1
|
Xu XC, Song JJ, Hu HS. Enhanced Hydrogen Bonds of the (H 2O) n ( n = 4-8) Clusters Confined in Uranyl Peroxide Cluster Na 20(UO 2) 20(O 2) 30. Inorg Chem 2023. [PMID: 37487687 DOI: 10.1021/acs.inorgchem.3c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Water is a basic resource and an essential component of living organisms. It often exhibits some novel properties under confinement. The water clusters (H2O)n (n = 4-8) confined in the cavity of uranyl peroxide cluster Na20(UO2)20(O2)30 (U20) have been computationally investigated by using ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) calculations in this study. The results show that the confined water clusters can form hydrogen bonds with the internal oxygen atoms (Ouranyl) of U20, and their conformations changed significantly. The average lengths (2.553-2.645 Å) of hydrogen bonds in confined (H2O)n are shorter than those (2.731-2.841 Å) in the corresponding free water clusters. Moreover, these confined hydrogen bonds show better hydrogen bond patterns according to the quantified indices. The natural bond orbital (NBO) calculations determine that there is electron transferring from the U20 to its interior (H2O)n. It is the main reason for enhancing hydrogen bond interactions among the confined water molecules because their oxygen atoms are more negatively charged and their hydrogen atoms are more positively charged. The quantum theory of atoms in molecules (QTAIM) and interacting quantum atoms (IQA) analyses indicate that the confined hydrogen bonds are more covalent, based on the significant electron density ρ(r) and local energy density H(r) at the bond critical points (BCPs), and the stronger energies of interatomic exchange interactions (Vxc). These findings may help to promote the communication of confined water clusters and enrich the understating of confined hydrogen bonds.
Collapse
Affiliation(s)
- Xiao-Cheng Xu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Jun-Jie Song
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Han-Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 10084, China
| |
Collapse
|
2
|
Greaves N, Kaltsoyannis N. Computational Study of Very High Spin Actinyl Peroxide Matryoshka Nanoclusters. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicholas Greaves
- Department of Chemistry School of Natural Sciences University of Manchester Oxford Road M13 9PL Manchester United Kingdom
| | - Nikolas Kaltsoyannis
- Department of Chemistry School of Natural Sciences University of Manchester Oxford Road M13 9PL Manchester United Kingdom
| |
Collapse
|
3
|
Yang Y, Zhou Y, Chen J, Kohlgruber T, Smith T, Zheng B, Szymanowski JES, Burns PC, Liu T. Standalone 2-D Nanosheets and the Consequent Hydrogel and Coacervate Phases Formed by 2.5 nm Spherical U 60 Molecular Clusters in Dilute Aqueous Solution. J Phys Chem B 2021; 125:12392-12397. [PMID: 34705443 DOI: 10.1021/acs.jpcb.1c08019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unexpected hydrogel and coacervate are observed for dilute (1 mM) uranyl peroxide molecular cluster (Li68K12(OH)20[UO2(O2)(OH)]60, U60) solution in the presence of di- or trivalent salts. We report the mechanism as the formation of anisotropic two-dimensional (2-D) single-layer nanosheets, driven by counterion-mediated attraction due to the size disparity between U60 and small counterions. With weak monovalent cations, the nanosheets are bendable, resulting in hollow, spherical blackberry-type supramolecular assemblies in a homogeneous solution. With extra strong divalent or trivalent cations, the tough, free-standing sheets lead to gelation at ∼1 mM U60. These stiff nanosheets are difficult to bend into spherical blackberry-type structures; instead, they stay in solution and form hydrogel based on their significant excluded volumes. At higher ionic strength, the large, thin filmlike nanosheet structures stack together more compactly and consequently lead to the transition from gel phase to a coacervate phase, another surprise since it was formed without the presence of bulky polycations.
Collapse
Affiliation(s)
- Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yifan Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jiahui Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Tsuyoshi Kohlgruber
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Travis Smith
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Bowen Zheng
- Copley High School, Akron, Ohio 44321, United States
| | - Jennifer E S Szymanowski
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
4
|
Traustason H, Caranto K, Burns PC. Calorimetric Study of Functionalized Uranyl Peroxide Nanoclusters and Their Monomeric Building Block. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hrafn Traustason
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana 46556 United States
| | - Kiana Caranto
- Department of Civil & Environmental Engineering & Earth Sciences University of Notre Dame Notre Dame Indiana 46556 United States
| | - Peter C. Burns
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana 46556 United States
- Department of Civil & Environmental Engineering & Earth Sciences University of Notre Dame Notre Dame Indiana 46556 United States
| |
Collapse
|
5
|
Traustason H, Bell NL, Caranto K, Auld DC, Lockey DT, Kokot A, Szymanowski JES, Cronin L, Burns PC. Reactivity, Formation, and Solubility of Polyoxometalates Probed by Calorimetry. J Am Chem Soc 2020; 142:20463-20469. [PMID: 33203207 DOI: 10.1021/jacs.0c10133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Room temperature calorimetry methods were developed to describe the energy landscapes of six polyoxometalates (POMs), Li-U24, Li-U28, K-U28, Li/K-U60, Mo132, and Mo154, in terms of three components: enthalpy of dissolution (ΔHdiss), enthalpy of formation of aqueous POMs (ΔHf,(aq)), and enthalpy of formation of POM crystals (ΔHf,(c)). ΔHdiss is controlled by a combination of cation solvation enthalpy and the favorability of cation interactions with binding sites on the POM. In the case of the four uranyl peroxide POMs studied, clusters with hydroxide bridges have lower ΔHf,(aq) and are more stable than those containing only peroxide bridges. In general for POMs, the combination of calorimetric results and synthetic observations suggest that spherical topologies may be more stable than wheel-like clusters, and ΔHf,(aq) can be accurately estimated using only ΔHf,(c) values owing to the dominance of the clusters in determining the energetics of POM crystals.
Collapse
Affiliation(s)
- Hrafn Traustason
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nicola L Bell
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Kiana Caranto
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David C Auld
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - David T Lockey
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Alex Kokot
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer E S Szymanowski
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Xu M, Eckard P, Burns PC. Organic Functionalization of Uranyl Peroxide Clusters to Impact Solubility. Inorg Chem 2020; 59:9881-9888. [PMID: 32644786 DOI: 10.1021/acs.inorgchem.0c01080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzene-1,2-diphosphonic acid (Ppb) was introduced into the uranyl peroxide cluster system, resulting in three Ppb-functionalized uranyl peroxide clusters, (UO2)20(O2)20(C6H4P2O6)1040- (U20Ppb10), (UO2)26(O2)33(C6H4P2O6)638- (U26Ppb6), and (UO2)20(O2)24(C6H4P2O6)632- (U20Ppb6). Dissolution experiments were performed for the potassium salts of U20Ppb10 and U26Ppb6, which revealed the capacity of U20Ppb10 to dissolve in the organic solvent dimethyl sulfoxide (DMSO). Unlike U20Ppb10, the K salt of U26Ppb6 did not dissolve in DMSO but was more soluble in water, perhaps due to the lower proportion of Ppb ligands in its structure. In this work, U20Ppb10 and U20Ppb6 formed as potassium salts and both adopt the fullerene topology of previously reported U20. U20 contains 20 uranyl peroxide units and encapsulates 12 Na cations. It is not possible for unfunctionalized U20 to incorporate 12 K cations owing to space constraints, as is the case in the new clusters reported here. Transformation of U20Ppb10 in water over time to produce U24 was observed, possibly owing to its ability to incorporate K cations, which have been associated with the formation of U24.
Collapse
Affiliation(s)
- Mengyu Xu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter Eckard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Petrus E, Bo C. Performance of group additivity methods for predicting the stability of uranyl complexes. J Comput Chem 2020; 41:1124-1129. [PMID: 31990391 DOI: 10.1002/jcc.26157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/08/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022]
Abstract
Herein, we investigated the viability of two group additivity methods for predicting Gibbs energies of a set of uranyl complexes. In first place, we proved that both density functional theory (DFT)-based methods and Serezhkin's stereoatomic model provide equivalent answers in terms of stability. Moreover, we proposed a novel methodology based on Mayer's population analysis for estimating Serezhkin's empirical parameters theoretically. On the other hand, we showed that Cheong and Persson linear algebra methodology can be successfully applied to uranyl complexes, and analyzed its performance in connection with the chemical nature of the compounds employed in the model.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.,Departament de Química Física i Inorgànica, Universitat Roviri I Virgili, Tarragona, Spain
| |
Collapse
|
8
|
Dembowski M, Pilgrim CD, Hickam S, Spano T, Hamlin D, Oliver AG, Casey WH, Burns PC. Dynamics of Cation-Induced Conformational Changes in Nanometer-Sized Uranyl Peroxide Clusters. Inorg Chem 2020; 59:2495-2502. [PMID: 32017549 DOI: 10.1021/acs.inorgchem.9b03390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conformational changes of the pyrophosphate (Pp)-functionalized uranyl peroxide nanocluster [(UO2)24(O2)24(P2O7)12]48- ({U24Pp12}), dissolved as a Li/Na salt, can be induced by the titration of alkali cations into solution. The most symmetric conformer of the molecule has idealized octahedral (Oh) molecular symmetry. One-dimensional 31P NMR experiments provide direct evidence that both K+ and Rb+ ions trigger an Oh-to-D4h conformational change within {U24Pp12}. Variable-temperature 31P NMR experiments conducted on partially titrated {U24Pp12} systems show an effect on the rates; increased activation enthalpy and entropy for the D4h-to-Oh transition is observed in the presence of Rb+ compared to K+. Two-dimensional, exchange spectroscopy 31P NMR revealed that magnetization transfer links chemically unique Pp bridges that are present in the D4h conformation and that this magnetization transfer occurs via a conformational rearrangement mechanism as the bridges interconvert between two symmetries. The interconversion is triggered by the departure and reentry of K (or Rb) cations out of and into the cavity of the cluster. This rearrangement allows Pp bridges to interconvert without the need to break bonds. Cs ions exhibit unique interactions with {U24Pp12} clusters and cause only minor changes in the solution 31P NMR signatures, suggesting that Oh symmetry is conserved. Single-crystal X-ray diffraction measurements reveal that the mixed Li/Na/Cs salt adopts D2h molecular symmetry, implying that while solvated, this cluster is in equilibrium with a more symmetric form. These results highlight the unusually flexible nature of the actinide-based {U24Pp12} and its sensitivity to countercations in solution.
Collapse
Affiliation(s)
- Mateusz Dembowski
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Corey D Pilgrim
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Sarah Hickam
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Tyler Spano
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Dallas Hamlin
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Allen G Oliver
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - William H Casey
- Department of Chemistry , University of California , Davis , California 95616 , United States.,Department of Earth and Planetary Sciences , University of California , Davis , California 95616 , United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States.,Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
9
|
Newcomb K, Bernales V, Tiwari SP, Gagliardi L, Maginn EJ. The role of cations in uranyl nanocluster association: a molecular dynamics study. Phys Chem Chem Phys 2020; 22:1847-1854. [PMID: 31903472 DOI: 10.1039/c9cp05138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actinyl ions can self-assemble in aqueous solution to form closed cage clusters ranging from 1.5 to 4.0 nm in diameter. The self-assembly, stability, and behavior of the nanoclusters depend on the nature of the aqueous environment, such as the pH and cations present. In this work, a classical force field for [(UO2)20(O2)30]20- (U20) peroxide nanoclusters in aqueous solution was developed from quantum-mechanical calculations. Using molecular dynamics simulations, the preferred binding sites of six cations (Li+, Na+, K+, Rb+, Cs+, and Ca2+) to the nanocluster were determined. Replica exchange molecular dynamics was used to equilibrate the structure and determine the equilibrium distribution of cations and water with respect to the nanocluster cage. In addition, the free energy barriers associated with cations entering the cluster were computed. Finally, the association of two cages was investigated by computing the free energy as a function of intercage distance. The free energy profiles reveal that the nanoclusters prefer to be associated when neutralized with divalent cations, but do not associate when neutralized with monovalent cations. This could explain the formation of tertiary structures observed experimentally.
Collapse
Affiliation(s)
- Ken Newcomb
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Hall, Notre Dame, IN 46556, USA.
| | | | | | | | | |
Collapse
|
10
|
Sadergaski LR, Perry SN, Tholen LR, Hixon AE. Evidence for non-electrostatic interactions between a pyrophosphate-functionalized uranyl peroxide nanocluster and iron (hydr)oxide minerals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1174-1183. [PMID: 31187835 DOI: 10.1039/c9em00139e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The terminal oxygen atoms of the pyrophosphate groups in the uranyl peroxide nanocluster U24Pp12 ([(UO2)24(O2)24(P2O7)12]48-) are not fully satisfied by bond valence considerations and can become protonated. This functionality could allow for specific interactions with mineral surfaces, as opposed to the electrostatically-driven interactions observed between non-functionalized uranyl peroxide nanoclusters and mineral surfaces. The sorption of U24Pp12 to goethite and hematite was studied using batch sorption experiments as a function of U24Pp12 concentration, mineral concentration, and pH. A suite of spectroscopic techniques, scanning electron microscopy, and electrophoretic mobility measurements were used to examine the minerals before and after reaction with U24Pp12, leading to a proposed conceptual model for U24Pp12 interactions with goethite. The governing rate laws were determined and compared to those previously determined for a non-functionalized uranyl peroxide nanocluster. The rate of uranyl peroxide nanocluster sorption depends on the charge density and functionalized component of the uranyl peroxide cage. Electrophoretic mobility and attenuated total reflectance Fourier transform infrared spectroscopy analyses show that an inner-sphere complex forms between the U24Pp12 cluster and the goethite surface through the terminal pyrophosphate groups, leading to a proposed conceptual model in which U24Pp12 interacts with the triply-coordinated reactive sites on the (110) plane of goethite. These results demonstrate that the behavior of U24Pp12 at the iron (hydr)oxide-water interface is unique relative to interactions of the uranyl ion and non-functionalized uranyl peroxide nanoclusters.
Collapse
Affiliation(s)
- Luke R Sadergaski
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Samuel N Perry
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Luke R Tholen
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Amy E Hixon
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
11
|
Sadergaski LR, Said M, Hixon AE. Calcium-Facilitated Aggregation and Precipitation of the Uranyl Peroxide Nanocluster U 60 in the Presence of Na-Montmorillonite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4922-4930. [PMID: 30920204 DOI: 10.1021/acs.est.8b06731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The unique and diverse features of uranyl peroxide nanoclusters may contribute to the enhanced mobility of uranium in the environment. This study examines the sorption of the uranyl peroxide nanocluster [UO2(O2)(OH)]6060- (U60) to Na-montmorillonite (SWy-2), plagioclase (anorthite), and quartz (SiO2) as a function of time, U60 concentration, and mineral concentration. SWy-2 was studied in both its untreated form as well as after two different pretreatments, denoted as partially treated SWy-2 and fully treated SWy-2. U60 was removed (∼99%) from solution in the presence of untreated and partially treated SWy-2. However, U60 was not removed from suspensions containing anorthite, quartz, or fully treated SWy-2, even after several months. The removal of U60 from suspensions containing untreated SWy-2 is promoted in part by the exchange of Li+ counter-ions, normally weakly associated with U60 in solution, for Ca2+ ions naturally present in the clay. In solution, Ca2+ ions induce the aggregation of nanoclusters, which precipitate on the surface of SWy-2. Ca-rich U60 aggregates associated with SWy-2 were identified and characterized by scanning electron microscopy with energy dispersive spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. This research enhances our understanding of the molecular-scale processes controlling U60 behavior at the mineral-water interface.
Collapse
Affiliation(s)
- Luke R Sadergaski
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Meena Said
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Amy E Hixon
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
12
|
Lobeck HL, Isner JK, Burns PC. Transformation of Uranyl Peroxide Studtite, [(UO2)(O2)(H2O)2](H2O)2, to Soluble Nanoscale Cage Clusters. Inorg Chem 2019; 58:6781-6789. [DOI: 10.1021/acs.inorgchem.9b00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haylie L. Lobeck
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan K. Isner
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
13
|
Sigmon GE, Hixon AE. Extension of the Plutonium Oxide Nanocluster Family to Include {Pu
16
} and {Pu
22
}. Chemistry 2019; 25:2463-2466. [DOI: 10.1002/chem.201805605] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Ginger E. Sigmon
- Department of Civil & Environmental Engineering & Earth Sciences University of Notre Dame 301 Stinson-Remick Notre Dame IN 46556 USA
| | - Amy E. Hixon
- Department of Civil & Environmental Engineering & Earth Sciences University of Notre Dame 301 Stinson-Remick Notre Dame IN 46556 USA
| |
Collapse
|
14
|
Lobeck HL, Traustason H, Julien PA, FitzPatrick JR, Mana S, Szymanowski JES, Burns PC. In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions. Dalton Trans 2019; 48:7755-7765. [DOI: 10.1039/c9dt01529a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The behaviours of two uranyl peroxide nanoclusters in water heated to 180 °C were examined by in situ Raman spectroscopy.
Collapse
Affiliation(s)
- Haylie L. Lobeck
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
| | - Hrafn Traustason
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | | | - John R. FitzPatrick
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
| | - Sara Mana
- Department of Geological Sciences
- Salem State University
- Salem
- USA
| | - Jennifer E. S. Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|
15
|
Sadergaski LR, Hixon AE. Kinetics of Uranyl Peroxide Nanocluster (U 60) Sorption to Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9818-9826. [PMID: 30062873 DOI: 10.1021/acs.est.8b02716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unique properties of uranium-based nanomaterials may significantly impact our current understanding of the fate and transport of U(VI) in environmental systems. Sorption of the uranyl peroxide nanocluster [(UO2)(O2)(OH)]6060- (U60) to goethite (α-FeOOH) was studied using batch sorption experiments as a function of U60 concentration (0.5-2 g·L-1), mineral concentration (100-500 m2·L-1), and pH (8-10). The resulting rate law describing U60 interactions with goethite at pH 9 was R = - krxn[U60]0.29±0.02[goethite]1.2±0.1 where krxn = (6.7 ± 2.0) × 10-4 (g·L-1)0.71±0.02(m2·L-1)-1.2±0.1(day-1). The largest fraction of U60 removed from solution was at pH 8, which is below the isoelectric point of the goethite used in this study. Site density calculations suggest that U60 may exist on the goethite surface at a center-to-center distance of 5.4-6.5 nm, depending upon pH, which mirrors the center-to-center distance observed in the aqueous phase near the U60 solubility limit. At pH 10, approximately 20% uranium was desorbed within 3 days. Analysis of the reacted mineral surface using X-ray photoelectron spectroscopy confirmed the presence of a single U(VI) species on the mineral surface, and electrospray ionization mass spectrometry revealed that U60 remains intact during the sorption and desorption processes. These results demonstrate that the behavior of U60 at the goethite-water interface is similar to that of discrete U(VI) but is governed by different sorption mechanisms and reaction kinetics, which has the potential to alter our current understanding of the fate and transport of uranium species in the environment.
Collapse
Affiliation(s)
- Luke R Sadergaski
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Amy E Hixon
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
16
|
Sharifironizi M, Szymanowski JES, Qiu J, Castillo S, Hickam S, Burns PC. Charge Density Influence on Enthalpy of Formation of Uranyl Peroxide Cage Cluster Salts. Inorg Chem 2018; 57:11456-11462. [DOI: 10.1021/acs.inorgchem.8b01300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melika Sharifironizi
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer E. S. Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jie Qiu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sarah Castillo
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sarah Hickam
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
17
|
Lee J, Brewster JT, Song B, Lynch VM, Hwang I, Li X, Sessler JL. Uranyl dication mediated photoswitching of a calix[4]pyrrole-based metal coordination cage. Chem Commun (Camb) 2018; 54:9422-9425. [PMID: 30079408 PMCID: PMC6128147 DOI: 10.1039/c8cc05160g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A set of self-assembled tri- and tetrapodal metal coordination cage structures (cage-1 and cage-2, respectively) constructed from the uranyl dication (UO22+) and a dibenzoic acid functionalised cis-calix[4]pyrrole (1) are described. The inherent photochemical reactivity of the uranyl dication mediates the transformation of cage-1 to cage-2via the activation of molecular oxygen.
Collapse
Affiliation(s)
- Juhoon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX78712-1224, USA,
| | - James T. Brewster
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX78712-1224, USA,
| | - Bo Song
- Department of Chemistry, University of South Florida, Tampa, FL33620, USA
| | - Vincent M. Lynch
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX78712-1224, USA,
| | - Inhong Hwang
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX78712-1224, USA,
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL33620, USA
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX78712-1224, USA,
| |
Collapse
|
18
|
Hickam S, Aksenov SM, Dembowski M, Perry SN, Traustason H, Russell M, Burns PC. Complexity of Uranyl Peroxide Cluster Speciation from Alkali-Directed Oxidative Dissolution of Uranium Dioxide. Inorg Chem 2018; 57:9296-9305. [DOI: 10.1021/acs.inorgchem.8b01299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah Hickam
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sergey M. Aksenov
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mateusz Dembowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Samuel N. Perry
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hrafn Traustason
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Meghan Russell
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
19
|
Sadergaski LR, Stoxen W, Hixon AE. Uranyl Peroxide Nanocluster (U 60) Persistence and Sorption in the Presence of Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3304-3311. [PMID: 29436227 DOI: 10.1021/acs.est.7b06510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The presence of uranium-based nanomaterials in environmental systems may significantly impact our current understanding of the fate and transport of U(VI). Sorption of the uranyl peroxide nanocluster [(UO2)(O2)(OH)]6060- (U60) to hematite (α-Fe2O3) was studied using batch sorption experiments with varying U60, hematite, and alkali electrolyte (i.e., NaCl, KCl, and CsCl) concentrations. Data from electrospray ionization mass spectrometry and centrifugal microfiltration revealed that U60 persisted in the presence of hematite and the background electrolyte for at least 120 days. K+ ions were removed from solution with uranium whereas Li+ ions remained in solution, indicating that the U60 cluster behaved like an anion and that the Li+ ions did not play a significant role in the sorption mechanism. Analysis of the reacted mineral surface using X-ray photoelectron and Raman spectroscopies confirmed the presence of U(VI) and uranyl species with bridged peroxo groups associated with the mineral surface. These results indicate that uranyl peroxide nanoclusters may persist in the aqueous phase under environmentally relevant conditions for reasonably long periods of time, as compared to that of the uranyl cation.
Collapse
Affiliation(s)
- Luke R Sadergaski
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Wynn Stoxen
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Amy E Hixon
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
20
|
Smith PA, Spano TL, Burns PC. Synthesis and structural characterization of a series of uranyl-betaine coordination complexes. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zkri-2017-2139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Trimethylglycine and betainium class ionic liquids were employed in synthesizing six uranyl-betaine coordination complexes: [(μ2-(CH3)N2C3H3(CH2COO))2 (UO2(Cl)((CH3)N2C3H3(CH2COO)))2] 2[N(SO2CF3)2] (1), [K][UO2(Cl)3((CH3)3NCH2COO)] (2), [(CH3)3NCH2COOH][UO2(Cl)3((CH3)3NCH2COO)]⋅H2O (3), [LiUO2(μ2-(CH3)3NCH2COO)4] 3[N(SO2CF3)2] (4) {(μ2-(CH3)3NCH2COO)UO2(NO3)2((CH3)3NCH2COO)}2 UO2(NO3)2, UO2(NO3)2(H2O)2⋅H2O (5), and UO2(Cl)2(H2O)(μ2-(CH3)3NCH2COO) (6). These complexes expound upon the variability of monocarboxyl-functionalized uranyl coordination complexes, providing an enhanced framework for investigations into the structural chemistry of analogous actinyl systems.
Collapse
Affiliation(s)
- Philip A. Smith
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame, IN 46556 , USA
| | - Tyler L. Spano
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame, IN 46556 , USA
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame, IN 46556 , USA
| |
Collapse
|
21
|
Burns PC, Nyman M. Captivation with encapsulation: a dozen years of exploring uranyl peroxide capsules. Dalton Trans 2018; 47:5916-5927. [DOI: 10.1039/c7dt04245k] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uranyl peroxide cages are an extensive family of topologically varied self-assembling nanoscale clusters with fascinating properties and applications.
Collapse
Affiliation(s)
- Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
- Department of Chemistry and Biochemistry
| | - May Nyman
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| |
Collapse
|
22
|
Measurement of the effective capacitance of solutions containing nanoscale uranyl peroxide cage clusters (U60) reveals cluster effects. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5659-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Olds TA, Dembowski M, Wang X, Hoffman C, Alam TM, Hickam S, Pellegrini KL, He J, Burns PC. Single-Crystal Time-of-Flight Neutron Diffraction and Magic-Angle-Spinning NMR Spectroscopy Resolve the Structure and 1H and 7Li Dynamics of the Uranyl Peroxide Nanocluster U 60. Inorg Chem 2017; 56:9676-9683. [PMID: 28783328 DOI: 10.1021/acs.inorgchem.7b01174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-crystal time-of-flight neutron diffraction has provided atomic resolution of H atoms of H2O molecules and hydroxyl groups, as well as Li cations in the uranyl peroxide nanocluster U60. Solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to confirm the dynamics of these constituents, revealing the transportation of Li atoms and H2O through cluster walls. H atoms of hydroxyl units that are located on the cluster surface are involved in the transfer of H2O and Li cations from inside to outside and vice versa. This exchange occurs as a concerted motion and happens rapidly even in the solid state. As a consequence of its large size and open hexagonal pores, U60 exchanges Li cations more rapidly compared to other uranyl nanoclusters.
Collapse
Affiliation(s)
| | | | | | | | - Todd M Alam
- Department of Organic Material Science, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| | | | | | | | | |
Collapse
|