1
|
Wu SH, Zhang Z, Zheng RH, Yang R, Wang L, Shao JY, Gong ZL, Zhong YW. Dual-Emissive Monoruthenium Complexes of N(CH 3)-Bridged Ligand: Synthesis, Characterization, and Substituent Effect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6792. [PMID: 37895773 PMCID: PMC10607950 DOI: 10.3390/ma16206792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Three monoruthenium complexes 1(PF6)2-3(PF6)2 bearing an N(CH3)-bridged ligand have been synthesized and characterized. These complexes have a general formula of [Ru(bpy)2(L)](PF6)2, where L is a 2,5-di(N-methyl-N'-(pyrid-2-yl)amino)pyrazine (dapz) derivative with various substituents, and bpy is 2,2'-bipyridine. The photophysical and electrochemical properties of these compounds have been examined. The solid-state structure of complex 3(PF6)2 is studied by single-crystal X-ray analysis. These complexes show two well-separated emission bands centered at 451 and 646 nm (Δλmax = 195 nm) for 1(PF6)2, 465 and 627 nm (Δλmax = 162 nm) for 2(PF6)2, and 455 and 608 nm (Δλmax = 153 nm) for 3(PF6)2 in dilute acetonitrile solution, respectively. The emission maxima of the higher-energy emission bands of these complexes are similar, while the lower-energy emission bands are dependent on the electronic nature of substituents. These complexes display two consecutive redox couples owing to the stepwise oxidation of the N(CH3)-bridged ligand and ruthenium component. Moreover, these experimental observations are analyzed by computational investigation.
Collapse
Affiliation(s)
- Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Zhe Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Ren-Hui Zheng
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Rong Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (Z.Z.); (R.-H.Z.); (R.Y.)
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.-Y.S.); (Y.-W.Z.)
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.-Y.S.); (Y.-W.Z.)
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.-Y.S.); (Y.-W.Z.)
| |
Collapse
|
2
|
Greenberg M, Tulloch KM, Reynoso ME, Knapp JL, Sayem FH, Bartkus DD, Lum RH, LaFratta CN, Tanski JM, Anderson CM. Synthesis, Structure, and Photophysical Properties of Platinum Compounds with Thiophene-Derived Cyclohexyl Diimine Ligands. ACS OMEGA 2023; 8:38587-38596. [PMID: 37867690 PMCID: PMC10586441 DOI: 10.1021/acsomega.3c05567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Platinum(II) and platinum(IV) compounds were prepared by the stereoselective and regioselective reactions of thiophene-derived cyclohexyl diimine C^N^N-ligands with [Pt2Me4(μ-SMe2)2]. Newly synthesized ligands were characterized by NMR spectroscopy and elemental analysis, and Pt(II)/Pt(IV) compounds were characterized by NMR spectroscopy, elemental analysis, high-resolution mass spectrometry, and single-crystal X-ray diffraction. UV-vis absorbance and photoluminescence measurements were performed on newly synthesized complexes, as well as structurally related Pt(II)/Pt(IV) compounds with benzene-derived cyclohexyl diimine ligands, in dichloromethane solution, as solids, and as 5% by weight PMMA-doped films. DFT and TD-DFT calculations were performed, and the results were compared with the observed spectroscopic properties of the newly synthesized complexes. X-ray total scattering measurements and real space pair distribution function analysis were performed on the synthesized complexes to examine the local- and intermediate-range atomic structures of the emissive solid states.
Collapse
Affiliation(s)
- Matthew
W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Kris M. Tulloch
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Michelle E. Reynoso
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Juliette L. Knapp
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Farman H. Sayem
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Ryan H. Lum
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
3
|
Malmberg R, Suter D, Blacque O, Venkatesan K. Monocyclometalated (C N) Gold(III) Metallacycles: Tunable Emission and Singlet Oxygen ( 1 O 2 ) Generation Properties. Chemistry 2021; 27:14410-14417. [PMID: 34406672 DOI: 10.1002/chem.202102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization and photoluminescent properties of four cyclometalated (C N)-type gold(III) complexes bearing a bidentate diacetylide ligand, tolan-2,2'-diacetylide (tda), are reported. The complexes exhibit highly tunable excited state properties and show photoluminescence (PL) across the entire visible spectrum from sky-blue (λPL =493 nm) to red (λPL =675 nm) with absolute PL quantum yields (PLQY) of up to 75 % in solution, the highest PLQY found for any monocyclometalated Au(III) complex in solution. As a consequence of the use of the strongly rigidifying diacetylide bidentate ligand, a significant increase in the excited state lifetimes (τ0 =16-258 μs) was found in solution and in thin films. The complexes showed remarkable singlet oxygen generation in aerated solution with absolute singlet oxygen quantum yield (ϕ1Δ ) values reaching up to 7.5×10-5 and singlet oxygen lifetimes (τ0 1Δ ) in the range of 66-95 μs. Furthermore, the radiative and non-radiative rates of singlet oxygen were determined using the ϕ1Δ and τ0 1Δ values and correlations are drawn between the formation of singlet oxygen and its interaction with cyclometalated (C N) gold(III) complexes.
Collapse
Affiliation(s)
- Robert Malmberg
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dominik Suter
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Koushik Venkatesan
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
4
|
Luo Z, Liu Y, Tong KC, Chang XY, To WP, Che CM. Luminescent Platinum(II) Complexes with Bidentate Diacetylide Ligands: Structures, Photophysical Properties and Application Studies. Chem Asian J 2021; 16:2978-2992. [PMID: 34374225 DOI: 10.1002/asia.202100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Indexed: 01/19/2023]
Abstract
A series of platinum(II) complexes supported by terphenyl diacetylide as well as diimine or bis-N-heterocyclic carbene (NHC) ligands have been prepared. The diacetylide ligands adopt a cis coordination mode featuring non-planar terphenyl moieties as revealed by X-ray crystallographic analyses. The electrochemical, photophysical and photochemical properties of these platinum(II) complexes have been investigated. These platinum(II) diimine complexes show broad emission with peak maxima from 566 nm to 706 nm, with two of them having emission quantum yields >60% and lifetimes <2 μs in solutions at room temperature, whereas the platinum(II) diacetylide complexes having bis-N-heterocyclic carbene instead of diimine ligand display photoluminescence with quantum yields of up to 28% in solutions and excited state lifetimes of up to 62 μs at room temperature. Application studies revealed that one of the complexes can catalyze photoinduced aerobic dehydrogenation of alcohols and alkenes, and a relatively non-toxic water-soluble Pt(II) complex displays anti-angiogenic activity.
Collapse
Affiliation(s)
- Zaoli Luo
- Department Key Laboratory of Pesticide & Chemical Biology Ministry of Education and Chemical Biology Center College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.,State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
5
|
Vallan L, Istif E, Gómez IJ, Alegret N, Mantione D. Thiophene-Based Trimers and Their Bioapplications: An Overview. Polymers (Basel) 2021; 13:1977. [PMID: 34208624 PMCID: PMC8234281 DOI: 10.3390/polym13121977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/15/2023] Open
Abstract
Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.
Collapse
Affiliation(s)
- Lorenzo Vallan
- Laboratoire de Chimie des Polymères Organiques (LCPO—UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France;
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey;
| | - I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Daniele Mantione
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey;
| |
Collapse
|
6
|
Rodygin KS, Vikenteva YA, Ananikov VP. Calcium-Based Sustainable Chemical Technologies for Total Carbon Recycling. CHEMSUSCHEM 2019; 12:1483-1516. [PMID: 30938099 DOI: 10.1002/cssc.201802412] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Calcium carbide, a stable solid compound composed of two atoms of carbon and one of calcium, has proven its effectiveness in chemical synthesis, due to the safety and convenience of handling the C≡C acetylenic units. The areas of CaC2 application are very diverse, and the development of calcium-mediated approaches resolves several important challenges. This Review aims to discuss the laboratory chemistry of calcium carbide, and to go beyond its frontiers to organic synthesis, life sciences, materials and construction, carbon dioxide capturing, alloy manufacturing, and agriculture. The recyclability of calcium carbide and the availability of large-scale industrial production facilities, as well as the future possibility of fossil-resource-independent manufacturing, position this compound as a key chemical platform for sustainable development. Easy regeneration and reuse of the carbide highlight calcium-based sustainable chemical technologies as promising instruments for total carbon recycling.
Collapse
Affiliation(s)
- Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Yulia A Vikenteva
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
7
|
Chen F, Kim J, Matsuo Y, Hong Y, Kim D, Tanaka T, Osuka A. ortho
‐Phenylene‐Bridged Hybrid Nanorings of 2,5‐Pyrrolylenes and 2,5‐Thienylenes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fengkun Chen
- Department of Chemistry, Graduate School of ScienceKyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan
| | - Jinseok Kim
- Spectroscopy Laboratory for Functional p-Electronic Systems and Department of ChemistryYonsei University50, Yonsei-ro Seodaemun-gu, Seoul 03722 Korea
| | - Yusuke Matsuo
- Department of Chemistry, Graduate School of ScienceKyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan
| | - Yongseok Hong
- Spectroscopy Laboratory for Functional p-Electronic Systems and Department of ChemistryYonsei University50, Yonsei-ro Seodaemun-gu, Seoul 03722 Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional p-Electronic Systems and Department of ChemistryYonsei University50, Yonsei-ro Seodaemun-gu, Seoul 03722 Korea
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of ScienceKyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of ScienceKyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
8
|
Van Beek WE, Gadde K, Tehrani KA. The Use of Calcium Carbide as Acetylene Source in a Three-Component Coupling with ω-Chlorinated Ketones and Primary Amines. Chemistry 2018; 24:16645-16651. [DOI: 10.1002/chem.201803669] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Wim E. Van Beek
- Research Group Organic Synthesis; Department of Chemistry; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Karthik Gadde
- Research Group Organic Synthesis; Department of Chemistry; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Kourosch Abbaspour Tehrani
- Research Group Organic Synthesis; Department of Chemistry; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgium
| |
Collapse
|
9
|
Ai Y, Ng M, Hong EY, Chan AK, Wei Z, Li Y, Yam VW. Solvent‐Induced and Temperature‐Promoted Aggregation of Bipyridine Platinum(II) Triangular Metallacycles and Their Near‐Infrared Emissive Behaviors. Chemistry 2018; 24:11611-11618. [DOI: 10.1002/chem.201802499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yeye Ai
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Maggie Ng
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Eugene Yau‐Hin Hong
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Alan Kwun‐Wa Chan
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Zhang‐Wen Wei
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yongguang Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| |
Collapse
|
10
|
Wu SH, Shao JY, Gong ZL, Chen N, Zhong YW. Tuning the dual emissions of a monoruthenium complex with a dangling coordination site by solvents, O2, and metal ions. Dalton Trans 2018; 47:292-297. [DOI: 10.1039/c7dt04198e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monoruthenium complex with a dangling coordination site shows solvent-, O2-, and metal ion-modulated dual fluorescence and phosphorescence emissions.
Collapse
Affiliation(s)
- Si-Hai Wu
- School of Biomedical Sciences
- Huaqiao University
- Quanzhou
- China
| | - Jiang-Yang Shao
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhong-Liang Gong
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Na Chen
- School of Biomedical Sciences
- Huaqiao University
- Quanzhou
- China
| | - Yu-Wu Zhong
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
11
|
Zhang S, Geng Y, Fan Y, Duan W, Deng K, Zhao D, Zeng Q. Two-dimensional (2D) self-assembly of oligo(phenylene-ethynylene) molecules and their triangular platinum(ii) diimine complexes studied using STM. Phys Chem Chem Phys 2017; 19:31284-31289. [DOI: 10.1039/c7cp06154d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of a series of cyclic oligo(phenylene-ethynylene) (OPE) molecules and their triangular Pt(ii) diimine complexes were studied using scanning tunneling microscope (STM).
Collapse
Affiliation(s)
- Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Yanfang Geng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Yuanpeng Fan
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
| | - Wubiao Duan
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing
- P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| |
Collapse
|