1
|
Zhang H, Liang Q, Xie K. How to rationally design homogeneous catalysts for efficient CO 2 electroreduction? iScience 2024; 27:108973. [PMID: 38327791 PMCID: PMC10847752 DOI: 10.1016/j.isci.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Electrified converting CO2 into valuable fuels and chemicals using a homogeneous electrochemical CO2 reduction (CO2ER) approach simplifies the operation, providing a potential option for decoupling energy harvesting and renewable chemical production. These merits benefit the scenarios where decentralization and intermittent power are key factors. This perspective aims to provide an overview of recent progress in homogeneous CO2ER. We introduce firstly the fundamentals chemistry of the homogeneous CO2ER, followed by a summary of the crucial factors and the important criteria broadly employed for evaluating the performance. We then highlight the recent advances in the most widely explored transition-metal coordinate complexes for the C1 and multicarbon (C2+) products from homogeneous CO2ER. Finally, we summarize the remaining challenges and opportunities for developing homogeneous electrocatalysts for efficient CO2ER. This perspective is expected to favor the rational design of efficient homogeneous electrocatalysts for selective CO2ER toward renewable fuels and feedstocks.
Collapse
Affiliation(s)
- Hui Zhang
- International Center for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Qinghua Liang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
| | - Ke Xie
- Department of Chemistry, Northwestern Universiy, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Sun H, Liu X, Li Y, Zhang F, Huang X, Sun C, Huang F. Mechanistic insights of electrocatalytic CO 2 reduction by Mn complexes: synergistic effects of the ligands. Dalton Trans 2024; 53:1663-1672. [PMID: 38168800 DOI: 10.1039/d3dt03453d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The electrocatalytic mechanisms of CO2 reduction catalyzed by pyridine-oxazoline (pyrox)-based Mn catalysts were investigated by DFT calculations. In-depth comparative analyses of pyrox-based and bipyridine-based Mn complexes were carried out. C-OH cleavage is the rate-determining step for both the protonation-first path and the reduction-first path. The free energy of CO2 activation (ΔG1) and the electrons donated by CO ligands in this step are effective descriptors in regulating the C-OH cleavage barrier. The reduction of carboxylate complex 6 (E6) is the potential-determining step for the reduction-first path. Meanwhile, for the protonation-first path, the initial generation (E2) or the regeneration (E8) of active catalyst might be potential-determining. Hirshfeld charge and orbital contribution analysis indicate that E6 is definitely based on the heterocyclic ligand and E2 is related to both the heterocyclic ligand and three CO ligands. Therefore, replacement of the CO ligand by a stronger electron donating ligand can effectively boost the catalytic activity of CO2 reduction without increasing the overpotential in the reduction-first path. This hypothesis is supported by the mechanism calculations of the Mn complex in which the axial CO ligand is replaced by a pyridine or PMe3.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xueqing Liu
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yafeng Li
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fang Zhang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiuxiu Huang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanzhi Sun
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fang Huang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
3
|
Kearney L, Brandon MP, Coleman A, Chippindale AM, Hartl F, Lalrempuia R, Pižl M, Pryce MT. Ligand-Structure Effects on N-Heterocyclic Carbene Rhenium Photo- and Electrocatalysts of CO 2 Reduction. Molecules 2023; 28:molecules28104149. [PMID: 37241890 DOI: 10.3390/molecules28104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re-NHC-1 and Re-NHC-2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re-NHC-2 differs from Re-NHC-1 by replacing N-H with an N-benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re-NHC-2 with the larger pyrene gives Re-NHC-3. The two-electron electrochemical reductions of Re-NHC-2 and Re-NHC-3 result in the formation of the five-coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re-Re bound dimer intermediates at the second cathodic wave R2. All three Re-NHC-1-3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re-NHC-3, being the most effective for this conversion. Re-NHC-1 and Re-NHC-2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re-NHC-3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re-NHC-3 is red-shifted compared to those of Re-NHC-1 and Re-NHC-2, and previously reported similar [Re]-NHC complexes. This observation, together with TD-DFT calculations, suggests that the nature of the lowest-energy optical excitation for Re-NHC-3 has π→π*(NHC-pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re-NHC-3 are attributed to the extended conjugation of the π-electron system, leading to the beneficial modulation of the strongly electron-donating tendency of the NHC group.
Collapse
Affiliation(s)
- Lauren Kearney
- School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland
| | - Michael P Brandon
- School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland
| | - Andrew Coleman
- School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland
| | - Ann M Chippindale
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK
| | - František Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK
| | - Ralte Lalrempuia
- School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, India
| | - Martin Pižl
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Mary T Pryce
- School of Chemical Sciences, Dublin City University, D09 K20V Dublin, Ireland
| |
Collapse
|
4
|
Guo Z, Wei W, Li Y, Li J, Zhang X, Hou F, Wei A. A pyridine-based conjugated imprinted polymer as an adsorptive photocatalyst for efficient removal of aqueous Cr(VI). Chem Commun (Camb) 2023; 59:1983-1986. [PMID: 36722981 DOI: 10.1039/d2cc05726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Herein, a designed pyridine-based conjugated imprinted polymer (CIP) was constructed by introducing 4-vinylpyridine (4-VP) via an in situ copolymerization reaction. In addition to the good adsorption performance of Cr(VI), this polymer also showed high efficiency in reducing Cr(VI) in water by photocatalysis. The ingenious design of the polymer not only furnished insight into the enhanced photocatalytic reaction kinetics but also provided a new route for the modification of the molecular skeleton of the conjugated polymer photocatalyst.
Collapse
Affiliation(s)
- Zhipeng Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Wei Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Yihang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Jin Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China. .,Nantong Institute of Nanjing University of Posts and Telecommunications Co. Ltd, Nantong, 226001, China
| | - Xiaoke Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Fengming Hou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China. .,Kunshan Innovation Institute of Xidian University, Suzhou, 215316, China
| | - Ang Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
5
|
Thanasekaran P, Huang JH, Jhou CR, Tsao HC, Mendiratta S, Su CH, Liu CP, Liu YH, Huang JH, Lu KL. A neutral mononuclear rhenium(I) complex with a rare in situ-generated triazolyl ligand for the luminescence "turn-on" detection of histidine. Dalton Trans 2023; 52:703-709. [PMID: 36546584 DOI: 10.1039/d2dt03705j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A rare in situ-generated mononuclear rhenium complex [Re(bpt)(CO)3(NH3)] (1, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazolate) can be used as a "turn-on" luminescent probe for selectively sensing L-histidine against other amino acids. Compound 1 was prepared by reacting Re2(CO)10, 2-cyanopyridine and hydrazine with an in situ formed bpt ligand through cyclization via C-N and N-N couplings with its single-side chelating mode arrayed with respect to the Re center. Compound 1 was highly stable and showed a green light MLCT emission in DMF solution at 507 nm upon excitation at 360 nm. Interestingly, the emission from 1 could be quenched by the addition of metal ions such as Ni2+ and Cu2+ but the emission efficiently recovered with the introduction of histidine. However, histidine could only be selectively detected when a combination of compound 1 and Ni2+ was used. Therefore, the luminescence response of the Ni2+-modified compound 1 could be utilized as a "turn-on" probe for the selective detection of histidine. This work provides a simple method for developing new sensing platforms of a discrete metal complex based on rare in situ generation.
Collapse
Affiliation(s)
- Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Department of Chemistry, Pondicherry University, Puducherry 605 014, India
| | - Jui-Hsiang Huang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cing-Rou Jhou
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Hsiang-Chun Tsao
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | | | - Cing-Huei Su
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ching-Ping Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Yen-Hsiang Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Jui-Hsien Huang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan.
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
6
|
Stanley PM, Hemmer K, Hegelmann M, Schulz A, Park M, Elsner M, Cokoja M, Warnan J. Topology- and wavelength-governed CO 2 reduction photocatalysis in molecular catalyst-metal-organic framework assemblies. Chem Sci 2022; 13:12164-12174. [PMID: 36349115 PMCID: PMC9601321 DOI: 10.1039/d2sc03097g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Optimising catalyst materials for visible light-driven fuel production requires understanding complex and intertwined processes including light absorption and catalyst stability, as well as mass, charge, and energy transport. These phenomena can be uniquely combined (and ideally controlled) in porous host-guest systems. Towards this goal we designed model systems consisting of molecular complexes as catalysts and porphyrin metal-organic frameworks (MOFs) as light-harvesting and hosting porous matrices. Two MOF-rhenium molecule hybrids with identical building units but differing topologies (PCN-222 and PCN-224) were prepared including photosensitiser-catalyst dyad-like systems integrated via self-assembled molecular recognition. This allowed us to investigate the impact of MOF topology on solar fuel production, with PCN-222 assemblies yielding a 9-fold turnover number enhancement for solar CO2-to-CO reduction over PCN-224 hybrids as well as a 10-fold increase compared to the homogeneous catalyst-porphyrin dyad. Catalytic, spectroscopic and computational investigations identified larger pores and efficient exciton hopping as performance boosters, and further unveiled a MOF-specific, wavelength-dependent catalytic behaviour. Accordingly, CO2 reduction product selectivity is governed by selective activation of two independent, circumscribed or delocalised, energy/electron transfer channels from the porphyrin excited state to either formate-producing MOF nodes or the CO-producing molecular catalysts.
Collapse
Affiliation(s)
- Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Karina Hemmer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Markus Hegelmann
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Annika Schulz
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Mihyun Park
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich Garching Germany
| | - Mirza Cokoja
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| |
Collapse
|
7
|
Nguyen P, Dao TBN, Tran TT, Tran NAT, Nguyen TA, Phan TDL, Nguyen LP, Dang VQ, Nguyen TM, Dang NN. Electrocatalytic CO 2 Reduction by [Re(CO) 3Cl(3-(pyridin-2-yl)-5-phenyl-1,2,4-triazole)] and [Re(CO) 3Cl(3-(2-pyridyl)-1,2,4-triazole)]. ACS OMEGA 2022; 7:34089-34097. [PMID: 36188295 PMCID: PMC9520745 DOI: 10.1021/acsomega.2c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The exploration of novel electrocatalysts for CO2 reduction is necessary to overcome global warming and the depletion of fossil fuels. In the current study, the electrocatalytic CO2 reduction of [Re(CO)3Cl(N-N)], where N-N represents 3-(2-pyridyl)-1,2,4-triazole (Hpy), 3-(pyridin-2-yl)-5-phenyl-l,2,4-triazole (Hph), and 2,2'-bipyridine-4,4' dicarboxylic acidic (bpy-COOH) ligands, was investigated. In CO2-saturated electrolytes, cyclic voltammograms showed an enhancement of the current at the second reduction wave for all complexes. In the presence of triethanolamine (TEOA), the currents of Re(Hpy), Re(Hph), and Re(bpy-COOH) enhanced significantly by approximately 4-, 2-, and 5-fold at peak potentials of -1.60, -150, and -1.69 VAg/Ag+, respectively (in comparison to without TEOA). The reduction potential of Re(Hph) was less negative than those of Re(Hpy) and Re(COOH), which was suggested to cause its least efficiency for CO2 reduction. Chronoamperometry measurements showed the stability of the cathodic current at the second reduction wave for at least 300 s, and Re(COOH) was the most stable in the CO2-catalyzed reduction. The appearance and disappearance of the absorption band in the UV/vis spectra indicated the reaction of the catalyst with molecular CO2 and its conversion to new species, which were proposed to be Re-DMF + and Re-TEOA and were supposed to react with CO2 molecules. The CO2 molecules were claimed to be captured and inserted into the oxygen bond of Re-TEOA, resulting in the enhancement of the CO2 reduction efficiency. The results indicate a new way of using these complexes in electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Phuong
N. Nguyen
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate
University of Science and Technology, VAST, 18 Hoang Quoc Viet Street, Cau
Giay, Ha Noi 100000, Vietnam
| | - Thi-Bich-Ngoc Dao
- Future
Materials & Devices Lab., Institute of Fundamental and Applied
Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- The
Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam
| | - Trang T. Tran
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Ngoc-Anh T. Tran
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Tu A. Nguyen
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Thao-Dang L. Phan
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Loc P. Nguyen
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Vinh Q. Dang
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Tuan M. Nguyen
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate
University of Science and Technology, VAST, 18 Hoang Quoc Viet Street, Cau
Giay, Ha Noi 100000, Vietnam
| | - Nam N. Dang
- Future
Materials & Devices Lab., Institute of Fundamental and Applied
Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- The
Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam
| |
Collapse
|
8
|
Małecka M, Szlapa-Kula A, Maroń AM, Ledwon P, Siwy M, Schab-Balcerzak E, Sulowska K, Maćkowski S, Erfurt K, Machura B. Impact of the Anthryl Linking Mode on the Photophysics and Excited-State Dynamics of Re(I) Complexes [ReCl(CO) 3(4′-An-terpy-κ 2N)]. Inorg Chem 2022; 61:15070-15084. [PMID: 36101987 PMCID: PMC9516691 DOI: 10.1021/acs.inorgchem.2c02160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Rhenium(I) complexes with 2,2′:6′,2″-terpyridines
(terpy) substituted with 9-anthryl (1) and 2-anthryl
(2) were synthesized, and the impact of the anthryl linking
mode on the ground- and excited-state properties of resulting complexes
[ReCl(CO)3(4′-An-terpy-κ2N)] (An—anthryl)
was investigated using a combination of steady-state and time-resolved
optical techniques accompanied by theoretical calculations. Different
attachment positions of anthracene modify the overlap between the
molecular orbitals and thus the electronic coupling of the anthracene
and {ReCl(CO)3(terpy-κ2N)} chromophores.
Following the femtosecond transient absorption, the lowest triplet
excited state of both complexes was found to be localized on the anthracene
chromophore. The striking difference between 1 and 2 concerns the triplet-state formation dynamics. A more planar
geometry of 2-anthryl-terpy (2), and thus better electronic
communication between the anthracene and {ReCl(CO)3(terpy-κ2N)} chromophores, facilitates the formation of the 3An triplet state. In steady-state photoluminescence spectra, the
population ratio of 3MLCT and 3An was found
to be dependent not only on the anthryl linking mode but also on solvent
polarity and excitation wavelengths. In dimethyl sulfoxide (DMSO),
compounds 1 and 2 excited with λexc > 410 nm show both 3MLCT and 3An
emissions, which are rarely observed. Additionally, the abilities
of the designed complexes for 1O2 generation
and light emission under the external voltage were preliminary examined. The impact of the anthryl linking mode
on the ground- and
excited-state properties of [ReCl(CO)3(4′-An-terpy-κ2N)] with 2,2′:6′,2″-terpyridines (terpy)
substituted with 9-anthryl (1) and 2-anthryl (2) was thoroughly investigated. Different attachment positions of
anthracene were evidenced to modify the overlap between the molecular
orbitals and electronic coupling of the anthracene and {ReCl(CO)3(terpy-κ2N)} chromophores and thus the optical
properties of the resulting complexes. The striking difference between 1 and 2 was demonstrated in the triplet-state
formation dynamics.
Collapse
Affiliation(s)
- Magdalena Małecka
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Anna M. Maroń
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Karolina Sulowska
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Street, 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Street, 87-100 Torun, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| |
Collapse
|
9
|
Thermal expansion-quench of nickel metal-organic framework into nanosheets for efficient visible light CO2 reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Schnierle M, Winkler M, Filippou V, van Slageren J, Ringenberg M. (Spectro)Electrochemistry of 3‐(Pyrid‐2‐yl)‐s‐Tetrazine‐ or 1,2‐(dihydro)pyridazine Tricarbonylrhenium(I)chloride. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marc Schnierle
- University of Stuttgart Faculty of Chemistry: Universitat Stuttgart Fakultat 3 Chemie Institut für Anorganische Chemie GERMANY
| | - Mario Winkler
- Universität Stuttgart Fakultät 3 Chemie: Universitat Stuttgart Fakultat 3 Chemie Institut für Physikalische Chemie GERMANY
| | - Vasileios Filippou
- Universität Stuttgart Fakultät 3 Chemie: Universitat Stuttgart Fakultat 3 Chemie Institut für Anorganische Chemie GERMANY
| | - Joris van Slageren
- Universität Stuttgart Fakultät 3 Chemie: Universitat Stuttgart Fakultat 3 Chemie Institut für Physikalische Chemie GERMANY
| | - Mark Ringenberg
- Universität Stuttgart Institute für Anorganische Chemie Pfaffenwaldring 55 70569 Stuttgart GERMANY
| |
Collapse
|
11
|
Saund SS, Siegler MA, Thoi VS. Electrochemical Degradation of a Dicationic Rhenium Complex via Hoffman-Type Elimination. Inorg Chem 2021; 60:13011-13020. [PMID: 34492759 DOI: 10.1021/acs.inorgchem.1c01427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrocatalytic reduction of carbon dioxide (CO2) by transition-metal catalysts is an attractive means for storing renewably sourced electricity in chemical bonds. Metal coordination compounds represent highly tunable platforms ideal for studying the fundamental stepwise transformations of CO2 into its reduced products. However, metal complexes can decompose upon extended electrolysis and form chemically distinct molecular species or, in some cases, catalytically active electrode deposits. Deciphering the degradative pathways is important for understanding the nature of the active catalyst and designing robust metal complexes for small-molecule activation. Herein, we present a new dicationic rhenium bipyridyl complex capable of multielectron ligand-centered reductions electrochemically. Our in-depth experimental and computational study provides mechanistic insight into an unusual reductively induced Hoffman-type elimination. We identify benzylic tertiary ammonium groups as an electrolytically susceptible moiety and propose key intermediates in the degradative pathway. This investigation highlights the complex interplay between the ligand and metal ion and will guide the future design of metal-organic catalysts.
Collapse
Affiliation(s)
- Simran S Saund
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - V Sara Thoi
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Gothe ML, Silva KLC, Figueredo AL, Fiorio JL, Rozendo J, Manduca B, Simizu V, Freire RS, Garcia MAS, Vidinha P. Rhenium – A Tuneable Player in Tailored Hydrogenation Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maitê L. Gothe
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Karla L. C. Silva
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Adolfo L. Figueredo
- Nucleus of Education and Research in Oil and Gas Department of Chemical Engineering Federal University of Rio Grande do Norte Av Senador Salgado Filho Natal 59078-970 Brazil
| | - Jhonatan L. Fiorio
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Jennifer Rozendo
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Bruno Manduca
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Vinício Simizu
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Renato S. Freire
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Marco A. S. Garcia
- Department of Chemistry Federal University of Maranhao Avenida dos Portugueses 1966 São Luís 65080-805 Brazil
| | - Pedro Vidinha
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| |
Collapse
|
13
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
14
|
Nganga J, Chaudhri N, Brückner C, Angeles-Boza AM. β-Oxochlorin cobalt(II) complexes catalyze the electrochemical reduction of CO 2. Chem Commun (Camb) 2021; 57:4396-4399. [PMID: 33949479 DOI: 10.1039/d1cc00573a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inspired by the architecture of the macrocycle of heme d1, a series of synthetic mono-, di- and tri-β-oxo-substituted porphyrinoid cobalt(ii) complexes were evaluated as electrocatalytic CO2 reducers, identifying complexes of unusually high efficiencies in generating multi-electron reduction products, including CH4.
Collapse
Affiliation(s)
- John Nganga
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, USA.
| | - Nivedita Chaudhri
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, USA.
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, USA.
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, USA. and Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Wagner CL, Herrera G, Lin Q, Hu CT, Diao T. Redox Activity of Pyridine-Oxazoline Ligands in the Stabilization of Low-Valent Organonickel Radical Complexes. J Am Chem Soc 2021; 143:5295-5300. [PMID: 33792294 PMCID: PMC8851433 DOI: 10.1021/jacs.1c00440] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low-valent organonickel radical complexes are common intermediates in cross-coupling reactions and metalloenzyme-mediated processes. The electronic structures of N-ligand supported nickel complexes appear to vary depending on the actor ligands and the coordination number. The reduction products of a series of divalent (pyrox)Ni complexes establish the redox activity of pyrox in stabilizing electron-rich Ni(II)-alkyl and -aryl complexes by adopting a ligand-centered radical configuration. The reduced pyrox imparts an enhanced trans-influence. In contrast, such redox activity was not observed in a (pyrox)Ni(I)-bromide species. The excellent capability of pyrox in stabilizing electron-rich Ni species resonates with its proclivity in promoting the reductive activation of C(sp3) electrophiles in cross-coupling reactions.
Collapse
Affiliation(s)
- Clifton L Wagner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Gabriel Herrera
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Qiao Lin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Chunhua T Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
16
|
Choroba K, Maroń A, Switlicka A, Szłapa-Kula A, Siwy M, Grzelak J, Maćkowski S, Pedzinski T, Schab-Balcerzak E, Machura B. Carbazole effect on ground- and excited-state properties of rhenium(i) carbonyl complexes with extended terpy-like ligands. Dalton Trans 2021; 50:3943-3958. [PMID: 33645614 DOI: 10.1039/d0dt04340k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ground- and excited-state properties of three novel complexes [ReCl(CO)3(Ln-κ2N)] bearing 2,2':6',2''-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine functionalized with 9-carbazole attached to the central pyridine ring of the triimine core via phenylene linkage were investigated by spectroscopic and electrochemical methods and were simulated using density functional theory (DFT) and time-dependent DFT. To get a deeper and broader understanding of structure-property relationships, the designed Re(i) carbonyl complexes were compared with previously reported analogous systems - without any groups attached to the phenyl ring and bearing pyrrolidine instead of 9-carbazole. The results indicated that attachment of the N-carbazolyl substituent to the triimine core has less influence on the nature of the triplet excited state of [ReCl(CO)3(Ln-κ2N)] than the pyrrolidine group. Additionally, the impact of the ligand structural modifications on the light emission of the Re(i) complexes under external voltage was preliminarily examined with electroluminescence spectra of diodes containing the synthesized new molecules in an active layer.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nganga JK, Wolf LM, Mullick K, Reinheimer E, Saucedo C, Wilson ME, Grice KA, Ertem MZ, Angeles-Boza AM. Methane Generation from CO 2 with a Molecular Rhenium Catalyst. Inorg Chem 2021; 60:3572-3584. [PMID: 33616393 DOI: 10.1021/acs.inorgchem.0c02579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The atomic-level tunability of molecular structures is a compelling reason to develop homogeneous catalysts for challenging reactions such as the electrochemical reduction of carbon dioxide to valuable C1-Cn products. Of particular interest is methane, the largest component of natural gas. Herein, we report a series of three isomeric rhenium tricarbonyl complexes coordinated by the asymmetric diimine ligands 2-(isoquinolin-1-yl)-4,5-dihydrooxazole (quin-1-oxa), 2-(quinolin-2-yl)-4,5-dihydrooxazole (quin-2-oxa), and 2-(isoquinolin-3-yl)-4,5-dihydrooxazole (quin-3-oxa) that catalyze the reduction of CO2 to carbon monoxide and methane, albeit the latter with a low efficiency. To our knowledge, these complexes are the first examples of rhenium(I) catalysts capable of converting carbon dioxide into methane. Re(quin-1-oxa)(CO)3Cl (1), Re(quin-2-oxa)(CO)3Cl (2), and Re(quin-3-oxa)(CO)3Cl (3) were characterized and studied using a variety of electrochemical and spectroscopic techniques. In bulk electrolysis experiments, the three complexes reduce CO2 to CO and CH4. When the controlled-potential electrolysis experiments are performed at -2.5 V (vs Fc+/0) and in the presence of the Brønsted acid 2,2,2-trifluoroethanol, methane is produced with turnover numbers that range from 1.3 to 1.8. Isotope labeling experiments using 13CO2 atmosphere produce 13CH4 (m/z = 17) confirming that methane originates from CO2 reduction. Theoretical calculations are performed to investigate the mechanistic aspects of the 8e-/8H+ reduction of CO2 to CH4. A ligand-assisted pathway is proposed to be an efficient pathway in the formation of CH4. Delocalization of the electron density on the (iso)quinoline moiety upon reduction stabilizes the key carbonyl intermediate leading to additional reactivity of this ligand. These results should aid the development of more robust catalytic systems that produce CH4 from CO2.
Collapse
Affiliation(s)
- John K Nganga
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-30602, United States
| | - Lucienna M Wolf
- Department of Chemistry and Biochemistry, DePaul University, Chicago, Illinois 60614, United States
| | - Kankana Mullick
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-30602, United States
| | - Eric Reinheimer
- Rigaku, 9009 New Trails Drive, The Woodlands, Texas 77381, United States
| | - Cesar Saucedo
- Department of Chemistry and Biochemistry, DePaul University, Chicago, Illinois 60614, United States
| | - Megan E Wilson
- Department of Chemistry and Biochemistry, DePaul University, Chicago, Illinois 60614, United States
| | - Kyle A Grice
- Department of Chemistry and Biochemistry, DePaul University, Chicago, Illinois 60614, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Building 555A, Upton, New York 11973, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-30602, United States.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
18
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
19
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
20
|
Diana R, Panunzi B. The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review. Molecules 2020; 25:molecules25214984. [PMID: 33126503 PMCID: PMC7662684 DOI: 10.3390/molecules25214984] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Tridentate ligands are simple low-cost pincers, easy to synthetize, and able to guarantee stability to the derived complexes. On the other hand, due to its unique mix of structural and optical properties, zinc(II) ion is an excellent candidate to modulate the emission pattern as desired. The present work is an overview of selected articles about zinc(II) complexes showing a tuned fluorescence response with respect to their tridentate ligands. A classification of the tridentate pincers was carried out according to the binding donor atom groups, specifically nitrogen, oxygen, and sulfur donor atoms, and depending on the structure obtained upon coordination. Fluorescence properties of the ligands and the related complexes were compared and discussed both in solution and in the solid state, keeping an eye on possible applications.
Collapse
|
21
|
Zhang YQ, Chen JY, Siegbahn PEM, Liao RZ. Harnessing Noninnocent Porphyrin Ligand to Circumvent Fe-Hydride Formation in the Selective Fe-Catalyzed CO2 Reduction in Aqueous Solution. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ya-Qiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Maroń AM, Szlapa-Kula A, Matussek M, Kruszynski R, Siwy M, Janeczek H, Grzelak J, Maćkowski S, Schab-Balcerzak E, Machura B. Photoluminescence enhancement of Re(i) carbonyl complexes bearing D-A and D-π-A ligands. Dalton Trans 2020; 49:4441-4453. [PMID: 32181459 DOI: 10.1039/c9dt04871e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three Re(i) carbonyl complexes [ReCl(CO)3(Ln)] bearing 2,2'-bipyridine, 2,2':6',2''-terpyridine, and 1,10-phenanthroline functionalized with diphenylamine/or triphenylamine units (L1-L3) were synthesized to explore the impact of highly electron donating units appended to the imine ligand on the thermal and optoelectronic properties of Re(i) systems. Additionally, for comparison, the ligands L1-3 and parent complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)] were investigated. The thermal stability was evaluated by differential scanning calorimetry. The ground- and excited-state electronic properties of the Re(i) complexes were studied by cyclic voltammetry and differential pulse voltammetry, absorption and emission spectroscopy, as well as using density-functional theory (DFT). The majority of the compounds form amorphous molecular materials with high glass transition temperatures above 100 °C. Compared to the unsubstituted complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)], the HOMO-LUMO gap of the corresponding Re(i) systems bearing modified imine ligands is reduced, and the decrease in the value of the ΔEH-L is mainly caused by the increase in HOMO energy level. In relation to the parent complexes, all designed Re(i) carbonyls were found to show enhanced photoluminescence, both in solution and in solid state. The investigated ligands and complexes were also preliminarily tested as luminophores in light emitting diodes with the structures ITO/PEDOT:PSS/compound/Al and ITO/PEDOT:PSS/PVK:PBD:compound/Al. The pronounced effect of the ligand chemical structure on electroluminescence ability was clearly visible.
Collapse
Affiliation(s)
- Anna M Maroń
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Agata Szlapa-Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Justyna Grzelak
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland. and Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| |
Collapse
|
23
|
Nanographene−rhenium complex as efficient catalyst for electrochemical reduction: A computational study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Sinha S, Sonea A, Gibbs CA, Warren JJ. Heterogeneous aqueous CO2 reduction by rhenium(i) tricarbonyl diimine complexes with a non-chelating pendant pyridyl group. Dalton Trans 2020; 49:7078-7083. [DOI: 10.1039/d0dt01300e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphite-adsorbed tricarbonylrhenium(i) terpyridine complex supports CO2 reduction electrocatalysis over a wide range of pH values.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry
- Simon Fraser University
- Burnaby BC V5A 1S6
- Canada
| | - Ana Sonea
- Department of Chemistry
- Simon Fraser University
- Burnaby BC V5A 1S6
- Canada
| | - Curtis A. Gibbs
- Department of Chemistry
- Simon Fraser University
- Burnaby BC V5A 1S6
- Canada
| | - Jeffrey J. Warren
- Department of Chemistry
- Simon Fraser University
- Burnaby BC V5A 1S6
- Canada
| |
Collapse
|
25
|
Świtlicka A, Choroba K, Szlapa-Kula A, Machura B, Erfurt K. Experimental and theoretical insights into spectroscopy and electrochemistry of Re(I) carbonyl with oxazoline-based ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Crawley MR, Kadassery KJ, Oldacre AN, Friedman AE, Lacy DC, Cook TR. Rhenium(I) Phosphazane Complexes for Electrocatalytic CO2 Reduction. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew R. Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Karthika J. Kadassery
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Amanda N. Oldacre
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Alan E. Friedman
- Department of Materials, Design, and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - David C. Lacy
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
27
|
Wang X, Ma H, Meng C, Chen D, Huang F. A rational design of manganese electrocatalysts for Lewis acid-assisted carbon dioxide reduction. Phys Chem Chem Phys 2019; 21:8849-8855. [PMID: 30977486 DOI: 10.1039/c9cp00514e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, the mechanisms of Brønsted acid- and Lewis acid-assisted CO2 electroreduction by Mn(mesbpy)(CO)3Br (1) were investigated by density functional theory calculations. Our results indicate that for the Lewis acid-assisted cycle, an energy sink (13) is present owing to the interaction between Mg(OTf)2 and activated CO2, which is disadvantageous to the apparent activation energy (ΔG≠). Moreover, a series of substituted 13 counterparts were investigated to reduce the energy sink and decrease ΔG≠. Based on our study on the substituent effect, an excellent linear relationship was found between 2e reduction potentials and LUMO energies of substituted 1, and a moderate linear relationship was observed between ΔG of substituted 13 and the 2e reduction potential of substituted 1 counterparts. Moreover, for the CO2 reduction assisted by a Lewis acid, the formyl-substituted complex R8 has been predicted to be a more effective catalyst with lower overpotential and higher catalytic activity than its parent complex 1.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | | | | | | | | |
Collapse
|
28
|
Grills DC, Ertem MZ, McKinnon M, Ngo KT, Rochford J. Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
2-(1,3-Oxazolin-2-yl)pyridine and 2,6-bis(1,3-oxazolin-2-yl) pyridine. Data Brief 2018; 21:449-465. [PMID: 30364733 PMCID: PMC6198059 DOI: 10.1016/j.dib.2018.09.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/17/2018] [Accepted: 09/30/2018] [Indexed: 11/30/2022] Open
Abstract
The data presented in this article are related to research articles “Titanium and vanadium catalysts with oxazoline ligands for ethylene-norbornene (co)polymerization (Ochędzan-Siodłak et al., 2018). For the title compounds, 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) and 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box), the single-crystal X-ray diffraction measurement together with NMR, GC, MS, DSC analysis, like also the method of crystallization are presented.
Collapse
|
30
|
Yang S, Hu W, Zhang X, He P, Pattengale B, Liu C, Cendejas M, Hermans I, Zhang X, Zhang J, Huang J. 2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO2 Reduction. J Am Chem Soc 2018; 140:14614-14618. [DOI: 10.1021/jacs.8b09705] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sizhuo Yang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Xin Zhang
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Peilei He
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Brian Pattengale
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Melissa Cendejas
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Ive Hermans
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
31
|
Klemens T, Świtlicka A, Szlapa-Kula A, Krompiec S, Lodowski P, Chrobok A, Godlewska M, Kotowicz S, Siwy M, Bednarczyk K, Libera M, Maćkowski S, Pędziński T, Schab-Balcerzak E, Machura B. Experimental and computational exploration of photophysical and electroluminescent properties of modified 2,2′:6′,2″-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine ligands and their Re(I) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tomasz Klemens
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Anna Świtlicka
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Stanisław Krompiec
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Piotr Lodowski
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Anna Chrobok
- Faculty of Chemistry; Silesian University of Technology; 9 Strzody Str. 44-100 Gliwice Poland
| | - Magdalena Godlewska
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences; Kasprzaka 44/52, PO Box 58 01-224 Warszawa Poland
| | - Sonia Kotowicz
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 34 M. Curie-Sklodowska Str. 41-819 Zabrze Poland
| | - Katarzyna Bednarczyk
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Marcin Libera
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University; 5 Grudziądzka Str. 87-100 Torun Poland
| | - Tomasz Pędziński
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; 89b Umultowska 61-614 Poznań Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 34 M. Curie-Sklodowska Str. 41-819 Zabrze Poland
| | - Barbara Machura
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| |
Collapse
|
32
|
Arumugam R, Shankar B, Shanmugam R, Arumuganathan T, Sathiyendiran M. Phosphine oxide-based tricarbonylrhenium(i) complexes from phosphine/phosphine oxide and dihydroxybenzoquinones. Dalton Trans 2018; 47:13894-13901. [PMID: 30226250 DOI: 10.1039/c8dt02985g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral phosphine oxide (P[double bond, length as m-dash]O) donor-based organometallic complexes [{Re(CO)3O[double bond, length as m-dash]PCy3}{μ-DHBQ}{Re(CO)3O[double bond, length as m-dash]PCy3}] (1), [{Re(CO)3O[double bond, length as m-dash]PPh3}{μ-DHBQ}{Re(CO)3O[double bond, length as m-dash]PPh3}] (2), [{Re(CO)3O[double bond, length as m-dash]PCy3}{μ-THQ}{Re(CO)3O[double bond, length as m-dash]PCy3}] (3), [{Re(CO)3O[double bond, length as m-dash]PPh3}{μ-THQ}{Re(CO)3O[double bond, length as m-dash]PPh3}] (4), [{Re(CO)3O[double bond, length as m-dash]PCy3}{μ-CA}{Re(CO)3O[double bond, length as m-dash]PCy3}] (5), and [{Re(CO)3O[double bond, length as m-dash]PPh3}{μ-CA}{Re(CO)3O[double bond, length as m-dash]PPh3}] (6) were assembled from phosphine/phosphine oxide, a dihydroxybenzoquinone donor and Re2(CO)10via a one-pot solvothermal approach. The soft phosphine donor was transformed into a hard phosphine oxide donor during the formation of 1, 3, 4, 5, and 6. The complexes 1-6 were air and moisture stable and were soluble in polar organic solvents. The complexes were characterized by elemental analysis, FT-IR, and NMR spectroscopic methods. The molecular structures of 1, 2, 4, and 6 were analyzed by single-crystal X-ray diffraction analysis. The UV-Visible absorption studies indicated that 1-6 in THF display strong visible light absorption in the range of ∼350-700 nm.
Collapse
Affiliation(s)
- Ramar Arumugam
- Department of Chemistry, Thiagarajar College, Madurai 625 009, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
33
|
Taylor JO, Leavey RD, Hartl F. Solvent and Ligand Substitution Effects on the Electrocatalytic Reduction of CO2
with [Mo(CO)4
(x,x
′-dimethyl-2,2′-bipyridine)] (x
=4-6) Enhanced at a Gold Cathodic Surface. ChemElectroChem 2018. [DOI: 10.1002/celc.201800879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- James O. Taylor
- School of Chemistry, Food and Pharmacy Department of Chemistry; University of Reading; Whiteknights Campus Reading RG6 6AD
| | - Roisín D. Leavey
- School of Chemistry, Food and Pharmacy Department of Chemistry; University of Reading; Whiteknights Campus Reading RG6 6AD
| | - František Hartl
- School of Chemistry, Food and Pharmacy Department of Chemistry; University of Reading; Whiteknights Campus Reading RG6 6AD
| |
Collapse
|
34
|
Yang W, Sinha Roy S, Pitts WC, Nelson RL, Fronczek FR, Jurss JW. Electrocatalytic CO 2 Reduction with Cis and Trans Conformers of a Rigid Dinuclear Rhenium Complex: Comparing the Monometallic and Cooperative Bimetallic Pathways. Inorg Chem 2018; 57:9564-9575. [PMID: 30040401 DOI: 10.1021/acs.inorgchem.8b01775] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Anthracene-bridged dinuclear rhenium complexes are reported for electrocatalytic carbon dioxide (CO2) reduction to carbon monoxide (CO). Related by hindered rotation of each rhenium active site to either side of the anthracene bridge, cis and trans conformers have been isolated and characterized. Electrochemical studies reveal distinct mechanisms, whereby the cis conformer operates via cooperative bimetallic CO2 activation and conversion and the trans conformer reduces CO2 through well-established single-site and bimolecular pathways analogous to Re(bpy)(CO)3Cl. Higher turnover frequencies are observed for the cis conformer (35.3 s-1) relative to the trans conformer (22.9 s-1), with both outperforming Re(bpy)(CO)3Cl (11.1 s-1). Notably, at low applied potentials, the cis conformer does not catalyze the reductive disproportionation of CO2 to CO and CO32- in contrast to the trans conformer and mononuclear catalyst, demonstrating that the orientation of active sites and structure of the dinuclear cis complex dictate an alternative catalytic pathway. Further, UV-vis spectroelectrochemical experiments demonstrate that the anthracene bridge prevents intramolecular formation of a deactivated Re-Re-bonded dimer. Indeed, the cis conformer also avoids intermolecular Re-Re bond formation.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| | - Sayontani Sinha Roy
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| | - Winston C Pitts
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| | - Rebekah L Nelson
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| | - Frank R Fronczek
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Jonah W Jurss
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| |
Collapse
|
35
|
Girardi M, Platzer D, Griveau S, Bedioui F, Alves S, Proust A, Blanchard S. Assessing the Electrocatalytic Properties of the {Cp*Rh
III
}
2+
‐Polyoxometalate Derivative [H
2
PW
11
O
39
{Rh
III
Cp*(OH
2
)}]
3–
towards CO
2
Reduction. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marcelo Girardi
- CNRS Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 4 Place Jussieu 75005 Paris France
- Chimie ParisTech PSL Research University INSERM 1022 Université Paris Descartes 75005 Paris France
| | - Dominique Platzer
- CNRS Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Sophie Griveau
- Chimie ParisTech PSL Research University INSERM 1022 Université Paris Descartes 75005 Paris France
| | - Fethi Bedioui
- Chimie ParisTech PSL Research University INSERM 1022 Université Paris Descartes 75005 Paris France
| | - Sandra Alves
- CNRS Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Anna Proust
- CNRS Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Sébastien Blanchard
- CNRS Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 4 Place Jussieu 75005 Paris France
| |
Collapse
|
36
|
Neyhouse BJ, White TA. Modifying the steric and electronic character within Re(I)-phenanthroline complexes for electrocatalytic CO 2 reduction. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Francke R, Schille B, Roemelt M. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts. Chem Rev 2018; 118:4631-4701. [PMID: 29319300 DOI: 10.1021/acs.chemrev.7b00459] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The utilization of CO2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.
Collapse
Affiliation(s)
- Robert Francke
- Institute of Chemistry , Rostock University , Albert-Einstein-Strasse 3a , 18059 Rostock , Germany
| | - Benjamin Schille
- Institute of Chemistry , Rostock University , Albert-Einstein-Strasse 3a , 18059 Rostock , Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie , Ruhr-University Bochum , 44780 Bochum , Germany.,Max-Planck Institut für Kohlenforschung , Kaiser-Wilhelm Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
38
|
Zhu CY, Zhang YQ, Liao RZ, Xia W, Hu JC, Wu J, Liu H, Wang F. Photocatalytic reduction of CO2 to CO and formate by a novel Co(ii) catalyst containing a cis-oxygen atom: photocatalysis and DFT calculations. Dalton Trans 2018; 47:13142-13150. [DOI: 10.1039/c8dt02148a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel CoN4-complex containing an oxygen atom at cis-coordination site enables to convert CO2 to CO and formate in a photocatalytic system.
Collapse
Affiliation(s)
- Cheng-Yi Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Ya-Qiong Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Rong-Zhen Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Wu Xia
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jun-Chao Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jin Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Hongfang Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Feng Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
39
|
Wang X, Xiong Y, Liu G, Lin H, Wang X. Polycarboxylate-directed semi-rigid pyridyl-amide-based various NiII complexes: electrochemical properties and enhancements of photocatalytic activities by calcination. Dalton Trans 2018; 47:9903-9911. [PMID: 29998239 DOI: 10.1039/c8dt00836a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Four different pyridyl-amide-based Ni-complexes were synthesized by tuning polycarboxylates, displaying bifunctional electrocatalytic properties and enhancements of photocatalytic activities by calcination.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Ying Xiong
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Guocheng Liu
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Hongyan Lin
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Xiang Wang
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| |
Collapse
|
40
|
Li C, Deng ZP, Huo LH, Gao S. Cooperative effects of metal cations and coordination modes on luminescent s-block metal–organic complexes constructed from V-shaped 4,4′-sulfonyldiphenol. CrystEngComm 2018. [DOI: 10.1039/c8ce01591k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thirteen s-block metal–organic complexes with different supramolecular networks arising from the coordination modes of the ligands and properties of the metal cations have been synthesized and exhibit violet and blue luminescence in the solid state at room temperature.
Collapse
Affiliation(s)
- Cheng Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
| | - Zhao-Peng Deng
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
| | - Li-Hua Huo
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
| |
Collapse
|
41
|
Xiong Y, Liu G, Wang X, Zhang J, Lin H, Sha X. Fluorescent recognition of Fe3+ and Fe3+-functionalized composite materials for enhancing photocatalytic activities of CoII complexes. CrystEngComm 2017. [DOI: 10.1039/c7ce00800g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Six new CoII complexes (1–6) based on a bi-methylene-bridged bis-pyridyl-bis-amide have been synthesized. 5 and 6 exhibit photoluminescent sensing selectivity for Fe3+, and Fe3+-functionalized composites Fe3+@5 and Fe3+@6 show photocatalytic properties for the degradation of organic dyes.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Chemistry
- Bohai University
- Liaoning Province Silicon Materials Engineering Technology Research Centre
- Jinzhou
- P. R. China
| | - Guocheng Liu
- Department of Chemistry
- Bohai University
- Liaoning Province Silicon Materials Engineering Technology Research Centre
- Jinzhou
- P. R. China
| | - Xiuli Wang
- Department of Chemistry
- Bohai University
- Liaoning Province Silicon Materials Engineering Technology Research Centre
- Jinzhou
- P. R. China
| | - Juwen Zhang
- Department of Chemistry
- Bohai University
- Liaoning Province Silicon Materials Engineering Technology Research Centre
- Jinzhou
- P. R. China
| | - Hongyan Lin
- Department of Chemistry
- Bohai University
- Liaoning Province Silicon Materials Engineering Technology Research Centre
- Jinzhou
- P. R. China
| | - Xiaoting Sha
- Department of Chemistry
- Bohai University
- Liaoning Province Silicon Materials Engineering Technology Research Centre
- Jinzhou
- P. R. China
| |
Collapse
|