%, containing a variety of conjugated aromatic fragments and/or charged arylidene moieties, have been orthopalladated by reaction with Pd(OAc)2. The resulting dinuclear complexes (2) have the oxazolone ligands bonded as a C^N-chelate, restricting intramolecular motions involving the oxazolone. From 2, a variety of mononuclear derivatives, such as [Pd(C^N-oxazolone)(O2CCF3)(py)] (3), [Pd(C^N-oxazolone)(py)2](ClO4) (4), [Pd(C^N-oxazolone)(Cl)(py)] (5), and [Pd(C^N-oxazolone)(X)(NHC)] (6, 7), have been prepared and fully characterized. Most of complexes 3-6 are strongly fluorescent in solution in the range of wavelengths from green to yellow, with values of ΦPL up to 28% (4h), which are among the highest values of quantum yield ever reported for organometallic Pd complexes with bidentate ligands. This means that the introduction of the Pd in the oxazolone scaffold produces in some cases an amplification of the fluorescence of several orders of magnitude from the free ligand 1 to complexes 3-6. Systematic variations of the substituents of the oxazolones and the ancillary ligands show that the wavelength of emission is tuned by the nature of the oxazolone, while the quantum yield is deeply influenced by the change of ligands. TD-DFT studies of complexes 3-6 show a direct correlation between the participation of the Pd orbitals in the HOMO and the loss of emission through non-radiative pathways. This model allows the understanding of the amplification of the fluorescence and the future rational design of new organopalladium systems with improved properties.
Collapse
Affiliation(s)
- David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Olga Crespo
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jon M Matxain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Euskadi, Spain
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Wang Z, Wang C. Excited State Energy Transfer in Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005819. [PMID: 33788309 DOI: 10.1002/adma.202005819] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/20/2020] [Indexed: 05/18/2023]
Abstract
Excited state energy transfer in metal-organic frameworks (MOFs) is of great interest due to potential application of these materials in photocatalysis and fluorescence sensing. In photocatalysis, a light-harvesting antenna of MOFs can collect energy from a much larger area than a single reaction center and efficiently transport the energy to the active site to enhance photocatalytic efficiency, mimicking nature photosynthesis. In fluorescence sensing, excited state traveling on the framework can search for analyte quencher molecules to give amplified fluorescence quenching, so that one quencher turns off multiple excited states to enhance signal. Key to these designer performances is highly efficient energy transfer on these framework materials that are determined by types of excited states, dimension of the materials, and structure of the frameworks. Advancement of MOF synthetic chemistry provides new tools to control the rate and directionality of energy transfer in these materials, opening opportunities in manipulating excited states at an unprecedented level.
Collapse
Affiliation(s)
- Zhiye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
5
|
Martin CR, Park KC, Corkill RE, Kittikhunnatham P, Leith GA, Mathur A, Abiodun SL, Greytak AB, Shustova NB. Photoresponsive frameworks: energy transfer in the spotlight. Faraday Discuss 2021; 231:266-280. [PMID: 34212961 DOI: 10.1039/d1fd00013f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, spiropyran-containing metal- and covalent-organic frameworks (MOFs and COFs, respectively) are probed as platforms for fostering photochromic behavior in solid-state materials, while simultaneously promoting directional energy transfer (ET). In particular, Förster resonance energy transfer (FRET) between spiropyran and porphyrin derivatives integrated as linkers in the framework matrix is discussed. The photochromic spiropyran derivatives allow for control over material optoelectronic properties through alternation of excitation wavelengths. Photoinduced changes in the material electronic profile have also been probed through conductivity measurements. Time-resolved photoluminescence studies were employed to evaluate the effect of photochromic linkers on material photophysics. Furthermore, "forward" and "reverse" FRET processes occurring between two distinct chromophores were modeled, and the Förster critical radii and ET rates were estimated to support the experimentally observed changes in material photoluminescence.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Ryan E Corkill
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Sakiru L Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| |
Collapse
|
6
|
Li X, Yu J, Lu Z, Duan J, Fry HC, Gosztola DJ, Maindan K, Rajasree SS, Deria P. Photoinduced Charge Transfer with a Small Driving Force Facilitated by Exciplex-like Complex Formation in Metal-Organic Frameworks. J Am Chem Soc 2021; 143:15286-15297. [PMID: 34499503 DOI: 10.1021/jacs.1c06629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photoinduced charge transfer (PCT) is a key step in the light-harvesting (LH) process producing the redox equivalents for energy conversion. However, like traditional macromolecular donor-acceptor assemblies, most MOF-derived LH systems are designed with a large ΔG0 to drive PCT. To emulate the functionality of the reaction center of the natural LH complex that drives PCT within a pair of identical chromophores producing charge carriers with maximum potentials, we prepared two electronically diverse carboxy-terminated zinc porphyrins, BFBP(Zn)-COOH and TFP(Zn)-COOH, and installed them into the hexagonal pores of NU-1000 via solvent-assisted ligand incorporation (SALI), resulting in BFBP(Zn)@NU-1000 and TFP(Zn)@NU-1000 compositions. Varying the number of trifluoromethyl groups at the porphyrin core, we tuned the ground-state redox potentials of the porphyrins within ca. 0.1 V relative to that of NU-1000, defining a small ΔG0 for PCT. For BFBP(Zn)@NU-1000, the relative ground- and excited-state redox potentials of the components facilitate an energy transfer (EnT) from NU-1000* to BFBP(Zn), forming BFBP(Zn)S1* which entails a long-lived charge-separated complex formed through an exciplex-like [BFBP(Zn)S1*-TBAPy] intermediate. Various time-resolved spectroscopic data suggest that EnT from NU-1000* may not involve a fast Förster-like resonance energy transfer (FRET) but rather through a slow [NU-1000*-BFBP(Zn)] intermediate formation. In contrast, TFP(Zn)@NU-1000 displays an efficient EnT from NU-1000* to [TFP(Zn)-TBAPy], a complex that formed at the ground state through electronic interaction, and thereon showed the excited-state feature of [TFP(Zn)-TBAPy]*. The results will help to develop synthetic LHC systems that can produce long-lived photogenerated charge carriers with high potentials, i.e., high open-circuit voltage in photoelectrochemical setups.
Collapse
Affiliation(s)
- Xinlin Li
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Jierui Yu
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois 60439, United States
| | - Karan Maindan
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Pravas Deria
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| |
Collapse
|
7
|
Leith GA, Martin CR, Mayers JM, Kittikhunnatham P, Larsen RW, Shustova NB. Confinement-guided photophysics in MOFs, COFs, and cages. Chem Soc Rev 2021; 50:4382-4410. [PMID: 33594994 DOI: 10.1039/d0cs01519a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the dependence of the photophysical response of chromophores in the confined environments associated with crystalline scaffolds, such as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and molecular cages, has been carefully evaluated. Tunability of the framework aperture, cavity microenvironment, and scaffold topology significantly affects emission profiles, quantum yields, or fluorescence lifetimes of confined chromophores. In addition to the role of the host and its effect on the guest, the methods for integration of a chromophore (e.g., as a framework backbone, capping linker, ligand side group, or guest) are discussed. The overall potential of chromophore-integrated frameworks for a wide-range of applications, including artificial biomimetic systems, white-light emitting diodes, photoresponsive devices, and fluorescent sensors with unparalleled spatial resolution are highlighted throughout the review.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29210, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Rajasree SS, Li X, Deria P. Physical properties of porphyrin-based crystalline metal‒organic frameworks. Commun Chem 2021; 4:47. [PMID: 36697594 PMCID: PMC9814740 DOI: 10.1038/s42004-021-00484-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 01/28/2023] Open
Abstract
Metal‒organic frameworks (MOFs) are widely studied molecular assemblies that have demonstrated promise for a range of potential applications. Given the unique and well-established photophysical and electrochemical properties of porphyrins, porphyrin-based MOFs are emerging as promising candidates for energy harvesting and conversion applications. Here we discuss the physical properties of porphyrin-based MOFs, highlighting the evolution of various optical and electronic features as a function of their modular framework structures and compositional variations.
Collapse
Affiliation(s)
- Sreehari Surendran Rajasree
- grid.411026.00000 0001 1090 2313Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL USA
| | - Xinlin Li
- grid.411026.00000 0001 1090 2313Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL USA
| | - Pravas Deria
- grid.411026.00000 0001 1090 2313Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL USA
| |
Collapse
|
9
|
Roy I, Goswami S, Young RM, Schlesinger I, Mian MR, Enciso AE, Zhang X, Hornick JE, Farha OK, Wasielewski MR, Hupp JT, Stoddart JF. Photon Upconversion in a Glowing Metal–Organic Framework. J Am Chem Soc 2021; 143:5053-5059. [DOI: 10.1021/jacs.1c00298] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - J. Fraser Stoddart
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Myasnyanko IN, Gavrikov AS, Zaitseva SO, Smirnov AY, Zaitseva ER, Sokolov AI, Malyshevskaya KK, Baleeva NS, Mishin AS, Baranov MS. Color Tuning of Fluorogens for FAST Fluorogen‐Activating Protein. Chemistry 2021; 27:3986-3990. [DOI: 10.1002/chem.202004760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Ivan N. Myasnyanko
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexey S. Gavrikov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Snizhana O. Zaitseva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Elvira R. Zaitseva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Anatolii I. Sokolov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Kseniya K. Malyshevskaya
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander S. Mishin
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University Ostrovitianov 1 Moscow 117997 Russia
| |
Collapse
|
11
|
Singh A, Karmakar S, Abraham IM, Rambabu D, Dave D, Manjithaya R, Maji TK. Unraveling the Effect on Luminescent Properties by Postsynthetic Covalent and Noncovalent Grafting of gfp Chromophore Analogues in Nanoscale MOF-808. Inorg Chem 2020; 59:8251-8258. [PMID: 32490672 DOI: 10.1021/acs.inorgchem.0c00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we demonstrate mimicking of photophysical properties of native green fluorescent protein (gfp) by immobilizing the gfp chromophore analogues in nanoscale MOF-808 and further exploring the bioimaging applications. The two virtually nonfluorescent gfp chromophore analogues carrying different functionalities, BDI-AE (COOH/COOMe) and BDI-EE (COOMe/COOMe) were immobilized in nanosized MOF-808 via postsynthetic modification. An 1H NMR and IR study confirms that BDI-AE was coordinated in NMOF-808, whereas BDI-EE was just noncovalently encapsulated. Interestingly, the extremely weakly fluorescent monomers BDI-AE and BDI-EE (QY = 0.01-0.03%, lifetime = 0.01-0.03 ns) showed a 102-fold increase in quantum efficiency with a significantly longer excited-state lifetime (QY = 1.8-5.6%, lifetime 0.89-1.49 ns) after immobilization in the NMOF-808 scaffold. Moreover, BDI-AE@MOF-808 has 4 times higher quantum efficiency as well as longer excited-state lifetime in comparison to BDI-EE@NMOF-808 due to the rigidity imposed in the chromophore upon coordination with Zr4+ in the former case. Further, a cell viability test performed for BDI-AE@NMOF-808 in HeLa cells confirmed the nontoxic nature of the material and, more importantly, bioimaging applications have also been explored successfully.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Irine Maria Abraham
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dhwanit Dave
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ravi Manjithaya
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
12
|
Muldoon PF, Collet G, Eliseeva SV, Luo TY, Petoud S, Rosi NL. Ship-in-a-Bottle Preparation of Long Wavelength Molecular Antennae in Lanthanide Metal-Organic Frameworks for Biological Imaging. J Am Chem Soc 2020; 142:8776-8781. [PMID: 32311264 DOI: 10.1021/jacs.0c01426] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
While metal-organic frameworks (MOFs) have been identified as promising materials for sensitizing near-infrared emitting lanthanide ions (Ln3+) for biological imaging, long-wavelength excitation of such materials requires large, highly delocalized organic linkers or guest-chromophores. Incorporation of such species generally coincides with fewer Ln3+ emitters per unit volume. Herein, the excitation bands of ytterbium-based MOFs are extended to 800 nm via the postsynthetic coupling of acetylene units to form a high density of conjugated π-systems throughout MOF pores. The resulting long wavelength excitation/absorption bands are a synergistic property of the composite material as they are not observed in the individual organic components after disassociation of the MOFs, thus circumventing the need for large organic chromophores. We demonstrate that the long wavelength excitation and emission properties of these modified MOFs are maintained in the biological conditions of cell culture (aqueous environment, salts, heating), pointing toward their promising use for biological imaging applications.
Collapse
Affiliation(s)
- Patrick F Muldoon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Guillaume Collet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, 45071 Orléans, France.,Le Studium Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, 45071 Orléans, France
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stéphane Petoud
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, 45071 Orléans, France
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
Dolgopolova EA, Berseneva AA, Faillace MS, Ejegbavwo OA, Leith GA, Choi SW, Gregory HN, Rice AM, Smith MD, Chruszcz M, Garashchuk S, Mythreye K, Shustova NB. Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA. J Am Chem Soc 2020; 142:4769-4783. [DOI: 10.1021/jacs.9b13505] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ekaterina A. Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anna A. Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Martín S. Faillace
- INFIQC-UNC, CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Otega A. Ejegbavwo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gabrielle A. Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seok W. Choi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Haley N. Gregory
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Allison M. Rice
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
14
|
Lustig WP, Shen Z, Teat SJ, Javed N, Velasco E, O'Carroll DM, Li J. Rational design of a high-efficiency, multivariate metal-organic framework phosphor for white LED bulbs. Chem Sci 2020; 11:1814-1824. [PMID: 34123274 PMCID: PMC8148306 DOI: 10.1039/c9sc05721h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Developing rare-earth element (REE) free yellow phosphors that can be excited by 455 nm blue light will help to decrease the environmental impact of manufacturing energy efficient white light-emitting diodes (WLEDs), decrease their cost of production, and accelerate their adoption across the globe. Luminescent metal-organic frameworks (LMOFs) demonstrate strong potential for use as phosphor materials and have been investigated intensively in recent years. However, the majority are not suitable for the current WLED technology due to their lack of blue excitability. Therefore, designing highly efficient blue-excitable, yellow-emitting, REE free LMOFs is much needed. With an internal quantum yield of 76% at 455 nm excitation, LMOF-231 is the most efficient blue-excitable yellow-emitting LMOF phosphor reported to date. Spectroscopic studies suggest that this quantum yield could be further improved by narrowing the material's bandgap. Based on this information and guided by DFT calculations, we apply a ligand substitution strategy to produce a semi-fluorinated analogue of LMOF-231, LMOF-305. With an internal quantum yield of 88% (λ em = 550 nm) under 455 nm excitation, this LMOF sets a new record for luminescent efficiency in yellow-emitting, blue-excitable, REE free LMOF phosphors. Temperature-dependent and polarized photoluminescence (PL) studies have provided insight on the mechanism of emission and origin of the significant PL enhancement.
Collapse
Affiliation(s)
- William P Lustig
- Department of Chemistry & Chemical Biology, Rutgers University 123 Bevier Rd Piscataway NJ 08854 USA
| | - Zeqing Shen
- Department of Chemistry & Chemical Biology, Rutgers University 123 Bevier Rd Piscataway NJ 08854 USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Nasir Javed
- Department of Chemistry & Chemical Biology, Rutgers University 123 Bevier Rd Piscataway NJ 08854 USA
| | - Ever Velasco
- Department of Chemistry & Chemical Biology, Rutgers University 123 Bevier Rd Piscataway NJ 08854 USA
| | - Deirdre M O'Carroll
- Department of Chemistry & Chemical Biology, Rutgers University 123 Bevier Rd Piscataway NJ 08854 USA
| | - Jing Li
- Department of Chemistry & Chemical Biology, Rutgers University 123 Bevier Rd Piscataway NJ 08854 USA
| |
Collapse
|
15
|
Maindan K, Li X, Yu J, Deria P. Controlling Charge-Transport in Metal-Organic Frameworks: Contribution of Topological and Spin-State Variation on the Iron-Porphyrin Centered Redox Hopping Rate. J Phys Chem B 2019; 123:8814-8822. [PMID: 31535556 DOI: 10.1021/acs.jpcb.9b07506] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metal-organic frameworks (MOFs) are an emerging class of compositions for electro- and photoelectrocatalytic energy conversion processes. Understanding and improving the charge-transport processes within these high surface area molecular redox catalyst assemblies are critical since the charge carrier conductivity is inherently limited in MOFs. Here, we examine a series of four chemically identical but structurally different hydrolytically robust ZrIV-MOFs constructed from tetrakis(4-carboxyphenyl)porphyrinato iron(III), TCPP(FeIII) to understand how their topological construction affects redox hopping conductivity. While a structural variation fixes center-to-center distances to define the hopping rate, we probe that altering the central metal spin-state can further tune the TCPP(FeIII/II) reorganization energy of the self-exchange process. Significant increase in the hopping rate was observed upon axial coordination of 1-methyl imidazole (MIM), which converts a weakly halide bound high-spin (HS) TCPP(FeIII/II) to the six-coordinated low-spin (LS) complex. Our electrochemical and resonance Raman data reveal that pore geometry that defines the Fe-Fe distance in these frameworks dictate the steric demand to accommodate two MIM-molecules, and thus, the population of LS vs HS species is a function of topology in the presence of an excess ligand.
Collapse
Affiliation(s)
- Karan Maindan
- Department of Chemistry and Biochemistry , Southern Illinois University , 1245 Lincoln Drive , Carbondale , Illinois 62901 , United States
| | - Xinlin Li
- Department of Chemistry and Biochemistry , Southern Illinois University , 1245 Lincoln Drive , Carbondale , Illinois 62901 , United States
| | - Jierui Yu
- Department of Chemistry and Biochemistry , Southern Illinois University , 1245 Lincoln Drive , Carbondale , Illinois 62901 , United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry , Southern Illinois University , 1245 Lincoln Drive , Carbondale , Illinois 62901 , United States
| |
Collapse
|
16
|
Li X, Yu J, Gosztola DJ, Fry HC, Deria P. Wavelength-Dependent Energy and Charge Transfer in MOF: A Step toward Artificial Porous Light-Harvesting System. J Am Chem Soc 2019; 141:16849-16857. [DOI: 10.1021/jacs.9b08078] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinlin Li
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United State
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United State
| | - David J. Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - H. Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United State
| |
Collapse
|
17
|
Povarova NV, Zaitseva SO, Baleeva NS, Smirnov AY, Myasnyanko IN, Zagudaylova MB, Bozhanova NG, Gorbachev DA, Malyshevskaya KK, Gavrikov AS, Mishin AS, Baranov MS. Red-Shifted Substrates for FAST Fluorogen-Activating Protein Based on the GFP-Like Chromophores. Chemistry 2019; 25:9592-9596. [PMID: 31111975 DOI: 10.1002/chem.201901151] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Indexed: 11/10/2022]
Abstract
A genetically encoded fluorescent tag for live cell microscopy is presented. This tag is composed of previously published fluorogen-activating protein FAST and a novel fluorogenic derivative of green fluorescent protein (GFP)-like chromophore with red fluorescence. The reversible binding of the novel fluorogen and FAST is accompanied by three orders of magnitude increase in red fluorescence (580-650 nm). The proposed dye instantly stains target cellular proteins fused with FAST, washes out in a minute timescale, and exhibits higher photostability of the fluorescence signal in confocal and widefield microscopy, in contrast with previously published fluorogen:FAST complexes.
Collapse
Affiliation(s)
- Natalia V Povarova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Snizhana O Zaitseva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Marina B Zagudaylova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nina G Bozhanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Dmitriy A Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Blvd 30, Moscow, 121205, Russia
| | - Kseniya K Malyshevskaya
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Blvd 30, Moscow, 121205, Russia
| | - Alexey S Gavrikov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia
| |
Collapse
|
18
|
Mayer DC, Manzi A, Medishetty R, Winkler B, Schneider C, Kieslich G, Pöthig A, Feldmann J, Fischer RA. Controlling Multiphoton Absorption Efficiency by Chromophore Packing in Metal–Organic Frameworks. J Am Chem Soc 2019; 141:11594-11602. [DOI: 10.1021/jacs.9b04213] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David C. Mayer
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Aurora Manzi
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians Universität, Königinstraße 10, 80539 Munich, Germany
| | | | - Benedikt Winkler
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Christian Schneider
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Gregor Kieslich
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Alexander Pöthig
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians Universität, Königinstraße 10, 80539 Munich, Germany
| | - Roland A. Fischer
- Chair of Inorganic and Metal−Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
19
|
Zhang T, Jin Y, Shi Y, Li M, Li J, Duan C. Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Affiliation(s)
- Alice Henley
- Department of Chemistry, University College London, London, UK
| | | |
Collapse
|
21
|
Ermakova YG, Sen T, Bogdanova YA, Smirnov AY, Baleeva NS, Krylov AI, Baranov MS. Pyridinium Analogues of Green Fluorescent Protein Chromophore: Fluorogenic Dyes with Large Solvent-Dependent Stokes Shift. J Phys Chem Lett 2018; 9:1958-1963. [PMID: 29589942 DOI: 10.1021/acs.jpclett.8b00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Novel fluorogenic dyes based on the GFP chromophore are developed. The compounds contain a pyridinium ring instead of phenolate and feature large Stokes shifts and solvent-dependent variations in the fluorescence quantum yield. Electronic structure calculations explain the trends in solvatochromic behavior in terms of the increase of the dipole moment upon excited-state relaxation in polar solvents associated with the changes in bonding pattern in the excited state. A unique combination of such optical characteristics and lipophilic properties enables using one of the new dyes for imaging the membrane structure of endoplasmic reticulum. An extremely high photostability (due to a dynamic exchange between the free and absorbed states) and selectivity make this compound a promising label for this type of cellular organelles.
Collapse
Affiliation(s)
- Yulia G Ermakova
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1 , 117997 Moscow , Russia
- European Molecular Biology Laboratory , 69117 Heidelberg , Germany
| | - Tirthendu Sen
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Anna I Krylov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1 , 117997 Moscow , Russia
| |
Collapse
|
22
|
Singh A, Badi-Uz-Zama K, Ramanathan G. Protonation of the imino nitrogen deactivates the excited state of imidazolin-5-one in the solid state. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1429-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Liu X, Zhang F, Goh T, Li Y, Shao Y, Luo L, Huang W, Long Y, Chou L, Tsung C. Using a Multi‐Shelled Hollow Metal–Organic Framework as a Host to Switch the Guest‐to‐Host and Guest‐to‐Guest Interactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711600] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Yuan Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Furui Zhang
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
| | - Tian‐Wei Goh
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
| | - Yu‐Cai Shao
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
| | - Lianshun Luo
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Yi‐Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Lien‐Yang Chou
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Chia‐Kuang Tsung
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
| |
Collapse
|
24
|
Liu X, Zhang F, Goh T, Li Y, Shao Y, Luo L, Huang W, Long Y, Chou L, Tsung C. Using a Multi‐Shelled Hollow Metal–Organic Framework as a Host to Switch the Guest‐to‐Host and Guest‐to‐Guest Interactions. Angew Chem Int Ed Engl 2018; 57:2110-2114. [DOI: 10.1002/anie.201711600] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Yuan Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Furui Zhang
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
| | - Tian‐Wei Goh
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
| | - Yu‐Cai Shao
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
| | - Lianshun Luo
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Yi‐Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Lien‐Yang Chou
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Chia‐Kuang Tsung
- Department of Chemistry, Merkert Chemistry Centre Boston College Boston MA 02467 USA
| |
Collapse
|
25
|
Dolgopolova EA, Rice AM, Martin CR, Shustova NB. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem Soc Rev 2018; 47:4710-4728. [DOI: 10.1039/c7cs00861a] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In combination with porosity and tunability, light harvesting, energy transfer, and photocatalysis, are facets crucial for engineering of MOF-based sensors.
Collapse
Affiliation(s)
| | - Allison M. Rice
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Corey R. Martin
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
26
|
Abstract
MOFs as green materials – a highlight of the environmentally conscious or “green” applications of MOFs.
Collapse
Affiliation(s)
- Zvart Ajoyan
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | - Paola Marino
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | - Ashlee J. Howarth
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| |
Collapse
|
27
|
Luo TY, Liu C, Eliseeva SV, Muldoon PF, Petoud S, Rosi NL. Rare Earth pcu Metal–Organic Framework Platform Based on RE4(μ3-OH)4(COO)62+ Clusters: Rational Design, Directed Synthesis, and Deliberate Tuning of Excitation Wavelengths. J Am Chem Soc 2017; 139:9333-9340. [DOI: 10.1021/jacs.7b04532] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tian-Yi Luo
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chong Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | - Patrick F. Muldoon
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stéphane Petoud
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
28
|
Goswami S, Miller CE, Logsdon JL, Buru CT, Wu YL, Bowman DN, Islamoglu T, Asiri AM, Cramer CJ, Wasielewski MR, Hupp JT, Farha OK. Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19535-19540. [PMID: 28562000 DOI: 10.1021/acsami.7b07055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here we describe the synthesis of two Zr-based benzothiadiazole- and benzoselenadiazole-containing metal-organic frameworks (MOFs) for the selective photocatalytic oxidation of the mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). The photophysical properties of the linkers and MOFs are characterized by steady-state absorption and emission, time-resolved emission, and ultrafast transient absorption spectroscopy. The benzoselenadiazole-containing MOF shows superior catalytic activity compared to that containing benzothiadiazole with a half-life of 3.5 min for CEES oxidation to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO). Transient absorption spectroscopy performed on the benzoselenadiazole linker reveals the presence of a triplet excited state, which decays with a lifetime of 9.4 μs, resulting in the generation of singlet oxygen for photocatalysis. This study demonstrates the effect of heavy chalcogen substitution within a porous framework for the modulation of photocatalytic activity.
Collapse
Affiliation(s)
| | | | | | | | | | - David N Bowman
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | | | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | | | | | - Omar K Farha
- Department of Chemistry, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|
29
|
McLaughlin C, Assmann M, Parkes MA, Woodhouse JL, Lewin R, Hailes HC, Worth GA, Fielding HH. ortho and para chromophores of green fluorescent protein: controlling electron emission and internal conversion. Chem Sci 2017; 8:1621-1630. [PMID: 29780449 PMCID: PMC5933426 DOI: 10.1039/c6sc03833f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/05/2016] [Indexed: 12/22/2022] Open
Abstract
Green fluorescent protein (GFP) continues to play an important role in the biological and biochemical sciences as an efficient fluorescent probe and is also known to undergo light-induced redox transformations. Here, we employ photoelectron spectroscopy and quantum chemistry calculations to investigate how the phenoxide moiety controls the competition between electron emission and internal conversion in the isolated GFP chromophore anion, following photoexcitation with ultraviolet light in the range 400-230 nm. We find that moving the phenoxide group from the para position to the ortho position enhances internal conversion back to the ground electronic state but that adding an additional OH group to the para chromophore, at the ortho position, impedes internal conversion. Guided by quantum chemistry calculations, we interpret these observations in terms of torsions around the C-C-C bridge being enhanced by electrostatic repulsions or impeded by the formation of a hydrogen-bonded seven-membered ring. We also find that moving the phenoxide group from the para position to the ortho position reduces the energy required for detachment processes, whereas adding an additional OH group to the para chromophore at the ortho position increases the energy required for detachment processes. These results have potential applications in tuning light-induced redox processes of this biologically and technologically important fluorescent protein.
Collapse
Affiliation(s)
- Conor McLaughlin
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Mariana Assmann
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Michael A Parkes
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Joanne L Woodhouse
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Ross Lewin
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Helen C Hailes
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Graham A Worth
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Helen H Fielding
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| |
Collapse
|
30
|
Dolgopolova EA, Moore TM, Ejegbavwo OA, Pellechia PJ, Smith MD, Shustova NB. A metal–organic framework as a flask: photophysics of confined chromophores with a benzylidene imidazolinone core. Chem Commun (Camb) 2017; 53:7361-7364. [DOI: 10.1039/c7cc02253k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photophysics and dynamics of chromophores with a benzylidene imidazolinone core, responsible for emission of green fluorescent protein variants, were studied as a function of host topology by three approaches.
Collapse
Affiliation(s)
| | - Thomas M. Moore
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Otega A. Ejegbavwo
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Mark D. Smith
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
31
|
Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV, Lukyanov KA, Krylov AI. Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing? Chem Rev 2016; 117:758-795. [PMID: 27754659 DOI: 10.1021/acs.chemrev.6b00238] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoinduced reactions play an important role in the photocycle of fluorescent proteins from the green fluorescent protein (GFP) family. Among such processes are photoisomerization, photooxidation/photoreduction, breaking and making of covalent bonds, and excited-state proton transfer (ESPT). Many of these transformations are initiated by electron transfer (ET). The quantum yields of these processes vary significantly, from nearly 1 for ESPT to 10-4-10-6 for ET. Importantly, even when quantum yields are relatively small, at the conditions of repeated illumination the overall effect is significant. Depending on the task at hand, fluorescent protein photochemistry is regarded either as an asset facilitating new applications or as a nuisance leading to the loss of optical output. The phenomena arising due to phototransformations include (i) large Stokes shifts, (ii) photoconversions, photoactivation, and photoswitching, (iii) phototoxicity, (iv) blinking, (v) permanent bleaching, and (vi) formation of long-lived intermediates. The focus of this review is on the most recent experimental and theoretical work on photoinduced transformations in fluorescent proteins. We also provide an overview of the photophysics of fluorescent proteins, highlighting the interplay between photochemistry and other channels (fluorescence, radiationless relaxation, and intersystem crossing). The similarities and differences with photochemical processes in other biological systems and in dyes are also discussed.
Collapse
Affiliation(s)
- Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University , Boston, Massachusetts United States
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
32
|
Affiliation(s)
- Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East
56th Street, Chicago, Illinois 60637, United States
| | - Jeffrey R. Long
- Department of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|