1
|
Zou Q, Bao SS, Huang XD, Wen GH, Jia JG, Wu LQ, Zheng LM. Cobalt(II)-dianthracene Frameworks: Assembly, Exfoliation and Properties. Chem Asian J 2021; 16:1456-1465. [PMID: 33861508 DOI: 10.1002/asia.202100283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks containing responsive organic linkers are attractive for potential applications in sensors and molecular devices. Herein we report three cobalt(II) phosphonates incorporating responsive dianthracene linkers, namely, Co2 (amp2 H2 )2 (H2 O)4 ⋅ 6H2 O (MDAF-1), Co2 (amp2 )(H2 O)4 ⋅ 2H2 O (MDAF-2) and Co(amp2 H2 ) ⋅ 2H2 O ⋅ 0.5DMF (MDAF-3), where amp2 H4 is pre-photodimerized 9-anthrylmethylphosphonic acid. MDAF-1 shows a layer structure in which dinuclear Co2 (PO3 H)2 units are inter-connected by dianthracene ligands. In MDAF-2 and MDAF-3, inorganic chains of corner-sharing {CoO4 } (or {CoO6 }) and {PO3 C} are cross-linked by dianthracene ligands into 3D frameworks. All compounds underwent thermo-induced phase transitions, first the de-solvation and then the de-dimerization of dianthracene (as well as the release of the remaining solvent molecules for MDAF-2 and -3), associated with magnetic changes. MDAF-1 can be exfoliated into single-layer nanosheets in water which show light-triggered luminescent changes.
Collapse
Affiliation(s)
- Qian Zou
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Lan-Qing Wu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Sperling JM, Warzecha E, Klamm BE, Gaiser AN, Windorff CJ, Whitefoot MA, Albrecht-Schönzart TE. Pronounced Pressure Dependence of Electronic Transitions for Americium Compared to Isomorphous Neodymium and Samarium Mellitates. Inorg Chem 2021; 60:476-483. [PMID: 33325231 DOI: 10.1021/acs.inorgchem.0c03293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mellitate ion is relevant in spent nuclear fuel processing and is utilized as a surrogate for studying the interactions of f elements with humic acids. A wealth of different coordination modes gives the potential for diverse structural chemistry across the actinide series. In this study, an americium mellitate, 243Am2[(C6(COO-)6](H2O)8·2H2O (1-Am), has been synthesized and characterized using structural analysis and spectroscopy at ambient and elevated pressures. 1-Am was then compared to isomorphous neodymium (1-Nd) and samarium (1-Sm) mellitates via bond-length analysis and pressure dependence of their Laporte-forbidden f → f transitions. Results show that the pressure dependence of the f → f transitions of 1-Am is significantly greater than that observed in 1-Nd and 1-Sm, with average shifts of 21.4, 4.7, and 3.6 cm-1/GPa, respectively. This greater shift found in 1-Am shows further evidence that the 5f orbitals are more affected than the 4f orbitals when pressure is applied to isostructural compounds.
Collapse
Affiliation(s)
- Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Evan Warzecha
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Bonnie E Klamm
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Megan A Whitefoot
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Sperling JM, Warzecha E, Windorff CJ, Klamm BE, Gaiser AN, Whitefoot MA, White FD, Poe TN, Albrecht-Schönzart TE. Pressure-Induced Spectroscopic Changes in a Californium 1D Material Are Twice as Large as Found in the Holmium Analog. Inorg Chem 2020; 59:10794-10801. [PMID: 32648751 DOI: 10.1021/acs.inorgchem.0c01290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the synthesis, characterization, and pressure response of a 1D californium mellitate (mellitate = 1,2,3,4,5,6-benzenehexacarboxylate) coordination polymer, Cf2(mell)(H2O)10·4H2O (Cf-1), are reported. The Cf-O lengths within the crystal structure are compared to its gadolinium (Gd-1) and holmium (Ho-1) analogs as well. These data show that the average Cf-O bond distance is slightly longer than the average Gd-O bond, consistent with trends in effective ionic radii. UV-vis-NIR absorption spectra as a function of pressure were collected using diamond-anvil techniques for both Cf-1 and Ho-1. These experiments show that the Cf(III) f → f transitions have a stronger dependence on pressure than that of the holmium analog. In the former case, the shift is nearly linear with applied pressure and averages 6.6 cm-1/GPa, whereas in the latter, it is <3 cm-1/GPa.
Collapse
Affiliation(s)
- Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Evan Warzecha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Bonnie E Klamm
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Megan A Whitefoot
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Frankie D White
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
4
|
Pyrch MM, Bjorklund JL, Williams JM, Parr Iv DL, Mason SE, Leddy J, Forbes TZ. Impacts of hydrogen bonding interactions with Np(v/vi)O 2Cl 4 complexes: vibrational spectroscopy, redox behavior, and computational analysis. Dalton Trans 2020; 49:6854-6866. [PMID: 32383725 DOI: 10.1039/d0dt00848f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neptunyl (Np(v)O2+/Np(vi)O22+) cation is the dominant form of 237Np in acidic aqueous solutions and the stability of the Np(v) and Np(vi) species is driven by the specific chemical constituents present in the system. Hydrogen bonding with the oxo group may impact the stability of these species, but there is limited understanding of how these intermolecular interactions influence the behavior of both solution and solid-state species. In the current study, we systematically evaluate the interactions between the neptunyl tetrachloride species and hydrogen donors in coordination complexes and in the related aqueous solutions. Both Np(v) compounds (N2C4H12)2[Np(v)O2Cl4]Cl (Np(V)pipz) and (NOC4H10)3[Np(v)O2Cl4] (Np(V)morph) exhibit directional hydrogen bonding to the neptunyl oxo group while Np(vi) compounds (NC5H6)2[Np(vi)O2Cl4] (Np(VI)pyr) and (NOC4H10)4[Np(vi)O2Cl4]·2Cl (Np(VI)morph) assemble via halogen interactions. The Raman spectra of the solid-state phases indicate the activation of vibrational bands when there is asymmetry of the neptunyl bond, while these spectral features are not observed within the related solution phase spectra. Density functional theory calculations of the Np(V)pipz system suggest that activation of the ν3 asymmetric stretch and other combination modes lead to additional complexity within the solid-state spectra. Electrochemical analyses of complexes in the solution phases are consistent with the results of the crystallization experiments as the voltammetric potentials of Np(v)/Np(vi) complexes in the presence of protonated heterocycles differ from the potentials of pure Np(v) and may correlate with the hydrogen bonding interactions.
Collapse
Affiliation(s)
- Mikaela M Pyrch
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Sperling JM, Gaiser AN, Windorff CJ, Klamm BE, Whitefoot MA, Chemey AT, Long BN, Campbell JG, Albrecht-Schmitt TE. Structural and Spectroscopic Investigation of Two Plutonium Mellitates. Inorg Chem 2020; 59:3085-3090. [PMID: 32037813 DOI: 10.1021/acs.inorgchem.9b03432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aqueous reaction of mellitic acid (H6mell) with 242PuBr3·nH2O forms two plutonium mellitates, 242Pu2(mell)(H2O)9·H2O (Pu-1α) and 242Pu2(mell)(H2O)8·2H2O (Pu-1β). These compounds are compared to the isomorphous lanthanide mellitates with similar ionic radii via bond length analysis. Both plutonium compounds form three-dimensional metal-organic frameworks, with Pu-1α having two unique metal centers and Pu-1β having one. All plutonium metal centers exhibit nine-coordinate geometries. Our results show metal-oxygen bond lengths for plutonium significantly shorter than those of the previously reported lanthanum and herein reported cerium analogues, consistent with the nine-coordinate ionic radii. Clear Laporte-forbidden 5f → 5f transitions are observed in the ultraviolet-visible-near-infrared spectra and are assigned to trivalent plutonium. However, there is a distinct color difference between the two plutonium compounds.
Collapse
Affiliation(s)
- Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Bonnie E Klamm
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Megan A Whitefoot
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander T Chemey
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Brian N Long
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joanna G Campbell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Ejegbavwo OA, Martin CR, Olorunfemi OA, Leith GA, Ly RT, Rice AM, Dolgopolova EA, Smith MD, Karakalos SG, Birkner N, Powell BA, Pandey S, Koch RJ, Misture ST, Loye HCZ, Phillpot SR, Brinkman KS, Shustova NB. Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal–Organic Frameworks with “Structural Memory”. J Am Chem Soc 2019; 141:11628-11640. [DOI: 10.1021/jacs.9b04737] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Otega A. Ejegbavwo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Corey R. Martin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Oyindamola A. Olorunfemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gabrielle A. Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Richard T. Ly
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Allison M. Rice
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ekaterina A. Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Stavros G. Karakalos
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Nancy Birkner
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, South Carolina 29634, United States
| | - Brian A. Powell
- Department of Environmental Engineering and Earth Science, Clemson University, Clemson, South Carolina 29634, United States
| | - Shubham Pandey
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Robert J. Koch
- Kazuo Inamori School of Ceramic Engineering, Alfred University, Alfred, New York 14802, United States
| | - Scott T. Misture
- Kazuo Inamori School of Ceramic Engineering, Alfred University, Alfred, New York 14802, United States
| | - Hans-Conrad zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Simon R. Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kyle S. Brinkman
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, South Carolina 29634, United States
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Kong XH, Hu KQ, Wu QY, Mei L, Yu JP, Chai ZF, Nie CM, Shi WQ. In situ nitroso formation induced structural diversity of uranyl coordination polymers. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01394b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This work presents three possible pathways that could exist in the in situ reaction system. Structural analysis of these compounds revealed that the introduction of nitroso group exerted significant influences on the conformations of ligands, skeletons and 3D structures.
Collapse
Affiliation(s)
- Xiang-He Kong
- School of Resource and Environment and Safety Engineering
- University of South China
- Hengyang
- China
- Laboratory of Nuclear Energy Chemistry
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Chang-Ming Nie
- School of Resource and Environment and Safety Engineering
- University of South China
- Hengyang
- China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
8
|
Wu S, Mei L, Li FZ, An SW, Hu KQ, Nie CM, Chai ZF, Shi WQ. Uranyl-Organic Coordination Compounds Incorporating Photoactive Vinylpyridine Moieties: Synthesis, Structural Characterization, and Light-Induced Fluorescence Attenuation. Inorg Chem 2018; 57:14772-14785. [DOI: 10.1021/acs.inorgchem.8b02523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Si Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fei-ze Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-wen An
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Loukopoulos E, Abdul-Sada A, Csire G, Kállay C, Brookfield A, Tizzard GJ, Coles SJ, Lykakis IN, Kostakis GE. Copper(ii)-benzotriazole coordination compounds in click chemistry: a diagnostic reactivity study. Dalton Trans 2018; 47:10491-10508. [PMID: 29796447 DOI: 10.1039/c8dt01256c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This diagnostic study aims to shed light on the catalytic activity of a library of Cu(ii) based coordination compounds with benzotriazole-based ligands. We report herein the synthesis and characterization of five new coordination compounds formulated as [CuII(L4)(MeCN)2(CF3SO3)2] (1), [CuII(L5)2(CF3SO3)2] (2), [CuII(L6)2(MeCN)(CF3SO3)]·(CF3SO3) (3), [CuII(L6)2(H2O)(CF3SO3)]·(CF3SO3)·2(Me2CO) (4), and [Cu(L1)2(L1')2(CF3SO3)2]2·4(CF3SO3)·8(Me2CO) (5), derived from similar nitrogen-based ligands. The homogeneous catalytic activity of these compounds along with our previously reported coordination compounds (6-13), derived from similar ligands, is tested against the well-known Cu(i)-catalysed azide-alkyne cycloaddition reaction. The optimal catalyst [CuII(L1)2(CF3SO3)2] (10) activates the reaction to afford 1,4-disubstituted 1,2,3-triazoles with yields up to 98% and without requiring a reducing agent. Various control experiments are performed to optimize the method and examine parameters such as ligand variation, metal coordination geometry and environment, in order to elucidate the behaviour of the catalytic system.
Collapse
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Alaa Abdul-Sada
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Gizella Csire
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Kállay
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| | - Adam Brookfield
- School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, SO1 71BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton, SO1 71BJ, UK
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
10
|
Zhao R, Mei L, Hu KQ, Tian M, Chai ZF, Shi WQ. Bimetallic Uranyl Organic Frameworks Supported by Transition-Metal-Ion-Based Metalloligand Motifs: Synthesis, Structure Diversity, and Luminescence Properties. Inorg Chem 2018; 57:6084-6094. [PMID: 29722968 DOI: 10.1021/acs.inorgchem.8b00634] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A bifunctional ligand, 2,2'-bipyridine-4,4'-dicarboxylic acid (H2bpdc), has been used in the investigation of constructing bimetallic uranyl organic frameworks (UOFs). Seven novel uranyl-transition metal bimetallic coordination polymers, [(UO2)Zn(bpdc)2] n (1), [Cd(UO2)(bpdc)2(H2O)2·2H2O] n (2), [Cu(UO2)(bpdc)(SO4)(H2O)3·2H2O] n (3), [CuCl(UO2)(bpdc)(Hbpdc)(H2O)2·H2O] n (4), [Cu(UO2)(bpdc)2(H2O)] n (5), [Co2(UO2)3(bpdc)6] n (6), and [Co3(UO2)4(bpdc)8(Hbpdc)(H2O)2] n (7), have been successfully constructed through the assembly of various transition-metal salts, uranyl ions, and H2bpdc ligands under hydrothermal conditions. UOFs 1, 5, 6, and 7 adopt three-dimensional (3D) frameworks with different architectures; UOFs 2 and 3 exhibit two-dimensional (2D) wavelike and stairlike layers, respectively, while UOF 4 is a one-dimensional (1D) chain assembly. These UOFs include a wide range of dimensionalities (1D-3D), interpenetrated frameworks, and cation-cation interaction species, suggesting that anion-dependent structure regulation based on the metalloligand [M(bpdc) m] n- motifs, the coordination modes of the metal centers and bpdc2- ligands, along with the reaction temperature, has a remarkable influence on the formation of bimetallic UOFs, which could be a representative system for the structural modulation of UOFs with various dimensionalities and structures. Furthermore, the thermal stability and luminescent properties of compounds 1, 3, and 6 are also investigated.
Collapse
Affiliation(s)
- Ran Zhao
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Tian
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China.,School of Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
11
|
Mei L, Hu KQ, Zhang ZH, An SW, Chai ZF, Shi WQ. Stepwise ortho Chlorination of Carboxyl Groups for Promoting Structure Variance of Heterometallic Uranyl–Silver Coordination Polymers of Isonicotinate. Inorg Chem 2018; 57:4673-4685. [DOI: 10.1021/acs.inorgchem.8b00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-hui Zhang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Shu-wen An
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Thuéry P, Harrowfield J. Complexes of Uranyl Ions with Aromatic Di‐ and Tetracarboxylates Involving [Ni(bipy)
n
]
2+
(
n
= 2, 3) Counterions. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pierre Thuéry
- NIMBE CEA Université Paris‐Saclay 91191 Gif‐sur‐Yvette France
| | - Jack Harrowfield
- ISIS CEA Université de Strasbourg 8 allée Gaspard Monge 67083 Strasbourg France
| |
Collapse
|
13
|
Liu C, Chen FY, Tian HR, Ai J, Yang W, Pan QJ, Sun ZM. Interpenetrated Uranyl–Organic Frameworks with bor and pts Topology: Structure, Spectroscopy, and Computation. Inorg Chem 2017; 56:14147-14156. [DOI: 10.1021/acs.inorgchem.7b02274] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chao Liu
- State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang-Yuan Chen
- Key Laboratory of
Functional Inorganic Material Chemistry of Education Ministry, School
of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Hong-Rui Tian
- State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Jing Ai
- State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Weiting Yang
- State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Qing-Jiang Pan
- Key Laboratory of
Functional Inorganic Material Chemistry of Education Ministry, School
of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhong-Ming Sun
- State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of
Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
14
|
Jayasinghe AS, Payne MK, Forbes TZ. Synthesis and characterization of heterometallic uranyl pyridinedicarboxylate compounds. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Kalaj M, Carter KP, Savchenkov AV, Pyrch MM, Cahill CL. Syntheses, Structures, and Comparisons of Heterometallic Uranyl Iodobenzoates with Monovalent Cations. Inorg Chem 2017; 56:9156-9168. [DOI: 10.1021/acs.inorgchem.7b01208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark Kalaj
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Korey P. Carter
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | | | - Mikaela M. Pyrch
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Christopher L. Cahill
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States
| |
Collapse
|
16
|
Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Zhao R, Mei L, Hu KQ, Wang L, Chai ZF, Shi WQ. Two Three-Dimensional Actinide-Silver Heterometallic Coordination Polymers Based on 2,2′-Bipyridine-3,3′-dicarboxylic Acid with Helical Chains Containing Dimeric or Trimeric Motifs. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ran Zhao
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; 100049 Beijing China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; 100049 Beijing China
| | - Kong-qiu Hu
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; 100049 Beijing China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; 100049 Beijing China
| | - Zhi-fang Chai
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; 100049 Beijing China
- School of Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions; Soochow University; 215123 Suzhou China
| | - Wei-qun Shi
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; 100049 Beijing China
| |
Collapse
|
18
|
Thuéry P, Harrowfield J. Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species. Dalton Trans 2017; 46:13660-13667. [DOI: 10.1039/c7dt03105j] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A survey is given of recent original structural results on heterometallic species incorporating uranyl ions, particularly with carboxylate ligands.
Collapse
|
19
|
Chatelain L, Tuna F, Pécaut J, Mazzanti M. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d–5f uranyl(v)–cobalt(ii) cation–cation complexes. Dalton Trans 2017; 46:5498-5502. [DOI: 10.1039/c6dt04558h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trinuclear versus dinuclear heterodimetallic UVO2+⋯Co2+ complexes were selectively assembled via a cation–cation interaction by tuning the ligand. The trimeric complex, exhibits magnetic exchange and slow relaxation providing the first example of a U–Co exchange-coupled SMM.
Collapse
Affiliation(s)
- Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
| | | | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
20
|
Xie ZN, Mei L, Wu QY, Hu KQ, Xia LS, Chai ZF, Shi WQ. Temperature-induced reversible single-crystal-to-single-crystal isomerisation of uranyl polyrotaxanes: an exquisite case of coordination variability of the uranyl center. Dalton Trans 2017; 46:7392-7396. [DOI: 10.1039/c7dt01034f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reversible solid-state isomerisation mediated by the change of uranyl-ligand coordination modes has been achieved in uranyl polyrotaxanes by a temperature-induced strategy.
Collapse
Affiliation(s)
- Zhen-ni Xie
- School of Nuclear Science and Technology
- University of South China
- Hengyang 421001
- China
- Laboratory of Nuclear Energy Chemistry
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Qun-yan Wu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Kong-qiu Hu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Liang-shu Xia
- School of Nuclear Science and Technology
- University of South China
- Hengyang 421001
- China
| | - Zhi-fang Chai
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Wei-qun Shi
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|