1
|
Jiang QC, Iwai T, Jo M, Hosomi T, Yanagida T, Uchida K, Hashimoto K, Nakazono T, Yamada Y, Kobayashi A, Takizawa SY, Masai H, Terao J. Insulated π-Conjugated Azido Scaffolds for Stepwise Functionalization via Huisgen Cycloaddition on Metal Oxide Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403717. [PMID: 39046075 DOI: 10.1002/smll.202403717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Indexed: 07/25/2024]
Abstract
In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides. Fourier-transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy confirm the successful immobilization of the insulated azido scaffold on ZnO nanowire array surfaces. Owing to the highly independent immobilization, the scaffold allows rapid and complete conversion of the surface azido group in Huisgen cycloaddition reactions with ethynyl-terminated molecules, as confirmed by FT-IR spectroscopy monitoring. Cyclic voltammetry analysis of modified indium tin oxide substrates shows the positive effects of cyclic insulation toward suppression of intermolecular interaction between molecules introduced by the surface Huisgen cycloaddition reactions. The utility of the scaffold for heterogeneous catalysis is demonstrated in electrocatalytic selective O2 reduction to H2O2 with cobalt(II) chlorin modified fluorine doped tin oxide electrode and photocatalytic H2 generation with iridium(III) dye-sensitized Pt-loaded TiO2 nanoparticle. These results highlight the potential of the insulated azido scaffold for a stepwise functionalization process, enabling precise and well-defined hybrid interfaces.
Collapse
Affiliation(s)
- Qi-Chun Jiang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Morihiro Jo
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Uchida
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
2
|
Leitão MIPS, Morais TS. Tailored Metal-Based Catalysts: A New Platform for Targeted Anticancer Therapies. J Med Chem 2024; 67:16967-16990. [PMID: 39348603 DOI: 10.1021/acs.jmedchem.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Innovative strategies for targeted anticancer therapies have gained significant momentum, with metal complexes emerging as tunable catalysts for more effective and safer treatments. Rational design and engineering of metal complexes enable the development of tailored molecular structures optimized for precision oncology. The strategic incorporation of metal complex catalysts within combinatorial therapies amplifies their anticancer properties. This perspective highlights the advancements in synthetic strategies and rational design since 2019, showing how tailored metal catalysts are optimized by designing structures to release or in situ synthesize active drugs, leveraging the target-specific characteristics to develop more precise cancer therapies. This review explores metal-based catalysts, including those conjugated with biomolecules, nanostructures, and metal-organic frameworks (MOFs), highlighting their catalytic activity in biological environments and their in vitro/in vivo performance. To sum up, the potential of metal complexes as catalysts to reshape the landscape of anticancer therapies and foster novel avenues for therapeutic advancement is emphasized.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Wang Y, Huang Y, Chen S, Gao J, Zhang Y, Duan YC, Deng P. Construction of Robust Iridium(III) Complex-Based Photosensitizer for Boosting Hydrogen Evolution. Inorg Chem 2023; 62:7212-7219. [PMID: 37139601 DOI: 10.1021/acs.inorgchem.2c04471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing a photosensitizer with high efficiency and long-term stability for photocatalytic hydrogen evolution is highly desirable yet remains a challenge. Herein, a novel Ir(III) complex-based photosensitizer (Ir3) bearing coumarin and triphenylamine groups is designed. Ir3 exhibits record activity and durability among reported transition metal complexes for photocatalytic hydrogen evolution, with a TON of 198,363 and a duration of 214 h. The excellent photocatalytic performance of Ir3 can be attributed to the synergistic effect of coumarin and triphenylamine, which improves the visible light absorption, charge separation, and electron transfer capacity of photosensitizers. This is an efficient and long-lived Ir(III) photosensitizer constructed on the basis of a synergistic approach, which could provide a new insight for the development of high-performance Ir(III) photosensitizers at the molecular level.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yifan Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yifan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ying-Chen Duan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
| | - Pengyang Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Dual functionality of novel Porous-Osmium(IV)-MOFs. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Qin L, Xin X, Wang R, Lv H, Yang GY. Rational Design of Bromine-Modified Ir(III) Photosensitizer for Photocatalytic Hydrogen Generation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wu Y, Sutton GD, Halamicek MDS, Xing X, Bao J, Teets TS. Cyclometalated iridium-coumarin ratiometric oxygen sensors: improved signal resolution and tunable dynamic ranges. Chem Sci 2022; 13:8804-8812. [PMID: 35975154 PMCID: PMC9350586 DOI: 10.1039/d2sc02909j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022] Open
Abstract
In this work we introduce a new series of ratiometric oxygen sensors based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligand, and phosphorescence from either the cyclometalated iridium center or the coumarin. These dual-emitting complexes function as ratiometric oxygen sensors, with the phosphorescence quenched under O2 while fluorescence is unaffected. The use of blue-fluorescent coumarins results in good signal resolution between fluorescence and phosphorescence. Moreover, the sensitivity and dynamic range, measured with Stern-Volmer analysis, can be tuned two orders of magnitude by virtue of our ability to synthetically control the triplet excited-state ordering. The complex with cyclometalated iridium 3MLCT phosphorescence operates under hyperoxic conditions, whereas the two complexes with coumarin-centered phosphorescence are sensitive to very low levels of O2 and function as hypoxic sensors.
Collapse
Affiliation(s)
- Yanyu Wu
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Gregory D Sutton
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Michael D S Halamicek
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Xinxin Xing
- University of Houston, Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH) Houston TX 77204 USA
| | - Jiming Bao
- University of Houston, Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH) Houston TX 77204 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
7
|
Itagaki R, Takizawa SY, Chang HC, Nakada A. Light-induced electron transfer/phase migration of a redox mediator for photocatalytic C-C coupling in a biphasic solution. Dalton Trans 2022; 51:9467-9476. [PMID: 35678270 DOI: 10.1039/d2dt01334g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic molecular conversions that lead to value-added chemicals are of considerable interest. To achieve highly efficient photocatalytic reactions, it is equally important as it is challenging to construct systems that enable effective charge separation. Here, we demonstrate that the rational construction of a biphasic solution system with a ferrocenium/ferrocene (Fc+/Fc) redox couple enables efficient photocatalysis by spatial charge separation using the liquid-liquid interface. In a single-phase system, exposure of a 1,2-dichloroethane (DCE) solution containing a Ru(II)- or Ir(III)-based photosensitizer, Fc, and benzyl bromide (Bn-Br) to visible-light irradiation failed to generate any product. However, the photolysis in a H2O/DCE biphasic solution, where the compounds are initially distributed in the DCE phase, facilitated the reductive coupling of Bn-Br to dibenzyl (Bn2) using Fc as an electron donor. The key result of this study is that Fc+, generated by photooxidation of Fc in the DCE phase, migrates to the aqueous phase due to the drastic change in its partition coefficient compared to that of Fc. This liquid-liquid phase migration of the mediator is essential for facilitating the reduction of Bn-Br in the DCE phase as it suppresses backward charge recombination. The co-existence of anions can further modify the driving force of phase migration of Fc+ depending on their hydrophilicity; the best photocatalytic activity was obtained with a turnover frequency of 79.5 h-1 and a quantum efficiency of 0.2% for the formation of Bn2 by adding NBu4+Br- to the biphasic solution. This study showcases a potential approach for rectifying electron transfer with suppressed charge recombination to achieve efficient photocatalysis.
Collapse
Affiliation(s)
- Ren Itagaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Akinobu Nakada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Tritton DN, Tang FK, Bodedla GB, Lee FW, Kwan CS, Leung KCF, Zhu X, Wong WY. Development and advancement of iridium(III)-based complexes for photocatalytic hydrogen evolution. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Fan Z, Xie J, Sadhukhan T, Liang C, Huang C, Li W, Li T, Zhang P, Banerjee S, Raghavachari K, Huang H. Highly Efficient Ir(III)-Coumarin Photo-Redox Catalyst for Synergetic Multi-Mode Cancer Photo-Therapy. Chemistry 2021; 28:e202103346. [PMID: 34755401 DOI: 10.1002/chem.202103346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Four photo-catalysts of the general formula [Ir(CO6/ppy)2 (L)]Cl where CO6=coumarin 6 (Ir1-Ir3), ppy=2-phenylpyridine (Ir4), L=4'-(3,5-di-tert-butylphenyl)-2,2' : 6',2''-terpyridine (Ir1), 4'-(3,5-bis(trifluoromethyl)phenyl)-2,2' : 6',2''-terpyridine (Ir2 and Ir4), and 4-([2,2' : 6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline (Ir3) were synthesized and characterized. These photostable photo-catalysts (Ir1-Ir3) showed strong visible light absorption between 400-550 nm. Upon light irradiation (465 and 525 nm), Ir1-Ir3 generated singlet oxygen and induced rapidly photo-catalytic oxidation of cellular coenzymes NAD(P)H. Ir1-Ir3 showed time-dependent cellular uptake with excellent intracellular retention efficiency. Upon green light irradiation (525 nm), Ir2 provided a much higher photo-index (PI=793) than the clinically used photosensitizer, 5-aminolevulinicacid (5-ALA, PI>30) against HeLa cancer cells. The observed necro-apoptotic anticancer activity of Ir2 was due to the Ir2 triggered photo-induced intracellular redox imbalance (by NAD(P)H oxidation and ROS generation) and change in the mitochondrial membrane potential. Remarkably, Ir2 showed in vivo photo-induced catalytic anticancer activity in mouse models.
Collapse
Affiliation(s)
- Zhongxian Fan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiaen Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Chao Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Can Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenqing Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Tingxuan Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| | | | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
10
|
Cai Y, Zhang Y, Wang H, Lin X, Yu K, Li C, Jie G. Cyclometalated Iridium(III) Complex-Sensitized NiO-Based-Cathodic Photoelectrochemical Platform for DNA Methyltransferase Assay. ACS APPLIED BIO MATERIALS 2021; 4:6103-6111. [PMID: 35006914 DOI: 10.1021/acsabm.1c00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work reports an efficient [(C6)2Ir(dppz)]+PF6- (C6 = coumarin 6 and dppz = dipyridophenazine)-sensitized NiO photocathode and its application in photoelectrochemical (PEC) bioanalysis field for the first time. This dye-sensitized NiO photocathode was found to exhibit a markedly enhanced cathodic photocurrent. A sensitive cathodic PEC platform was proposed integrating the as-prepared photocathode with enzyme-free cascaded amplification strategies of the catalytic hairpin assembly (CHA) and the hybridization chain reaction (HCR) for DNA methyltransferase (MTase) assay. A hairpin DNA(HDam) with specific recognition site of Dam MTase in its stem was designed. The site of HDam was methylated in the presence of Dam MTase and then cut by endonuclease DpnI. The released loop fragment, as an initiator, triggered the CHA circuit and the follow-up HCR circuit, resulting in long dsDNA concatemers on the ITO electrode. Numerous [(C6)2Ir(dppz)]+PF6- were intercalated into dsDNA, and highly efficient signal amplification was realized. Benefiting from the superior iridium(III) complex-sensitized NiO photocathode and effective amplification strategy, a detection limit of 0.0028 U/mL for the determination of Dam MTase was achieved. Moreover, this work further demonstrated that these proposed tactics could be applied to screen Dam MTase activity inhibitors.
Collapse
Affiliation(s)
- Yueyuan Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yingtao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Huan Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaojia Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kunpeng Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
11
|
Two Excited State Collaboration of Heteroleptic Ir(III)-Coumarin Complexes for H2 Evolution Dye-Sensitized Photocatalysts. ENERGIES 2021. [DOI: 10.3390/en14092425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interfacial electron injection from a photoexcited surface-immobilized dye to a semiconductor substrate is a key reaction for dye-sensitized photocatalysts. We previously reported that the molecular orientation of heteroleptic Ir(III) photosensitizer on the TiO2 nanoparticle surface was important for efficient interfacial electron injection. In this work, to overcome the weak light absorption ability of heteroleptic Ir(III) photosensitizer and to improve the photoinduced charge-separation efficiency at the dye–semiconductor interface, we synthesized two heteroleptic Ir(III) complexes with different coumarin dyes, [Ir(C6)2(H4CPbpy)]Cl and [Ir(C30)2(H4CPbpy)]Cl [Ir-CX; X = 6 or 30; HC6 = 3-(2-enzothiazolyl)-7-(diethylamino)coumarin, HC30 = 3-(2-N-methylbenzimidazolyl)-7-N,N-diethylaminocoumarin, H4CPbpy = 4,4′-bis(methylphosphonic acid)-2,2′-bipyridine], as the cyclometalated ligands and immobilized them on the surface of Pt-cocatalyst-loaded TiO2 nanoparticles. Ultraviolet-visible absorption and emission spectroscopy revealed that the singlet ligand-centered (1LC) absorption and triplet 3LC emission bands of Ir-C30 occurred at shorter wavelengths than those of Ir-C6, while time-dependent density-functional-theory data suggested that the ligand-to-ligand charge transfer (LLCT) excited states of the two complexes were comparable. The photocatalytic H2 evolution activity of the Ir-C6-sensitized Pt-TiO2 nanoparticles (Ir-C6@Pt-TiO2) under visible light irradiation (λ > 420 nm) was higher than that of Ir-C30@Pt-TiO2. In contrast, their activities were comparable under irradiation with monochromatic light (λ = 450 ± 10 nm), which is absorbed comparably by both Ir-CX complexes. These results suggest that the internal conversion from the higher-lying LC state to the LLCT state effectively occurs in both Ir-CX complexes to trigger electron injection to TiO2.
Collapse
|
12
|
Huang C, Liang C, Sadhukhan T, Banerjee S, Fan Z, Li T, Zhu Z, Zhang P, Raghavachari K, Huang H. In‐vitro and In‐vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Can Huang
- School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China
| | - Chao Liang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Tumpa Sadhukhan
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| | - Samya Banerjee
- Institute of Inorganic Chemistry Georg-August-Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
- Present address: Department of Chemistry Indian Institute of Technology (BHU) Varanasi UP 221005 India
| | - Zhongxian Fan
- School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China
| | - Tingxuan Li
- School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China
| | - Zilin Zhu
- School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | | | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
13
|
Huang C, Liang C, Sadhukhan T, Banerjee S, Fan Z, Li T, Zhu Z, Zhang P, Raghavachari K, Huang H. In-vitro and In-vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angew Chem Int Ed Engl 2021; 60:9474-9479. [PMID: 33434379 DOI: 10.1002/anie.202015671] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Photocatalytic anticancer profile of a IrIII photocatalyst (Ir3) with strong light absorption, high turnover frequency, and excellent biocompatibility is reported. Ir3 showed selective photo-cytotoxicity against cisplatin- and sorafenib-resistant cell lines while remaining dormant to normal cell lines in the dark. Ir3 exhibited excellent photo-catalytic oxidation of cellular co-enzyme, the reduced nicotinamide adenine dinucleotide phosphate (NADPH), and amino acids via a single electron transfer mechanism. The photo-induced intracellular redox imbalance and change in mitochondrial membrane potential resulted in necrosis and apoptosis of cancer cells. Importantly, Ir3 exhibited high biocompatibility and photo-catalytic anticancer efficiency as evident from in vivo zebrafish and mouse cancer models. To the best of our knowledge, Ir3 is the first IrIII based photocatalyst with such a high biocompatibility and photocatalytic anticancer therapeutic effect.
Collapse
Affiliation(s)
- Can Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Samya Banerjee
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstr. 4, 37077, Göttingen, Germany
- Present address: Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India
| | - Zhongxian Fan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Tingxuan Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Zilin Zhu
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Takizawa SY, Katoh S, Okazawa A, Ikuta N, Matsushima S, Zeng F, Murata S. Triplet Excited States Modulated by Push-Pull Substituents in Monocyclometalated Iridium(III) Photosensitizers. Inorg Chem 2021; 60:4891-4903. [PMID: 33715380 DOI: 10.1021/acs.inorgchem.0c03802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel monocyclometalated [Ir(tpy)(btp)Cl]+ complexes (Ir2-Ir5) were synthesized using 2,2':6',2″-terpyridine (tpy) and 2-(2-pyridyl)benzo[b]thiophene (btp) ligands, as well as their derivatives bearing electron-donating tert-butyl (t-Bu) and electron-withdrawing trifluoromethyl (CF3) groups. Ir2-Ir5 exhibited visible-light absorption stronger than that of the known complex [Ir(tpy)(ppy)Cl]+ (Ir1; ppy = 2-phenylpyridine). Spectroscopic and computational studies revealed that two triplet states were involved in the excited-state dynamics. One is a weakly emissive and short-lived ligand to ligand charge-transfer (LLCT) state originating from the charge transfer from the btp to the tpy ligand. The other is a highly emissive and long-lived ligand-centered (LC) state localized on the btp ligand. Interestingly, the excited state dominant with 3LLCT was completely changed to the 3LC state upon the introduction of substituents on both the tpy and btp ligands. For instance, the excited state of the parent complex Ir2 was weakly emissive (Φ = 2%) and short-lived (τ = 110 ns) in CH2Cl2; conversely, Ir5, fully furnished with t-Bu and CF3 groups, displayed intense phosphorescence with a prolonged lifetime (τ = 14 μs). This difference became increasingly prominent when the solvent was changed to aqueous CH3CN, most probably due to the 3LLCT stabilization. The predominant excited-state nature was switchable between the 3LLCT and 3LC states depending on the substituents employed; this was demonstrated through investigations of Ir3 and Ir4, bearing either the t-Bu or the CF3 group, where the complexes exhibited properties intermediate between those of Ir2 and Ir5. All of the Ir(III) complexes were tested as photosensitizers in photocatalytic H2 evolution over a Co molecular catalyst, and Ir5 outperformed the others, including Ir1, due to improvement in the following key properties: visible-light-absorption ability, excited-state lifetime, and reductive power of the one-electron-reduced species against the catalyst.
Collapse
Affiliation(s)
- Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sora Katoh
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Atsushi Okazawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Naoya Ikuta
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoko Matsushima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Fanyang Zeng
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeru Murata
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
15
|
Yoshimura N, Kobayashi A, Yoshida M, Kato M. Enhancement of Photocatalytic Activity for Hydrogen Production by Surface Modification of Pt‐TiO
2
Nanoparticles with a Double Layer of Photosensitizers. Chemistry 2020; 26:16939-16946. [PMID: 33067824 DOI: 10.1002/chem.202003990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Nobutaka Yoshimura
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8 Kita-ku Sapporo 0600810 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8 Kita-ku Sapporo 0600810 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8 Kita-ku Sapporo 0600810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8 Kita-ku Sapporo 0600810 Japan
| |
Collapse
|
16
|
Bezzubov SI, Zharinova IS, Khusyainova AA, Kiselev YM, Taydakov IV, Varaksina EA, Metlin MT, Tobohova AS, Korshunov VM, Kozyukhin SA, Dolzhenko VD. Aromatic β‐Diketone as a Novel Anchoring Ligand in Iridium(III) Complexes for Dye‐Sensitized Solar Cells. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stanislav I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninskii pr. 31 119991 Moscow Russia
| | - Irina S. Zharinova
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninskii pr. 31 119991 Moscow Russia
- Department of Chemistry Lomonosov Moscow State University Lenin's hills 1 119991 Moscow Russia
| | - Alfiya A. Khusyainova
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninskii pr. 31 119991 Moscow Russia
- Department of Chemistry Lomonosov Moscow State University Lenin's hills 1 119991 Moscow Russia
| | - Yuri M. Kiselev
- Department of Chemistry Lomonosov Moscow State University Lenin's hills 1 119991 Moscow Russia
| | - Ilya V. Taydakov
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
| | - Evgenia A. Varaksina
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
| | - Mikhail T. Metlin
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
| | - Aiyyna S. Tobohova
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
- Moscow Institute of Physics and Technology State University Institutsky per. 9 141700 Dolgoprudny Moscow Region Russia
| | - Vladislav M. Korshunov
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
- Bauman Moscow State Technical University 2‐ya Baumanskaya Str. 5/1 105005 Moscow Russia
| | - Sergei A. Kozyukhin
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninskii pr. 31 119991 Moscow Russia
| | - Vladimir D. Dolzhenko
- Department of Chemistry Lomonosov Moscow State University Lenin's hills 1 119991 Moscow Russia
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russia
| |
Collapse
|
17
|
Bevernaegie R, Wehlin SAM, Piechota EJ, Abraham M, Philouze C, Meyer GJ, Elias B, Troian-Gautier L. Improved Visible Light Absorption of Potent Iridium(III) Photo-oxidants for Excited-State Electron Transfer Chemistry. J Am Chem Soc 2020; 142:2732-2737. [DOI: 10.1021/jacs.9b12108] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robin Bevernaegie
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, box L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Sara A. M. Wehlin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Eric J. Piechota
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Michael Abraham
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, box L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Christian Philouze
- Département de Chimie Moléculaire, Université Grenoble-Alpes (UGA), UMR CNRS 5250, CS 40700, 38058 Grenoble, France
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Benjamin Elias
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, box L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), CP 160/06, 50 avenue F.D. Roosevelt, B-1050 Brussels, Belgium
| |
Collapse
|
18
|
A coumarin-appended cyclometalated iridium(III) complex for visible light driven photoelectrochemical bioanalysis. Biosens Bioelectron 2020; 147:111779. [DOI: 10.1016/j.bios.2019.111779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022]
|
19
|
Affiliation(s)
- Jong-Hwa Shon
- Department of Chemistry, University of Houston, Houston, TX, USA
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
20
|
Wang P, Guo S, Wang HJ, Chen KK, Zhang N, Zhang ZM, Lu TB. A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution. Nat Commun 2019; 10:3155. [PMID: 31316076 PMCID: PMC6637189 DOI: 10.1038/s41467-019-11099-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Developing broadband and strong visible-light-absorbing photosensitizer is highly desired for dramatically improving the utilization of solar energy and boosting artificial photosynthesis. Herein, we develop a facile strategy to co-sensitize Ir-complex with Coumarins and boron dipyrromethene to explore photosensitizer with a broadband covering ca. 50% visible light region (Ir-4). This type of photosensitizer is firstly introduced into water splitting system, exhibiting significantly enhanced performance with over 21 times higher than that of typical Ir(ppy)2(bpy)+, and the turnover number towards Ir-4 reaches to 115840, representing the most active sensitizer among reported molecular photocatalytic systems. Experimental and theoretical investigations reveal that the Ir-mediation not only achieves a long-lived boron dipyrromethene-localized triplet state, but also makes an efficient excitation energy transfer from Coumarin to boron dipyrromethene to trigger the electron transfer. These findings provide an insight for developing broadband and strong visible-light-absorbing multicomponent arrays on molecular level for efficient artificial photosynthesis.
Collapse
Affiliation(s)
- Ping Wang
- International Joint Research Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Song Guo
- International Joint Research Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China.
| | - Hong-Juan Wang
- International Joint Research Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Kai-Kai Chen
- International Joint Research Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Nan Zhang
- International Joint Research Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Zhi-Ming Zhang
- International Joint Research Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China.
| | - Tong-Bu Lu
- International Joint Research Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China.
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China.
| |
Collapse
|
21
|
Li LP, Ye BH. Efficient Generation of Singlet Oxygen and Photooxidation of Sulfide into Sulfoxide via Tuning the Ancillary of Bicyclometalated Iridium(III) Complexes. Inorg Chem 2019; 58:7775-7784. [PMID: 31185549 DOI: 10.1021/acs.inorgchem.9b00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With 2-phenylquinoline (pq) as a cyclometalated ligand, a series of cationic Ir(III) complexes [Ir(pq)2(L1)2](PF6) (L1 is pyridine (1a), 4-methoxypyridine (1b), 4-dimethylaminopyridine (1c), and 4-acetylpyridine (1d)) and [Ir(pq)2(L2)](PF6) (L2 is 2,2'-bipyridine (1e), 2,2'-bipyrimidyl (1f), 4,4'-dimethyl-2,2'-bipyridine (1g), and 4,4'-dimethoxy-2,2'-bipyridine (1h)) were synthesized and characterized. The influence of the metal-based highest occupied molecular orbital on triplet-state lifetime, triplet-state quantum yield, and 1O2 generation quantum yield as well as aerobic photo-oxidation of sulfide into sulfoxide was evaluated via tuning the ancillary ligand of Ir(pq)2 complexes. The results revealed that 1h with chelate ancillary ligand bearing electron-donating group possesses a high 1O2 generation quantum yield (0.90) and photocatalytic activity for sulfide oxidation with high chemoselectivity and a low catalyst loading (0.5 mol %) under mild conditions. Moreover, one-pot two-step procedure for preparation of enantiopure sulfoxides, including aerobic photo-oxidation of sulfide using 1h as a photosensitizer and chiral resolution of sulfoxide via a chiral-at-metal strategy, was also developed.
Collapse
Affiliation(s)
- Li-Ping Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
22
|
Sebata S, Takizawa SY, Ikuta N, Murata S. Photofunctions of iridium(iii) complexes in vesicles: long-lived excited states and visible-light sensitization for hydrogen evolution in aqueous solution. Dalton Trans 2019; 48:14914-14925. [DOI: 10.1039/c9dt03144h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Utilization of DPPC vesicles allows water-insoluble photoactive Ir(iii) complexes to be dispersed in bulk aqueous solution.
Collapse
Affiliation(s)
- Shinogu Sebata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Naoya Ikuta
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shigeru Murata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
23
|
Li C, Lu W, Zhou X, Pang M, Luo X. Visible-Light Driven Photoelectrochemical Platform Based on the Cyclometalated Iridium(III) Complex with Coumarin 6 for Detection of MicroRNA. Anal Chem 2018; 90:14239-14246. [DOI: 10.1021/acs.analchem.8b03246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Weisen Lu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xiaoming Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Mengmeng Pang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
24
|
Guo S, Chen KK, Dong R, Zhang ZM, Zhao J, Lu TB. Robust and Long-Lived Excited State Ru(II) Polyimine Photosensitizers Boost Hydrogen Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02226] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai-Kai Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ru Dong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
25
|
Whittemore TJ, Millet A, Sayre HJ, Xue C, Dolinar BS, White EG, Dunbar KR, Turro C. Tunable Rh 2(II,II) Light Absorbers as Excited-State Electron Donors and Acceptors Accessible with Red/Near-Infrared Irradiation. J Am Chem Soc 2018; 140:5161-5170. [PMID: 29617115 DOI: 10.1021/jacs.8b00599] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of dirhodium(II,II) paddlewheeel complexes of the type cis-[Rh2(μ-DTolF)2(μ-L)2][BF4]2, where DTolF = N,N'-di( p-tolyl)formamidinate and L = 1,8-naphthyridine (np), 2-(pyridin-2-yl)-1,8-naphthyridine (pynp), 2-(quinolin-2-yl)-1,8-naphthyridine (qnnp), and 2-(1,8-naphthyridin-2-yl)quinoxaline (qxnp), were synthesized and characterized. These molecules feature new tridentate ligands that concomitantly bridge the dirhodium core and cap the axial positions. The complexes absorb light strongly throughout the ultraviolet/visible range and into the near-infrared region and exhibit relatively long-lived triplet excited-state lifetimes. Both the singlet and triplet excited states exhibit metal/ligand-to-ligand charge transfer (ML-LCT) in nature as determined by transient absorption spectroscopy and spectroelectrochemistry measurements. When irradiated with low-energy light, these black dyes are capable of undergoing reversible bimolecular electron transfer both to the electron acceptor methyl viologen and from the electron donor p-phenylenediamine. Photoinduced charge transfer in the latter was inaccessible with previous Rh2(II,II) complexes. These results underscore the fact that the excited state of this class of molecules can be readily tuned for electron-transfer reactions upon simple synthetic modification and highlight their potential as excellent candidates for p- and n-type semiconductor applications and for improved harvesting of low-energy light to drive useful photochemical reactions.
Collapse
Affiliation(s)
- Tyler J Whittemore
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Agustin Millet
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Hannah J Sayre
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Congcong Xue
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Brian S Dolinar
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Eryn G White
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Kim R Dunbar
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
26
|
|
27
|
Huckaba AJ, Senes A, Aghazada S, Babaei A, Meskers SCJ, Zimmermann I, Schouwink P, Gasilova N, Janssen RAJ, Bolink HJ, Nazeeruddin MK. Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS OMEGA 2018; 3:2673-2682. [PMID: 29623303 PMCID: PMC5879467 DOI: 10.1021/acsomega.8b00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The straightforward synthesis and photophysical properties of a new series of heteroleptic iridium(III) bis(2-arylimidazole) picolinate complexes are reported. Each complex has been characterized by nuclear magnetic resonance, UV-vis, cyclic voltammetry, and photoluminescent angle dependency, and the emissive properties of each are described. The preferred orientation of transition dipoles in emitter/host thin films indicated more preferred orientation than homoleptic complex Ir(ppy)3.
Collapse
Affiliation(s)
- Aron J. Huckaba
- Group
for Molecular Engineering of Functional Materials, Institute
of Chemical Sciences and Engineering, and Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Federale
de Lausanne Valais Wallis, Rue de l’Indutrie 17, 1950 Sion, Valais, Switzerland
| | - Alessia Senes
- Holst
Centre/TNO, High Tech
Campus 31, P.O. Box 8550, 5605 KN Eindhoven, The Netherlands
- Molecular
Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sadig Aghazada
- Group
for Molecular Engineering of Functional Materials, Institute
of Chemical Sciences and Engineering, and Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Federale
de Lausanne Valais Wallis, Rue de l’Indutrie 17, 1950 Sion, Valais, Switzerland
| | - Azin Babaei
- Instituto
de Ciencia Molecular, Universidad de Valencia, c/Catedrático J. Beltrán
2, 46980 Paterna, Spain
| | - Stefan C. J. Meskers
- Molecular
Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Iwan Zimmermann
- Group
for Molecular Engineering of Functional Materials, Institute
of Chemical Sciences and Engineering, and Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Federale
de Lausanne Valais Wallis, Rue de l’Indutrie 17, 1950 Sion, Valais, Switzerland
| | - Pascal Schouwink
- Group
for Molecular Engineering of Functional Materials, Institute
of Chemical Sciences and Engineering, and Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Federale
de Lausanne Valais Wallis, Rue de l’Indutrie 17, 1950 Sion, Valais, Switzerland
| | - Natalia Gasilova
- Group
for Molecular Engineering of Functional Materials, Institute
of Chemical Sciences and Engineering, and Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Federale
de Lausanne Valais Wallis, Rue de l’Indutrie 17, 1950 Sion, Valais, Switzerland
| | - René A. J. Janssen
- Molecular
Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Henk J. Bolink
- Instituto
de Ciencia Molecular, Universidad de Valencia, c/Catedrático J. Beltrán
2, 46980 Paterna, Spain
| | - Mohammad Khaja Nazeeruddin
- Group
for Molecular Engineering of Functional Materials, Institute
of Chemical Sciences and Engineering, and Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Federale
de Lausanne Valais Wallis, Rue de l’Indutrie 17, 1950 Sion, Valais, Switzerland
| |
Collapse
|
28
|
Lu Y, Conway-Kenny R, Wang J, Cui X, Zhao J, Draper SM. Exploiting coumarin-6 as ancillary ligands in 1,10-phenanthroline Ir(iii) complexes: generating triplet photosensitisers with high upconversion capabilities. Dalton Trans 2018; 47:8585-8589. [PMID: 29431810 DOI: 10.1039/c8dt00231b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new Ir(iii) complexes incorporating 3-(2-benzothiazolyl)-7-(diethylamino)coumarin (coumarin 6) and ethynylpyrene (EP) functionalised 1,10-phenanthroline (phen) were developed. [Ir(iii)(coumarin 6)2(3-EP-phen)](PF6) (Ir-3) proved to be the most promising material in triplet photosensitising applications. Highly absorbing at λ = 485 nm (ε = 1.31 × 105 M-1 cm-1), it exhibits high upconversion and singlet oxygen quantum yields (ΦUC = 27.5%, ΦΔ = 81.5%) and an exemplary upconversion capability (η = 3.60 × 106 M-1 cm-1).
Collapse
Affiliation(s)
- Y Lu
- Department of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
29
|
Takizawa SY, Kano R, Ikuta N, Murata S. An anionic iridium(iii) complex as a visible-light absorbing photosensitizer. Dalton Trans 2018; 47:11041-11046. [DOI: 10.1039/c8dt02477d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new anionic Ir(iii) photosensitizer bearing coumarin dyes has been developed and applied to the visible-light-driven hydrogen generation.
Collapse
Affiliation(s)
- Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Ryoto Kano
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Naoya Ikuta
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shigeru Murata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
30
|
Brown CM, Kitt MJ, Xu Z, Hean D, Ezhova MB, Wolf MO. Tunable Emission of Iridium(III) Complexes Bearing Sulfur-Bridged Dipyridyl Ligands. Inorg Chem 2017; 56:15110-15118. [DOI: 10.1021/acs.inorgchem.7b02439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher M. Brown
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mitchell J. Kitt
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zhen Xu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Duane Hean
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Maria B. Ezhova
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O. Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
31
|
Zhu X, Cui P, Kilina S, Sun W. Multifunctional Cationic Iridium(III) Complexes Bearing 2-Aryloxazolo[4,5-f][1,10]phenanthroline (N^N) Ligand: Synthesis, Crystal Structure, Photophysics, Mechanochromic/Vapochromic Effects, and Reverse Saturable Absorption. Inorg Chem 2017; 56:13715-13731. [PMID: 29083889 DOI: 10.1021/acs.inorgchem.7b01472] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 2-aryloxazolo[4,5-f][1,10]phenanthroline ligands (N^N ligands) and their cationic iridium(III) complexes (1-11, aryl = 4-NO2-phenyl (1), 4-Br-phenyl (2), Ph (3), 4-NPh2-phenyl (4), 4-NH2-phenyl (5), pyridin-4-yl (6), naphthalen-1-yl (7), naphthalen-2-yl (8), phenanthren-9-yl (9), anthracen-9-yl (10), and pyren-1-yl (11)) were synthesized and characterized. By introducing different electron-donating or electron-withdrawing substituents at the 4-position of the 2-phenyl ring (1-5), or different aromatic substituents with varied degrees of π-conjugation (6-11) on oxazolo[4,5-f][1,10]phenanthroline ligand, we aim to understand the effects of terminal substituents at the N^N ligands on the photophysics of cationic Ir(III) complexes using both spectroscopic methods and quantum chemistry calculations. Complexes with the 4-R-phenyl substituents adopted an almost coplanar structure with the oxazolo[4,5-f][1,10]phenanthroline motif, while the polycyclic aryl substituents (except for naphthalen-2-yl) were twisted away from the oxazolo[4,5-f][1,10]phenanthroline motif. All complexes possessed strong absorption bands below 350 nm that emanated from the ligand-localized 1π,π*/1ILCT (intraligand charge transfer) transitions, mixed with 1LLCT (ligand-to-ligand charge transfer)/1MLCT (metal-to-ligand charge transfer) transitions. At the range of 350-570 nm, all complexes exhibited moderately strong 1ILCT/1LLCT/1MLCT transitions at 350-450 nm, and broad but very weak 3LLCT/3MLCT absorption at 450-570 nm. Most of the complexes demonstrated moderate to strong room temperature phosphorescence both in solution and in the solid state. Among them, complex 7 also manifested a drastic mechanochromic and vapochromic luminescence effect. Except for complexes 1 and 4 that contain NO2 or NPh2 substituent at the phenyl ring, respectively, all other complexes exhibited moderate to strong triplet excited-state absorption in the spectral region of 440-750 nm. Moderate to very strong reverse saturable absorption (RSA) of these complexes appeared at 532 nm for 4.1 ns laser pulses. The RSA strength followed the trend of 7 > 11 > 9 > 3 > 2 ≈ 4 > 5 ≈ 10 ≈ 6 ≈ 8 > 1. The photophysical studies revealed that the different 2-aryl substituents on the oxazole ring impacted the singlet and triplet excited-state characteristics dramatically, which in turn notably influenced the RSA of these complexes.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| | - Peng Cui
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.,Materials and Nanotechnology Program, North Dakota State University , Fargo, North Dakota 58105, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
32
|
Li C, Lu W, Zhu M, Tang B. Development of Visible-Light Induced Photoelectrochemical Platform Based on Cyclometalated Iridium(III) Complex for Bioanalysis. Anal Chem 2017; 89:11098-11106. [DOI: 10.1021/acs.analchem.7b03229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chunxiang Li
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Key
Laboratory of Sensor Analysis of Tumor Marker Ministry of Education,
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Weisen Lu
- Key
Laboratory of Sensor Analysis of Tumor Marker Ministry of Education,
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ming Zhu
- Key
Laboratory of Sensor Analysis of Tumor Marker Ministry of Education,
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
33
|
Kobayashi A, Watanabe S, Ebina M, Yoshida M, Kato M. Effects of phosphonate ester groups attached on a heteroleptic Ir(III) photosensitizer. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Jiang W, Hong C, Wei H, Wu Z, Bian Z, Huang C. A green-emitting iridium complex used for sensitizing europium ion with high quantum yield. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Na H, Maity A, Teets TS. Bis-cyclometalated iridium complexes with electronically modified aryl isocyanide ancillary ligands. Dalton Trans 2017; 46:5008-5016. [DOI: 10.1039/c7dt00694b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bis-cyclometalated iridium complexes with electronically modified aryl isocyanide ligands are described, and the effects on the photophysical properties are noted.
Collapse
Affiliation(s)
- Hanah Na
- Department of Chemistry
- University of Houston
- Houston
- USA
| | - Ayan Maity
- Department of Chemistry
- University of Houston
- Houston
- USA
| | | |
Collapse
|
36
|
Hisamatsu Y, Kumar S, Aoki S. Design and Synthesis of Tris-Heteroleptic Cyclometalated Iridium(III) Complexes Consisting of Three Different Nonsymmetric Ligands Based on Ligand-Selective Electrophilic Reactions via Interligand HOMO Hopping Phenomena. Inorg Chem 2016; 56:886-899. [DOI: 10.1021/acs.inorgchem.6b02519] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yosuke Hisamatsu
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sarvendra Kumar
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|