1
|
Heim P, Biswas S, Lopez H, Gericke R, Twamley B, McDonald AR. A Co II-Hydroxide Complex That Converts Directly to a Co II-Acetamide during Catalytic Nitrile Hydration. Inorg Chem 2024; 63:7896-7902. [PMID: 38607349 PMCID: PMC11061833 DOI: 10.1021/acs.inorgchem.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
In exploring structural and functional mimics of nitrile hydratases, we report the synthesis of the pseudo-trigonal bipyramidal CoII complexes (K)[CoII(DMF)(LPh)] (1(DMF)), (NMe4)2[CoII(OAc)(LPh)] (1(OAc)), and (NMe4)2[CoII(OH)(LPh)] (1(OH)) (LPh = 2,2',2''-nitrilo-tris-(N-phenylacetamide; DMF = N,N-dimethylformamide; -OAc = acetate)). The complexes were characterized using NMR, FT-IR, ESI-MS, electronic absorption spectroscopy, and X-ray crystallography, showing the LPh ligand to bind in a tetradentate tripodal fashion alongside the respective ancillary donor. One of the complexes, 1(OH), is an unusual structural and functional mimic of the Co active site in Co nitrile hydratases. 1(OH) reacted with acetonitrile to yield the CoII-acetamide complex (NMe4)2[CoII(NHC(O)CH3)(LPh)], 2, which was also thoroughly characterized. In the presence of excess hydroxide, 1(OH) was found to catalyze quantitative conversion of the added hydroxide into acetamide. Despite the differences in Co oxidation state in nitrile hydratases and 1(OH) (CoIII versus CoII, respectively), 1(OH) was nonetheless an effective nitrile hydration catalyst, selectively producing acetamide over multiple turnovers.
Collapse
Affiliation(s)
- Philipp Heim
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Sachidulal Biswas
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Hugo Lopez
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Resource
Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Brendan Twamley
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Aidan R. McDonald
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
2
|
Ross DL, Jasniewski AJ, Ziller JW, Bominaar EL, Hendrich MP, Borovik AS. Modulation of the Bonding between Copper and a Redox-Active Ligand by Hydrogen Bonds and Its Effect on Electronic Coupling and Spin States. J Am Chem Soc 2024; 146:500-513. [PMID: 38150413 PMCID: PMC11160172 DOI: 10.1021/jacs.3c09983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The exchange coupling of electron spins can strongly influence the properties of chemical species. The regulation of this type of electronic coupling has been explored within complexes that have multiple metal ions but to a lesser extent in complexes that pair a redox-active ligand with a single metal ion. To bridge this gap, we investigated the interplay among the structural and magnetic properties of mononuclear Cu complexes and exchange coupling between a Cu center and a redox-active ligand over three oxidation states. The computational analysis of the structural properties established a relationship between the complexes' magnetic properties and a bonding interaction involving a dx2-y2 orbital of the Cu ion and π orbital of the redox-active ligand that are close in energy. The additional bonding interaction affects the geometry around the Cu center and was found to be influenced by intramolecular H-bonds introduced by the external ligands. The ability to synthetically tune the d-π interactions using H-bonds illustrates a new type of control over the structural and magnetic properties of metal complexes.
Collapse
Affiliation(s)
- Dolores L Ross
- Department of Chemistry, 1102 Natural Science II, University of California, Irvine, California 92697, United States
| | - Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, 1102 Natural Science II, University of California, Irvine, California 92697, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - A S Borovik
- Department of Chemistry, 1102 Natural Science II, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Hern M, Foley R, Bacsa J, Wallen CM. Binding polyprotic small molecules with second-sphere hydrogen bonds. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2119850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Morgan Hern
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - Rebecca Foley
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - John Bacsa
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Christian M. Wallen
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| |
Collapse
|
4
|
Abstract
This tutorial review showcases recent (2015-2021) work describing ligand construction as it relates to the design of secondary coordination spheres (SCSs). Metalloenzymes, for example, utilize SCSs to stabilize reactive substrates, shuttle small molecules, and alter redox properties, promoting functional activity. In the realm of biomimetic chemistry, specific incorporation of SCS residues (e.g., Brønsted or Lewis acid/bases, crown ethers, redox groups etc.) has been shown to be equally critical to function. This contribution illustrates how fundamental advances in organic and inorganic chemistry have been used for the construction of such SCSs. These imaginative contributions have driven exciting findings in many transformations relevant to clean fuel generation, including small molecule (e.g., H+, N2, CO2, NOx, O2) reduction. In most cases, these reactions occur cooperatively, where both metal and ligand are requisite for substrate activation.
Collapse
Affiliation(s)
- Marcus W Drover
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
5
|
Sun C, Oswald VF, Hill EA, Ziller JW, Borovik AS. Investigation of iron-ammine and amido complexes within a C 3-symmetrical phosphinic amido tripodal ligand. Dalton Trans 2021; 50:11197-11205. [PMID: 34338252 DOI: 10.1039/d1dt01032h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The primary and secondary coordination spheres can have large regulatory effects on the properties of metal complexes. To examine their influences on the properties of monomeric Fe complexes, the tripodal ligand containing phosphinic amido groups, N,N',N''-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido) ([poat]3-), was used to prepare [FeII/IIIpoat]-/0 complexes. The FeII complex was four-coordinate with 4 N-atom donors comprising the primary coordination sphere. The FeIII complex was six-coordinate with two additional ligands coming from coordination of O-atom donors on two of the phosphinic amido groups in [poat]3-. In the crystalline phase, each complex was part of a cluster containing potassium ions in which KO[double bond, length as m-dash]P interactions served to connect two metal complexes. The [FeII/IIIpoat]-/0 complexes bound an NH3 molecule to form trigonal bipyramidal structures that also formed three intramolecular hydrogen bonds between the ammine ligand and the O[double bond, length as m-dash]P units of [poat]3-. The relatively negative one-electron redox potential of -1.21 V vs. [FeIII/IICp2]+/0 is attributed to the phosphinic amido group of the [poat]3- ligand. Attempts to form the FeIII-amido complex via deprotonation were not conclusive but isolation of [FeIIIpoat(NHtol)]- using the p-toluidine anion was successful, allowing for the full characterization of this complex.
Collapse
Affiliation(s)
- Chen Sun
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | | | | | | | | |
Collapse
|
6
|
Ford CL, Miller TJ, Park YJ, Iranmanesh N, Gray DL, Fout AR. Varying the secondary coordination sphere: synthesis of cobalt and iron complexes of a tripodal ligand featuring two hydrogen-bond donors or acceptors. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1822523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Courtney L. Ford
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tabitha J. Miller
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yun Ji Park
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Niknaz Iranmanesh
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle L. Gray
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Barman SK, Jones JR, Sun C, Hill EA, Ziller JW, Borovik AS. Regulating the Basicity of Metal-Oxido Complexes with a Single Hydrogen Bond and Its Effect on C-H Bond Cleavage. J Am Chem Soc 2019; 141:11142-11150. [PMID: 31274298 DOI: 10.1021/jacs.9b03688] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The functionalization of C-H bonds is an essential reaction in biology and chemistry. Metalloenzymes that often exhibit this type of reactivity contain metal-oxido intermediates that are directly involved in the initial cleavage of the C-H bonds. Regulation of the cleavage process is achieved, in part, by hydrogen bonds that are proximal to the metal-oxido units, yet our understanding of their exact role(s) is still emerging. To gain further information into the role of H-bonds on C-H bond activation, a hybrid set of urea-containing tripodal ligands has been developed in which a single H-bond can be adjusted through changes in the properties of one ureayl N-H bond. This modularity is achieved by appending a phenyl ring with different para-substituents from one ureayl NH group. The ligands have been used to prepare a series of MnIII-oxido complexes, and a Hammett correlation was found between the pKa values of the complexes and the substituents on the phenyl ring that was explained within the context of changes to the H-bonds involving the MnIII-oxido unit. The complexes were tested for their reactivity toward 9,10-dihydroanthracene (DHA), and a Hammett correlation was found between the second-order rate constants for the reactions and the pKa values. Studies to determine activation parameters and the kinetic isotope effects are consistent with a mechanism in which rate-limiting proton transfer is an important contributor. However, additional reactivity studies with xanthene found a significant increase in the rate constant compared to DHA, even though the substrates have the same pKa(C-H) values. These results do not support a discrete proton-transfer/electron-transfer process, but rather an asynchronous mechanism in which the proton and electron are transferred unequally at the transition state.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Jason R Jones
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Chen Sun
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Ethan A Hill
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - A S Borovik
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| |
Collapse
|
8
|
Singha A, Mittra K, Dey A. Effect of hydrogen bonding on innocent and non-innocent axial ligands bound to iron porphyrins. Dalton Trans 2019; 48:7179-7186. [DOI: 10.1039/c8dt03852j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most known heme enzymes utilize hydrogen bonding interactions in their active sites to control electronic and geometric structures and the ensuing reactivity.
Collapse
Affiliation(s)
- Asmita Singha
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Kaustuv Mittra
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
9
|
Cook BJ, Polezhaev AV, Chen CH, Pink M, Caulton KG. A multimetal-ligand cooperative approach to CO2 activation. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Oswald VF, Weitz AC, Biswas S, Ziller JW, Hendrich MP, Borovik AS. Manganese-Hydroxido Complexes Supported by a Urea/Phosphinic Amide Tripodal Ligand. Inorg Chem 2018; 57:13341-13350. [PMID: 30299920 DOI: 10.1021/acs.inorgchem.8b01886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen bonds (H-bonds) within the secondary coordination sphere are often invoked as essential noncovalent interactions that lead to productive chemistry in metalloproteins. Incorporating these types of effects within synthetic systems has proven a challenge in molecular design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3-) that contains two monodeprotonated urea groups and one phosphinic amide. The urea groups serve as H-bond donors, while the phosphinic amide group serves as a single H-bond acceptor. The [H2pout]3- ligand was utilized to stabilize a series of Mn-hydroxido complexes in which the oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of the MnIII-OH complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are formed. Additional evidence for the formation of intramolecular H-bonds was provided by vibrational spectroscopy in which the energy of the O-H vibration supports its assignment as an H-bond donor. The stepwise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was further substantiated by electrochemical measurements and results from electronic absorbance and electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling both the primary and secondary coordination spheres to achieve structurally similar Mn-OH complexes with varying oxidation states.
Collapse
Affiliation(s)
- Victoria F Oswald
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Andrew C Weitz
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Saborni Biswas
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Michael P Hendrich
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - A S Borovik
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| |
Collapse
|
11
|
Cook SA, Bogart JA, Levi N, Weitz AC, Moore C, Rheingold AL, Ziller JW, Hendrich MP, Borovik AS. Mononuclear complexes of a tridentate redox-active ligand with sulfonamido groups: structure, properties, and reactivity. Chem Sci 2018; 9:6540-6547. [PMID: 30310585 PMCID: PMC6115676 DOI: 10.1039/c7sc05445a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/30/2018] [Indexed: 12/16/2022] Open
Abstract
The design of molecular complexes of earth-abundant first-row transition metals that can catalyze multi-electron C-H bond activation processes is of interest for achieving efficient, low-cost syntheses of target molecules. To overcome the propensity of these metals to perform single-electron processes, redox-active ligands have been utilized to provide additional electron equivalents. Herein, we report the synthesis of a novel redox active ligand, [ibaps]3-, which binds to transition metals such as FeII and CoII in a meridional fashion through the three anionic nitrogen atoms and provides additional coordination sites for other ligands. In this study, the neutral bidentate ligand 2,2'-bipyridine (bpy) was used to complete the coordination spheres of the metal ions and form NEt4[MII(ibaps)bpy] (M = Fe (1) or Co (1-Co)) salts. The FeII salt exhibited rich electrochemical properties and could be chemically oxidized by 1 and 2 equiv. of ferrocenium to form singly and doubly oxidized species, respectively. The reactivity of 1 towards intramolecular C-H bond amination of aryl azides at benzylic and aliphatic carbon centers was explored, and moderate to good yields of the resulting indoline products were obtained.
Collapse
Affiliation(s)
- Sarah A Cook
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , USA .
| | - Justin A Bogart
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , USA .
| | - Noam Levi
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , USA .
| | - Andrew C Weitz
- Department of Chemistry , Carnegie Melon University , Pittsburgh , Pennsylvania 15213 , USA
| | - Curtis Moore
- Department of Chemistry and Biochemistry , University of California-San Diego , San Diego , California 92093 , USA
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry , University of California-San Diego , San Diego , California 92093 , USA
| | - Joseph W Ziller
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , USA .
| | - Michael P Hendrich
- Department of Chemistry , Carnegie Melon University , Pittsburgh , Pennsylvania 15213 , USA
| | - A S Borovik
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , USA .
| |
Collapse
|
12
|
Dahl EW, Kiernicki JJ, Zeller M, Szymczak NK. Hydrogen Bonds Dictate O 2 Capture and Release within a Zinc Tripod. J Am Chem Soc 2018; 140:10075-10079. [PMID: 30074788 PMCID: PMC6093784 DOI: 10.1021/jacs.8b04266] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Six directed hydrogen bonding (H-bonding) interactions allow for the reversible capture and reduction of dioxygen to a trans-1,2-peroxo within a tripodal zinc(II) framework. Spectroscopic studies of the dizinc peroxides, as well as on model zinc diazides, suggest H-bonding contributions serve a dominant role for the binding/activation of these small molecules.
Collapse
Affiliation(s)
- Eric W. Dahl
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - John J. Kiernicki
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN 44555
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| |
Collapse
|
13
|
Gordon Z, Drummond MJ, Matson EM, Bogart JA, Schelter EJ, Lord RL, Fout AR. Tuning the Fe(II/III) Redox Potential in Nonheme Fe(II)-Hydroxo Complexes through Primary and Secondary Coordination Sphere Modifications. Inorg Chem 2017; 56:4852-4863. [PMID: 28394119 DOI: 10.1021/acs.inorgchem.6b03071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The derivatization of the imino-functionalized tris(pyrrolylmethyl)amine ligand framework, N(XpiR)3 (XLR; X = H, Br; R = cyclohexyl (Cy), phenyl (Ph), 2,6- diisopropylphenyl (DIPP)), is reported. Modular ligand synthesis allows for facile modification of both the primary and secondary coordination sphere electronics. The iron(II)-hydroxo complexes, N(XpiR)(XafaR)2Fe(II)OH (XLRFeIIOH), are synthesized to establish the impact of the ligand modifications on the complexes' electronic properties, including their chemical and electrochemical oxidation. Cyclic voltammetry demonstrates that the Fe(II/III) redox couple spans a 400 mV range across the series. The origin of the shifted potential is explained based on spectroscopic, structural, and theoretical analyses of the iron(II) and iron(III) compounds.
Collapse
Affiliation(s)
- Zachary Gordon
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Michael J Drummond
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ellen M Matson
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin A Bogart
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Richard L Lord
- Department of Chemistry, Grand Valley State University , 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Alison R Fout
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|