1
|
Khrizanforova VV, Fayzullin RR, Gerasimova TP, Khrizanforov MN, Zagidullin AA, Islamov DR, Lukoyanov AN, Budnikova YH. Chemical and Electrochemical Reductions of Monoiminoacenaphthenes. Int J Mol Sci 2023; 24:ijms24108667. [PMID: 37240012 DOI: 10.3390/ijms24108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Redox properties of monoiminoacenaphthenes (MIANs) were studied using various electrochemical techniques. The potential values obtained were used for calculating the electrochemical gap value and corresponding frontier orbital difference energy. The first-peak-potential reduction of the MIANs was performed. As a result of controlled potential electrolysis, two-electron one-proton addition products were obtained. Additionally, the MIANs were exposed to one-electron chemical reduction by sodium and NaBH4. Structures of three new sodium complexes, three products of electrochemical reduction, and one product of the reduction by NaBH4 were studied using single-crystal X-ray diffraction. The MIANs reduced electrochemically by NaBH4 represent salts, in which the protonated MIAN skeleton acts as an anion and Bu4N+ or Na+ as a cation. In the case of sodium complexes, the anion radicals of MIANs are coordinated with sodium cations into tetranuclear complexes. The photophysical and electrochemical properties of all reduced MIAN products, as well as neutral forms, were studied both experimentally and quantum-chemically.
Collapse
Affiliation(s)
- Vera V Khrizanforova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Tatiana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Mikhail N Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Almaz A Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Daut R Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Anton N Lukoyanov
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinin Street, 603137 Nizhny Novgorod, Russia
| | - Yulia H Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| |
Collapse
|
2
|
Louw WJ, Radhakrishnan SG, Malan FP, Bezuidenhout DI. Synthesis, electronic structure and interaction of rhodium(I) and iridium(I) bisimine-acenaphthalene complexes with CO2. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Singh A, Singh B, Dey S, Indra A, Lahiri GK. Ruthenium Azobis(benzothiazole): Electronic Structure and Impact of Substituents on the Electrocatalytic Single-Site Water Oxidation Process. Inorg Chem 2023; 62:2769-2783. [PMID: 36719385 DOI: 10.1021/acs.inorgchem.2c03906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present article deals with the structurally and spectroelectrochemically characterized newer class of ruthenium-azoheteroarenes [RuII(Ph-trpy)(Cl)(L)]ClO4, [1]ClO4-[3]ClO4 (Ph-trpy: 4'-phenyl-2,2':6',2″-terpyridine; L1: 2,2'-azobis(benzothiazole) ([1]ClO4); L2: 2,2'-azobis(6-methylbenzothiazole) ([2]ClO4); L3: 2,2'-azobis(6-chlorobenzothiazole) ([3]ClO4)). A collective consideration of experimental (i.e., structural and spectroelectrochemical) and theoretical (DFT calculations) results of [1]ClO4-[3]ClO4 established selective stabilization of (i) the unperturbed azo (N═N)0 function of L, (ii) the exclusive presence of the isomeric form involving the N(azo) donor of L trans to Cl, and (iii) the presence of extended, hydrogen-bonded trimeric units in the asymmetric unit of [2]ClO4 (CH---O) via the involvement of ClO4- anions. The detailed electrochemical studies revealed metal-based oxidation of [RuII(Ph-trpy)(Cl)(L)]+ (1+-3+) to [RuIII(Ph-trpy)(Cl)(L)]2+ (12+-32+); however, the electronic form of the first reduced state (1-3) could be better represented by its mixed RuII(Ph-trpy)(Cl)(L•-)/RuIII(Ph-trpy)(Cl)(L2-) state. Both native (1+-3+) and reduced (1-3) states exhibited weak lower energy transitions within the range of 1000-1200 nm. Further, [1]ClO4-[3]ClO4 delivered an electrochemical OER (oxygen evolution reaction) process in alkaline medium on immobilizing them to a carbon cloth support, which divulged an amplified water oxidation feature for [2]ClO4 due to the presence of electron-donating methyl groups in the L2 backbone. The faster OER kinetics and high catalytic stability of [2]ClO4 could also be rationalized by its lowest Tafel slope (85 mV dec-1) and choronoamperometric experiment (stable up to 12 h), respectively, along with high Faradic efficiency (∼97%). A comparison of [2]ClO4 with the reported analogous ruthenium complexes furnished its excellent intrinsic water oxidation activity.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Baghendra Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Komlyagina VI, Romashev NF, Kokovkin VV, Gushchin AL, Benassi E, Sokolov MN, Abramov PA. Trapping of Ag + into a Perfect Six-Coordinated Environment: Structural Analysis, Quantum Chemical Calculations and Electrochemistry. Molecules 2022; 27:6961. [PMID: 36296553 PMCID: PMC9607289 DOI: 10.3390/molecules27206961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Self-assembly of (Bu4N)4[β-Mo8O26], AgNO3, and 2-bis[(2,6-diisopropylphenyl)-imino]acenaphthene (dpp-bian) in DMF solution resulted in the (Bu4N)2[β-{Ag(dpp-bian)}2Mo8O26] (1) complex. The complex was characterized by single crystal X-ray diffraction (SCXRD), X-ray powder diffraction (XRPD), diffuse reflectance (DR), infrared spectroscopy (IR), and elemental analysis. Comprehensive SCXRD studies of the crystal structure show the presence of Ag+ in an uncommon coordination environment without a clear preference for Ag-N over Ag-O bonding. Quantum chemical calculations were performed to qualify the nature of the Ag-N/Ag-O interactions and to assign the electronic transitions observed in the UV-Vis absorption spectra. The electrochemical behavior of the complex combines POM and redox ligand signatures. Complex 1 demonstrates catalytic activity in the electrochemical reduction of CO2.
Collapse
Affiliation(s)
- Veronika I. Komlyagina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Nikolay F. Romashev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Vasily V. Kokovkin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Artem L. Gushchin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Enrico Benassi
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| |
Collapse
|
5
|
Chacon-Teran MA, Findlater M. Redox‐active BIAN‐based Iron Complexes in Catalysis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Michael Findlater
- University of California Merced Department of Chemistry 5200 N. Lake Road 95340 Merced UNITED STATES
| |
Collapse
|
6
|
Jeon D, Kang YK. Design of Ru‐aqua complex possessing potential inversion behavior. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dohoon Jeon
- Department of Chemical Energy and Engineering Sangmyung University Seoul South Korea
| | - Youn K. Kang
- Department of Chemical Energy and Engineering Sangmyung University Seoul South Korea
| |
Collapse
|
7
|
Saha R, Mukherjee A, Bhattacharya S. Development of a ruthenium–aquo complex for utilization in synthesis and catalysis for selective hydration of nitriles and alkynes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium(ii)–aquo complex serves as a precursor for the synthesis of new ternary complexes and also as an efficient catalyst for selective hydration of aryl nitriles to aryl amides and aryl alkynes to aryl aldehydes.
Collapse
Affiliation(s)
- Rumpa Saha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| | - Aparajita Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| |
Collapse
|
8
|
Novel Oxidovanadium Complexes with Redox-Active R-Mian and R-Bian Ligands: Synthesis, Structure, Redox and Catalytic Properties. Molecules 2021; 26:molecules26185706. [PMID: 34577177 PMCID: PMC8465707 DOI: 10.3390/molecules26185706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
A new monoiminoacenaphthenone 3,5-(CF3)2C6H3-mian (complex 2) was synthesized and further exploited, along with the already known monoiminoacenaphthenone dpp-mian, to obtain oxidovanadium(IV) complexes [VOCl2(dpp-mian)(CH3CN)] (3) and [VOCl(3,5-(CF3)2C6H3-bian)(H2O)][VOCl3(3,5-(CF3)2C6H3-bian)]·2.85DME (4) from [VOCl2(CH3CN)2(H2O)] (1) or [VCl3(THF)3]. The structure of all compounds was determined using X-ray structural analysis. The vanadium atom in these structures has an octahedral coordination environment. Complex 4 has an unexpected structure. Firstly, it contains 3,5-(CF3)2C6H3-bian instead of 3,5-(CF3)2C6H3-mian. Secondly, it has a binuclear structure, in contrast to 3, in which two oxovanadium parts are linked to each other through V=O···V interaction. This interaction is non-covalent in origin, according to DFT calculations. In structures 2 and 3, non-covalent π-π staking interactions between acenaphthene moieties of the neighboring molecules (distances are 3.36–3.40 Å) with an estimated energy of 3 kcal/mol were also found. The redox properties of the obtained compounds were studied using cyclic voltammetry in solution. In all cases, the reduction processes initiated by the redox-active nature of the mian or bian ligand were identified. The paramagnetic nature of complexes 3 and 4 has been proven by EPR spectroscopy. Complexes 3 and 4 exhibited high catalytic activity in the oxidation of alkanes and alcohols with peroxides. The yields of products of cyclohexane oxidation were 43% (complex 3) and 27% (complex 4). Based on the data regarding the study of regio- and bond-selectivity, it was concluded that hydroxyl radicals play the most crucial role in the reaction. The initial products in the reactions with alkanes are alkyl hydroperoxides, which are easily reduced to their corresponding alcohols by the action of triphenylphosphine (PPh3). According to the DFT calculations, the difference in the catalytic activity of 3 and 4 is most likely associated with a different mechanism for the generation of ●OH radicals. For complex 4 with electron-withdrawing CF3 substituents at the diimine ligand, an alternative mechanism, different from Fenton’s and involving a redox-active ligand, is assumed.
Collapse
|
9
|
Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Ruthenium-Catalyzed Dehydrogenation Through an Intermolecular Hydrogen Atom Transfer Mechanism. Angew Chem Int Ed Engl 2021; 60:7290-7296. [PMID: 33403774 PMCID: PMC8048662 DOI: 10.1002/anie.202015837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/17/2022]
Abstract
The direct dehydrogenation of alkanes is among the most efficient ways to access valuable alkene products. Although several catalysts have been designed to promote this transformation, they have unfortunately found limited applications in fine chemical synthesis. Here, we report a conceptually novel strategy for the catalytic, intermolecular dehydrogenation of alkanes using a ruthenium catalyst. The combination of a redox-active ligand and a sterically hindered aryl radical intermediate has unleashed this novel strategy. Importantly, mechanistic investigations have been performed to provide a conceptual framework for the further development of this new catalytic dehydrogenation system.
Collapse
Affiliation(s)
- Lin Huang
- Max-Planck-Institut für KohlenforschungKaiser-Wihelm-Platz 145470Mülheim an der RuhrGermany
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Alessandro Bismuto
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Simon A. Rath
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Bill Morandi
- Max-Planck-Institut für KohlenforschungKaiser-Wihelm-Platz 145470Mülheim an der RuhrGermany
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| |
Collapse
|
10
|
Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Ruthenium‐Catalyzed Dehydrogenation Through an Intermolecular Hydrogen Atom Transfer Mechanism. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lin Huang
- Max-Planck-Institut für Kohlenforschung Kaiser-Wihelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Alessandro Bismuto
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Simon A. Rath
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Max-Planck-Institut für Kohlenforschung Kaiser-Wihelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
11
|
Moskalev MV, Razborov DA, Skatova AA, Bazanov AA, Fedushkin IL. Alkali Metal Reduction of 1,2‐Bis[(2,6‐dibenzhydryl‐4‐methylphenyl)imino]acenaphthene (Ar
BIG
‐bian) to Radical‐Anion. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mikhail V. Moskalev
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Danila A. Razborov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Alexandra A. Skatova
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Andrey A. Bazanov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Igor L. Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| |
Collapse
|
12
|
Gopalakrishnan D, Saravanan S, Merckx R, Madan Kumar A, Khamrang T, Velusamy M, Vasanth K, Sunitha S, Hoogenboom R, Maji S, Ganeshpandian M. N, N-Ru(II)- p-cymene-poly( N-vinylpyrrolidone) surface functionalized gold nanoparticles: from organoruthenium complex to nanomaterial for antiproliferative activity. Dalton Trans 2021; 50:8232-8242. [PMID: 34037018 DOI: 10.1039/d1dt00694k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organometallic Ru-arene complexes are promising as anticancer agents, but the lack of tumor uptake and poor solubility in the physiological medium impede their development. In order to deal with these challenges, we developed gold nanoparticles coated with Ru(arene)-functionalized PNVP-Py, where PNVP-Py is pyridine end-functionalized poly(N-vinylpyrrolidone). It is demonstrated that these particles exhibit higher anti-proliferative activity than the individual organometallic ruthenium(ii) complex of the type [Ru(η6-p-cymene)(NN)Cl]PF6, where NN is bis(4-methoxyphenylimino)acenaphthene, against colorectal adenocarcinoma cell lines. More specifically, a RuII(η6-p-cymene) complex containing a NN bidentate ligand has been prepared and characterized by spectral studies and X-ray crystallography. To tether the isolated complex onto the surface of the AuNPs, PNVP-Py, which contains a pyridine group at one end to coordinate to the Ru-complex and a suitable functional group at the other end to bind on the surface of the AuNPs, has been prepared and utilized to obtain the macromolecular complex [Ru(η6-p-cymene)(NN)(PNVP-Py)]Cl2. Next, stable Ru(p-cym)(NN)(PNVP-Py)@AuNPs were obtained via a ligand exchange reaction of citrate-stabilized AuNPs with a macromolecular complex by a direct 'grafting to' approach and characterized well. Despite the lower DNA cleavage activity, the nanoconjugate exhibits better cytotoxicity than the individual complex against HT-29 colorectal adenocarcinoma cells on account of its enhanced permeability across the cell membrane. The AO/EB staining assay revealed that the nanoconjugate is able to induce an apoptotic mode of cell death, which was further quantitatively evaluated by Annexin V-FITC/PI double assay. An immunofluorescence assay indicated the higher potency of the nanoconjugate to inhibit cyclin D1 gene expression that is required for cancer cell growth. To the best of our knowledge, this is the first report of the modification of an organometallic Ru(arene) complex into a Ru(arene)metallopolymer-gold nanoconjugate for the development of ruthenium-based nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Durairaj Gopalakrishnan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India.
| | - S Saravanan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India.
| | - Ronald Merckx
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium
| | - Arumugam Madan Kumar
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - Themmila Khamrang
- Department of Chemistry, C. I. College, Bishnupur 795126, Manipur, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - K Vasanth
- Division of Molecular Biology, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India
| | - S Sunitha
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium
| | - Samarendra Maji
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India.
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India.
| |
Collapse
|
13
|
Saha R, Mukherjee A, Bhattacharya S. Heteroleptic 1,4‐Diazabutadiene Complexes of Ruthenium: Synthesis, Characterization and Utilization in Catalytic Transfer Hydrogenation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rumpa Saha
- Department of Chemistry Inorganic Chemistry Section Jadavpur University 700 032 Kolkata India
| | - Aparajita Mukherjee
- Department of Chemistry Inorganic Chemistry Section Jadavpur University 700 032 Kolkata India
| | - Samaresh Bhattacharya
- Department of Chemistry Inorganic Chemistry Section Jadavpur University 700 032 Kolkata India
| |
Collapse
|
14
|
Krylova IV, Saverina EA, Rynin SS, Lalov AV, Minyaev ME, Nikolaevskaya EN, Syroeshkin MA, Egorov MP. Synthesis, characterization and redox properties of Ar–C=N→Ge←N=C–Ar containing system. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Synthesis, properties, and catalysis of p-block complexes supported by bis(arylimino)acenaphthene ligands. Commun Chem 2020; 3:113. [PMID: 36703406 PMCID: PMC9814787 DOI: 10.1038/s42004-020-00359-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 01/29/2023] Open
Abstract
Bis(arylimino)acenaphthene (Ar-BIAN) ligands have been recognized as robust scaffolds for metal complexes since the 1990 s and most of their coordination chemistry was developed with transition metals. Notably, there have been relatively few reports on complexes comprising main group elements, especially those capitalizing on the redox non-innocence of Ar-BIAN ligands supporting p-block elements. Here we present an overview of synthetic approaches to Ar-BIAN ligands and their p-block complexes using conventional solution-based methodologies and environmentally-benign mechanochemical routes. This is followed by a discussion on their catalytic properties, including comparisons to transition metal counterparts, as well as key structural and electronic properties of p-block Ar-BIAN complexes.
Collapse
|
16
|
Yambulatov DS, Nikolaevskii SA, Kiskin MA, Magdesieva TV, Levitskiy OA, Korchagin DV, Efimov NN, Vasil’ev PN, Goloveshkin AS, Sidorov AA, Eremenko IL. Complexes of Cobalt(II) Iodide with Pyridine and Redox Active 1,2-Bis(arylimino)acenaphthene: Synthesis, Structure, Electrochemical, and Single Ion Magnet Properties. Molecules 2020; 25:molecules25092054. [PMID: 32354044 PMCID: PMC7249109 DOI: 10.3390/molecules25092054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
Complexes [(dpp-BIAN)0CoIII2]·MeCN (I) and [(Py)2CoI2] (II) were synthesized by the reaction between cobalt(II) iodide and 1,2-bis(2,6-diisopropylphenylimino)acenaphthene (dpp-BIAN) or pyridine (Py), respectively. The molecular structures of the complexes were determined by X-ray diffraction. The Co(II) ions in both compounds are in a distorted tetrahedral environment (CoN2I2). The electrochemical behavior of complex I was studied by cyclic voltammetry. Magnetochemical measurements revealed that when an external magnetic field is applied, both compounds exhibit the properties of field-induced single ion magnets.
Collapse
Affiliation(s)
- Dmitriy S. Yambulatov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
- Correspondence: (D.S.Y.); (S.A.N.); Tel.: +7-495-955-4817 (S.A.N.)
| | - Stanislav A. Nikolaevskii
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
- Correspondence: (D.S.Y.); (S.A.N.); Tel.: +7-495-955-4817 (S.A.N.)
| | - Mikhail A. Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
| | - Tatiana V. Magdesieva
- Lomonosov Moscow State University, Deptartment of Chemistry, Leninskie Gory 1/3, 119991 Moscow, Russia; (T.V.M.); (O.A.L.)
| | - Oleg A. Levitskiy
- Lomonosov Moscow State University, Deptartment of Chemistry, Leninskie Gory 1/3, 119991 Moscow, Russia; (T.V.M.); (O.A.L.)
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia;
| | - Nikolay N. Efimov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
| | - Pavel N. Vasil’ev
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
| | | | - Alexey A. Sidorov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
| | - Igor L. Eremenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
- Nesmeyanov Institute of Organoelement Compounds, 119991 Moscow, Russia;
| |
Collapse
|
17
|
Ansari MA, Mondal S, Kaim W, Lahiri GK. Fused N-Heterocyclic-Bridged Isomeric Diruthenium Complexes [(acac)2Ru(μ-DIPQD)Ru(acac)2]n, n = +2, + 1, 0, −1, −2. Inorg Chem 2020; 59:4397-4405. [DOI: 10.1021/acs.inorgchem.9b03543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohd. Asif Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Sudipta Mondal
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
18
|
Quintal S, Pires da Silva MJ, Martins SRM, Sales R, Félix V, Drew MGB, Meireles M, Mourato AC, Nunes CD, Saraiva MS, Machuqueiro M, Calhorda MJ. Molybdenum(ii) complexes with p-substituted BIAN ligands: synthesis, characterization, biological activity and computational study. Dalton Trans 2019; 48:8449-8463. [PMID: 31116201 DOI: 10.1039/c9dt00469f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New complexes [Mo(η3-C3H5)X(CO)2(4-Y-BIAN)] (4-Y-BIAN = bis(4-Y-phenyl)-acenaphthenequinonediimine), with X = Br and Y = H, Me, OMe, COOH and X = Cl, Y = OMe, as well as the cation with X = NCMe and Y = OMe were synthesized, expanding the scope of this family. Two single crystal X-ray structures (X = Br, Y = Me, OMe) display a less symmetric arrangement (axial isomer), where one N donor atom is trans to the allyl group and the second to one CO. DFT studies showed similar energies for the two possible isomers of the complexes, with a very small preference for the observed axial isomer. The HOMO of the complexes is localized in the metal and the HOMO-1 of the oxidized species has a contribution from the BIAN ligand, while the LUMO is fully localized in BIAN. Electrochemical studies showed one process corresponding to the oxidation of Mo(ii) to Mo(iii) for complexes with X = Br, Y = H, Me, and two oxidation reactions for those with X = Br, Y = Cl, OMe, while the COOH derivative exhibited no oxidation wave. The antitumor effect of the complexes with X = Br was tested in cancer lines, and the H and OMe complexes were particularly active, with EC50 values below 8 μM in HeLa cell lines. The DNA binding constants determined by titration experiments were comparable with those of doxorubicin and ethidium bromide, suggesting a mechanism of action based on intercalation in DNA.
Collapse
Affiliation(s)
- Susana Quintal
- Centro de Química e Bioquímica, DQB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hoque MA, Benet-Buchholz J, Llobet A, Gimbert-Suriñach C. Catalytic Oxidation of Water to Dioxygen by Mononuclear Ru Complexes Bearing a 2,6-Pyridinedicarboxylato Ligand. CHEMSUSCHEM 2019; 12:1949-1957. [PMID: 30633841 DOI: 10.1002/cssc.201802996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The synthesis, purification, and isolation of mononuclear Ru complexes containing the tridentate dianionic meridional ligand pyridyl-2,6-dicarboxylato (pdc2- ) of general formula [RuIII (pdc-κ3 -N1 O2 )(bpy)Cl] (1III ) and [RuII (pdc-κ2 -N1 O1 )(bpy)2 ] (2II ) (bpy is 2,2'-bipyridine) is reported. These two complexes and their derivatives were thoroughly characterized through spectroscopic (UV/Vis, NMR) and electrochemical (cyclic voltammetry, differential pulse voltammetry, and coulometry) analyses, and three of the complexes were analyzed by single-crystal X-ray diffraction techniques. Under a high anodic applied potential, both complexes evolve towards the formation of Ru-aquo/oxo derivative species, namely, [RuIII (pdc-κ3 -N1 O2 )(bpy)(OH2 )]+ (1-O) and [RuIV (O)(pdc-κ2 -N1 O1 )(bpy)2 ] (2-O). These two complexes are active catalysts for the oxidation of water to dioxygen and their catalytic activity was analyzed through electrochemical techniques. A maximum turnover frequency (TOFmax )=2.4-3.4×103 s-1 was calculated for 2-O.
Collapse
Affiliation(s)
- Md Asmaul Hoque
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
20
|
Lukoyanov AN, Ulivanova EA, Razborov DA, Khrizanforova VV, Budnikova YH, Makarov SG, Rumyantcev RV, Ketkov SY, Fedushkin IL. One-Electron Reduction of 2-Mono(2,6-diisopropylphenylimino)acenaphthene-1-one (dpp-mian). Chemistry 2019; 25:3858-3866. [PMID: 30570195 DOI: 10.1002/chem.201805427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 11/06/2022]
Abstract
The electrochemical characteristics of 2-mono(2,6-diisopropylphenylimino)acenaphthene-1-one (dpp-mian) have been investigated. One-electron reduction of dpp-mian involves the iminoketone fragment, which is revealed by the EPR spectrum obtained after the electrolysis of the dpp-mian solution in tetrahydrofuran (THF). The reduction of dpp-mian with one equivalent of metallic potassium leads to a similar EPR spectrum. The sodium complex [(dpp-mian)Na(dme)]2 (1) produces an EPR signal with hyperfine coupling on the nitrogen atom of the iminoketone fragment of the dpp-mian ligand. Dpp-mian can also be reduced in a one-electron process by SnCl2 ×(dioxane). In this case, complex (dpp-mian)2 SnCl2 (2) is formed, with the tin atom displaying an oxidation state of +4. Tin(II) chloride dihydrate, SnCl2 ×2(H2 O), also reduces dpp-mian, but the two ligands bound to tin in the product form a new carbon-carbon bond between the ketone moieties of the dpp-mian monoanions to form complex (bis-dpp-mian)HSnCl3 (3). Metallic tin reduces dpp-mian to form the (bis-dpp-mian)2 Sn (4) species. Compounds 1-4 were characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Anton N Lukoyanov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russian Federation
| | - Elena A Ulivanova
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russian Federation
| | - Danila A Razborov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russian Federation
| | - Vera V Khrizanforova
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov, 8, Kazan, 420088, Russian Federation
| | - Yulia H Budnikova
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov, 8, Kazan, 420088, Russian Federation
| | - Sergey G Makarov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russian Federation
| | - Roman V Rumyantcev
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russian Federation
| | - Sergey Y Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russian Federation
| | - Igor L Fedushkin
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russian Federation
| |
Collapse
|
21
|
Rajput A, Sharma AK, Barman SK, Lloret F, Mukherjee R. Six-coordinate [Co III(L) 2] z (z = 1-, 0, 1+) complexes of an azo-appended o-aminophenolate in amidate(2-) and iminosemiquinonate π-radical (1-) redox-levels: the existence of valence-tautomerism. Dalton Trans 2018; 47:17086-17101. [PMID: 30465680 DOI: 10.1039/c8dt03257b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aerobic reaction of the ligand H2L1, 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol, CoCl2·6H2O and Et3N in MeOH under refluxing conditions produces, after work-up and recrystallization, black crystals of [Co(L1)2] (1). When examined by cyclic voltammetry, 1 displays in CH2Cl2 three one-electron redox responses: two oxidative, E11/2 = 0.30 V (peak-to-peak separation, ΔEp = 100 mV) and E21/2 = 1.04 V (ΔEp = 120 mV), and one reductive E1/2 = -0.27 V (ΔEp = 120 mV) vs. SCE. Consequently, 1 is chemically oxidized by 1 equiv. of [FeIII(η5-C5H5)2][PF6], affording the isolation of deep purple crystals of [Co(L1)2][PF6]·2CH2Cl2 (2), and one-electron reduction with [CoII(η5-C5H5)2] yielded bluish-black crystals of [CoIII(η5-C5H5)2][Co(L1)2]·MeCN (3). A solid sample of 1 exhibits temperature-independent (50-300 K) magnetism, revealing the presence of a free radical (S = 1/2), which exhibits an isotropic EPR signal (g = 2.003) at 298 K and at 77 K an eight-line feature characteristic of hyperfine-interaction of the radical with the Co (I = 7/2) nucleus. Based on X-ray structural parameters of 1-3 at 100 K, magnetic and EPR spectral behaviour of 1, and variable-temperature (233-313 K) 1H NMR spectral features of 1-3 and 13C NMR spectra at 298 K of 2 and 3 in CDCl3 point to the electronic structure of the complexes as either [CoIII{(LAP)2-}{(LISQ)}˙-] or [CoIII{(L1)2}˙3-] (delocalized nature favours the latter description) (1), [CoIII{(LISQ)˙-}2][PF6]·2CH2Cl2 (2) and [CoIII(η5-C5H5)2][CoIII{(LAP)2-}2]·MeCN (3) [(LAP)2- and (LISQ)˙- represent the redox-level of coordinated ligands o-amidophenolate(2-) ion and o-iminobenzosemiquinonate(1-) π-radical ion, respectively]. Notably, all the observed redox processes are ligand-centred. To the best of our knowledge, this is the first time that six-coordinate complexes of a common tridentate o-aminophenolate-based ligand have been structurally characterized for the parent 1, its monocation 2 and the monoanion 3 counterparts. Temperature-dependent 1H NMR spectra reveal the existence of valence-tautomeric equilibria in 1-3. Density Functional Theory (DFT) calculations at the B3LYP-level of theory corroborate the electronic structural assignment of 1-3 from experimental data. The origins of the observed UV-VIS-NIR absorptions for 1-3 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | | | | | | | | |
Collapse
|
22
|
Jia AQ, Liu D, Fang DW, Qian Z. Synthesis and Crystal Structure of Binuclear Half-Sandwich Rhodium Carborane Complex. RUSS J COORD CHEM+ 2018. [DOI: 10.1134/s1070328418090038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Zhou M, Li X, Bu D, Lei H. Synthesis, crystal structures and electrochemical properties of Co(II) and Mn(II) complexes with asymmetric bulky BIAN ligands. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Klementyeva SV, Starikova AA, Abramov PA. Reactions of [(dpp-Bian)Ln(dme) 2 ] (Ln = Eu, Yb) with some oxidants. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Khan FF, Mandal A, Klein J, Priego JL, Jiménez-Aparicio R, Sarkar B, Lahiri GK. Mixed Donor-Acceptor-Derived N
,N′
-Diarylpyrazine-2,5-dicarboxamido-Bridged Diruthenium Systems: Structures, Magnetic Properties, and Electronic Forms in Multiredox States. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Farheen Fatima Khan
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| | - Abhishek Mandal
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| | - Johannes Klein
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universitaet Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - José Luis Priego
- Departamento de Química Inorgánica; Facultad de Ciencias Químicas; Universidad Complutense; 28040 Madrid Spain
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica; Facultad de Ciencias Químicas; Universidad Complutense; 28040 Madrid Spain
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universitaet Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| |
Collapse
|
26
|
Ghosh P, Panda S, Banerjee S, Lahiri GK. Ruthenium-Hydride Mediated Unsymmetrical Cleavage of Benzofuroxan to 2-Nitroanilido with Varying Coordination Mode. Inorg Chem 2017; 56:10735-10747. [DOI: 10.1021/acs.inorgchem.7b01696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyodip Banerjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
27
|
Ray R, Chandra S, Yadav V, Mondal P, Maiti D, Lahiri GK. Ligand controlled switchable selectivity in ruthenium catalyzed aerobic oxidation of primary amines. Chem Commun (Camb) 2017; 53:4006-4009. [DOI: 10.1039/c6cc10200j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A ligand controlled catalytic system for the aerobic oxidation of 1° amines to nitriles and imines has been developed where the varying π-acidic feature of BIAN versus phen in the frameworks of ruthenium catalysts facilitates switchable selectivity.
Collapse
Affiliation(s)
- Ritwika Ray
- Department of Chemistry
- Indian Institute of Technology, Bombay
- Mumbai-400076
- India
| | - Shubhadeep Chandra
- Department of Chemistry
- Indian Institute of Technology, Bombay
- Mumbai-400076
- India
| | - Vishal Yadav
- Department of Chemistry
- Indian Institute of Technology, Bombay
- Mumbai-400076
- India
| | - Prasenjit Mondal
- Department of Chemistry
- Indian Institute of Technology, Bombay
- Mumbai-400076
- India
| | - Debabrata Maiti
- Department of Chemistry
- Indian Institute of Technology, Bombay
- Mumbai-400076
- India
| | - Goutam Kumar Lahiri
- Department of Chemistry
- Indian Institute of Technology, Bombay
- Mumbai-400076
- India
| |
Collapse
|
28
|
Ghosh P, Banerjee S, Lahiri GK. Ruthenium Derivatives of in Situ Generated Redox-Active 1,2-Dinitrosobenzene and 2-Nitrosoanilido. Diverse Structural and Electronic Forms. Inorg Chem 2016; 55:12832-12843. [DOI: 10.1021/acs.inorgchem.6b02197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyodip Banerjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|