1
|
Sampei H, Akiyama H, Saegusa K, Yamaguchi M, Ogo S, Nakai H, Ueda T, Sekine Y. Factors governing the protonation of Keggin-type polyoxometalates: influence of the core structure in clusters. Dalton Trans 2024; 53:8576-8583. [PMID: 38655658 DOI: 10.1039/d4dt00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Atomic substitution is a promising approach for controlling structures and properties for developing clusters with desired responses. Although many possible coordination candidates could be deduced for substitution, not all can be prepared. Therefore, predicting the correlation between structures and physical properties is important prior to synthesis. In this study, regarding Keggin-type polyoxometalates (POMs) as a model cluster, the dominant factors affecting the protonation were investigated by atomic substitutions and geometry changes. The valence of Keggin-type POMs and the constituent elements of the cluster shell structure affect the charge and potential distribution, which change the protonation sites. Furthermore, the valence of Keggin-type POMs and the bond length between the core and shell structure determine the protonation energy. These factors also affect the HOMO-LUMO gap, which governs photochemical and redox reactions. These governing factors derived from actual parameters of the α-isomer of Keggin-type POMs enabled us to deduce the protonation energy of the β-isomer, which is more difficult to prepare and isolate than the α-isomer.
Collapse
Affiliation(s)
- Hiroshi Sampei
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Hiromu Akiyama
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Koki Saegusa
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Masahiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Shuhei Ogo
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Japan
- Marine Core Research Institute, Kochi University, Nankoku 783-8502, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Tadaharu Ueda
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Japan
- Marine Core Research Institute, Kochi University, Nankoku 783-8502, Japan
- MEDi Center, Kochi University, Kochi 780-0842, Japan
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| |
Collapse
|
2
|
Popova VG, Kulik LV, Samoilova RI, Stass DV, Kokovkin VV, Glebov EM, Berezin AS, Novikov AS, Garcia A, Tuan HT, Rodriguez RD, Sokolov MN, Abramov PA. Noncovalent Dualism in Perylene-Diimide-Based Keggin Anion Complexes: Theoretical and Experimental studies. Inorg Chem 2023; 62:19677-19689. [PMID: 37977192 DOI: 10.1021/acs.inorgchem.3c03030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We report the synthesis and comprehensive characterization of organic-inorganic hybrid salts formed by bis-cationic N,N'-bis(2-(trimethylammonium)ethylene)perylene-3,4,9,10-tetracarboxylic acid bisimide (PTCD2+) and Keggin-type [XW12O40]n- (X = Si, n = 4; X = P, n = 3) polyoxometalates. (PTCD)3[PW12O40]2·3DMSO·2H2O (2) and (PTCD)2[SiW12O40]·DMSO·2H2O (3) were structurally characterized by single crystal X-ray diffraction. The cations in both structures exhibited infinite chainlike arrangements through π-π interactions, contrasting with the previously reported cation-anion stacking observed in naphthalene diimide derivatives. A detailed theoretical study employing topological analysis of the electron density distribution within the quantum theory of atoms in molecules approach provided further insights into this structural dualism. Atomic force microscopy analyses revealed the formation of self-assembled supramolecular structures on graphite from molecular monolayers (3 nm of thick) to submicrometer aggregates for 2. Hyperspectral Raman spectroscopy imaging revealed that such heterostructures are likely formed by an enhanced π-π interactions. Both complexes demonstrated interesting electrochemical behavior, photoluminescence and X-ray-induced luminescence. Electron spin resonance analysis confirmed charge separation in both compounds, with enhanced efficiency observed in compound 2. Our findings of these perylene-based organic-inorganic hybrid salts offer the potential for their application in optoelectronic devices and functional materials.
Collapse
Affiliation(s)
- Victoria G Popova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Leonid V Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia
| | - Rimma I Samoilova
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia
| | - Dmitri V Stass
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia
| | - Vasily V Kokovkin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Evgeni M Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russia
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, 6, Moscow 117198, Russia
| | - Aura Garcia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| | - Hoang Tran Tuan
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| | - Raul D Rodriguez
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| |
Collapse
|
3
|
Osuka Y, Ii K, Tsuchiya K, Nemoto M, Sahoo YV, Takahashi K, Tanaka M. Molecular Speciation of Isopolyoxomolybdates and Isopolyoxotungstates with Silicic Acid in Aqueous Solution Using ESI–MS. J SOLUTION CHEM 2023. [DOI: 10.1007/s10953-023-01255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
K/Bidi L, Desjonquères A, Izzet G, Guillemot G. H 2 Evolution at a Reduced Hybrid Polyoxometalate and Its Vanadium-Oxo Derivative Used as Molecular Models for Reducible Metal Oxides. Inorg Chem 2023; 62:1935-1941. [PMID: 35912483 DOI: 10.1021/acs.inorgchem.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We herein report our investigations on the use of a tris-silanol-decorated polyoxotungstate, [SbW9O33(tBuSiOH)3]3-, as a molecular support model to describe the coordination of an isolated vanadium atom at metal oxides, focusing on the reactivity of the reduced derivatives in the presence of protons. Accumulation of electrons and protons at an active site is a main feature associated with heterogeneous catalysts able to conduct the (oxy)dehydrogenation of alkanes or alcohols. Our results indicate that two-electron reduced derivatives release H2 upon protonation, a reaction that probably takes place at the polyoxotungstic framework rather than at the vanadium center.
Collapse
Affiliation(s)
- Ludivine K/Bidi
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Alix Desjonquères
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| |
Collapse
|
5
|
Phillips JI, Azuma S, Lee J, Ueda T, Silvester DS. Cation effect on the electrochemical reduction of polyoxometalates in room temperature ionic liquids. Aust J Chem 2022. [DOI: 10.1071/ch22140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyoxometalates (POMs) are compounds that undergo multiple successive one-electron redox transitions, making them convenient model reactants to study ion solvation effects. Room temperature ionic liquids (RTILs) are solvents made entirely of ions, and are expected to have interactions with the highly negatively charged POM reduction products. In this work, 12 RTILs with a range of different anions ([FSI]−=bis(fluorosulfonyl)imide, [TFSI]−=bis(trifluoromethylsulfonyl)imide, [BETI]−=bis(pentafluoroethylsulfonyl)imide, [BF4]−, [PF6]−) and cations (imidazolium, pyrrolidinium, sulfonium, ammonium, phosphonium) were employed as solvents to study the kinetics and thermodynamics of [S2W18O62]4− reduction, to shed light on solvation effects and ion-pairing effects caused by different RTIL structures. Up to six reversible reduction processes (producing highly negatively charged [S2W18O62]10−) were observed. For the RTILs that showed multiple processes, a clear trend in both the thermodynamics (inferred from the reduction peak potentials) and kinetics (inferred from the peak-to-peak separation) was observed, in the order: imidazolium < sulfonium ≈ ammonium < pyrrolidinium < phosphonium, supporting strong interactions of the negatively charged POM reduction products with the cation. Two related POMs, [P2W18O62]6− and [PW12O40]3−, were also studied in the optimum RTIL found for [S2W18O62]4− ([C2mim][FSI]=1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide), revealing fast kinetics and asymmetric peaks for [PW12O40]3−. This work demonstrates the importance of understanding the solvation effects of RTIL ions for highly charged electrogenerated products, allowing tuning of the RTIL structure to achieve the optimum kinetics and thermodynamics for an electrochemical process.
Collapse
|
6
|
Korenev VS, Abramov PA, Sokolov MN. Azide Coordination to Polyoxometalates: Synthesis of (Bu4N)4.3K0.7[PW11O39FeIIIN3]⋅2.5H2O. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622600897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
8
|
Yonesato K, Yamazoe S, Kikkawa S, Yokogawa D, Yamaguchi K, Suzuki K. Variable control of the electronic states of a silver nanocluster via protonation/deprotonation of polyoxometalate ligands. Chem Sci 2022; 13:5557-5561. [PMID: 35694364 PMCID: PMC9116452 DOI: 10.1039/d2sc01156e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
The properties of metal nanoclusters depend on both their structures and electronic states. However, in contrast to the significant advances achieved in the synthesis of structurally well-defined metal nanoclusters, systematic control of their electronic states is still challenging. In particular, stimuli-responsive and reversible control of the electronic states of metal nanoclusters is attractive from the viewpoint of their practical applications. Recently, we developed a synthesis method for atomically precise Ag nanoclusters using polyoxometalates (POMs) as inorganic ligands. Herein, we exploited the acid/base nature of POMs to reversibly change the electronic states of an atomically precise {Ag27} nanocluster via protonation/deprotonation of the surrounding POM ligands. We succeeded in systematically controlling the electronic states of the {Ag27} nanocluster by adding an acid or a base (0-6 equivalents), which was accompanied by drastic changes in the ultraviolet-visible absorption spectra of the nanocluster solutions. These results demonstrate the great potential of Ag nanoclusters for unprecedented applications in various fields such as sensing, biolabeling, electronics, and catalysis.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8902 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
9
|
Schreiber E, Brennessel WW, Matson EM. Charge-State Dependence of Proton Uptake in Polyoxovanadate-alkoxide Clusters. Inorg Chem 2022; 61:4789-4800. [PMID: 35293218 PMCID: PMC8965876 DOI: 10.1021/acs.inorgchem.1c02937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/29/2022]
Abstract
Here, we present an investigation of the thermochemistry of proton uptake in acetonitrile across three charge states of a polyoxovanadate-alkoxide (POV-alkoxide) cluster, [V6O7(OMe)12]n (n = 2-, 1-, and 0). The vanadium oxide assembly studied features bridging sites saturated by methoxide ligands, isolating protonation to terminal vanadyl moieties. Exposure of [V6O7(OMe)12]n to organic acids of appropriate strength results in the protonation of a terminal V═O bond, generating the transient hydroxide-substituted POV-alkoxide cluster [V6O6(OH)(OMe)12]n+1. Evidence for this intermediate proved elusive in our initial report, but here we present the isolation of a divalent anionic cluster that features hydrogen bonding to dimethylammonium at the terminal oxo site. Degradation of the protonated species results in the formation of equimolar quantities of one-electron-oxidized and oxygen-atom-efficient complexes, [V6O7(OMe)12]n+1 and [V6O6(OMe)12]n+1. While analogous reactivity was observed across the three charge states of the cluster, a dependence on the acid strength was observed, suggesting that the oxidation state of the vanadium oxide assembly influences the basicity of the cluster surface. Spectroscopic investigations reveal sigmoidal relationships between the acid strength and cluster conversion across the redox series, allowing for determination of the proton affinity of the surface of the cluster in all three charge states. The fully reduced cluster is found to be the most basic, with higher oxidation states of the assembly possessing substantially reduced proton affinities (∼7 pKa units per electron). These results further our understanding of the site-specific reactivity of terminal M═O bonds with protons in an organic solvent, revealing design criteria for engineering functional surfaces of metal oxide materials of relevance to energy storage and conversion.
Collapse
Affiliation(s)
- Eric Schreiber
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
10
|
One-Pot Tandem Catalytic Epoxidation—CO2 Insertion of Monounsaturated Methyl Oleate to the Corresponding Cyclic Organic Carbonate. Catalysts 2021. [DOI: 10.3390/catal11121477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conversion of unsaturated fatty acids, FAMEs or triglycerides into the corresponding cyclic organic carbonates involves two reaction steps—double-bond epoxidation and CO2 insertion into the epoxide—that are generally conducted separately. We describe an assisted-tandem catalytic protocol able to carry out carbonation of unsaturated methyl oleate in one-pot without isolating the epoxide intermediate. Methyl oleate carbonate was obtained in 99% yield and high retention of cis-configuration starting from methyl oleate using hydrogen peroxide and CO2 as green reagents, in a biphasic system and in the presence of an ammonium tungstate ionic liquid catalyst with KBr as co-catalyst.
Collapse
|
11
|
Sreenath S, Suman R, Sayana KV, Nayanthara PS, Borle NG, Verma V, Nagarale RK. Low-Voltage Nongassing Electroosmotic Pump and Infusion Device with Polyoxometalate-Encapsulated Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1563-1570. [PMID: 33486948 DOI: 10.1021/acs.langmuir.0c03196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A low-voltage nongassing electroosmotic pump was assembled by sandwiching a silica frit between two carbon paper electrodes that were dip-coated with a paste consisting of phosphomolybdic acid/phosphotungstic acid (PMA/PTA)-encapsulated multiwalled carbon nanotubes (MWCNTs) and Nafion. The PMA/PTA encapsulation was a combined effect of their thermomigration and nanocapillary action in MWCNTs. The encapsulated MWCNTs retained desirable redox and charge transfer characteristics of PMA/PTA. The stable voltammogram in 1 M H2SO4 solution exhibited 77% charge retention. A total of three different possible pump configurations, namely, PUMP-I = PMA//SiO2//PMA, PUMP-II = PTA//SiO2//PTA, and PUMP-III = PMA//SiO2//PTA were put together. They are in the sequence of the anode, silica frit, and cathode. All pumps showed a linear dependence on the flow rate with a minimum operating voltage of 1 V, which is well below the thermodynamic potential of water splitting. PUMP-I provided an electroosmotic flux of 43.57 μLmin-1 V-1 cm-2 that matched the requirement of an infusion device like an insulin pump. The device was fabricated and its applicability has been demonstrated by delivering ∼1.8 mL of water at a 10 ± 2 μLmin-1 flow rate at 2 V constant applied voltage over a period of 3 h. Such a wearable device can be programed to deliver model insulin or pain medication drugs for chronic diseases.
Collapse
Affiliation(s)
- Sooraj Sreenath
- Electro Membrane Processes Lab, Membrane Science and Technology Division CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravishankar Suman
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - K V Sayana
- Electro Membrane Processes Lab, Membrane Science and Technology Division CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - P S Nayanthara
- Electro Membrane Processes Lab, Membrane Science and Technology Division CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Nitin G Borle
- Electro Membrane Processes Lab, Membrane Science and Technology Division CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Rajaram K Nagarale
- Electro Membrane Processes Lab, Membrane Science and Technology Division CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Abstract
Polyoxometalates (POMs) have been used for spectrophotometric determinations of silicon and phosphorus under acidic conditions, referred to as the molybdenum yellow method and molybdenum blue method, respectively. Many POMs are redox active and exhibit fascinating but complicated voltammetric responses. These compounds can reversibly accommodate and release many electrons without exhibiting structural changes, implying that POMs can function as excellent mediators and can be applied to sensitive determination methods based on catalytic electrochemical reactions. In addition, some rare-earth-metal-incorporated POMs exhibit fluorescence, which enables sensitive determination by the enhancement and quenching of fluorescence intensities. In this review, various analytical applications of POMs are introduced, mainly focusing on papers published after 2000, except for the molybdenum yellow method and molybdenum blue method.
Collapse
Affiliation(s)
- Tadaharu Ueda
- Department of Marine Resource Science Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan. .,Center for Advanced Marine Core Research, Kochi University, Nankoku, 783-8502, Japan.
| |
Collapse
|
13
|
Benazzi E, Karlsson J, Ben M'Barek Y, Chabera P, Blanchard S, Alves S, Proust A, Pullerits T, Izzet G, Gibson EA. Acid-triggering of light-induced charge-separation in hybrid organic/inorganic molecular photoactive dyads for harnessing solar energy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01368d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
H+ modulated charge-transfer in photoexcited covalently linked W and Mo Keggin-bodipy conjugates is demonstrated using transient absorption spectroscopy and photoluminescence. Adding acid switches on (W) or accelerates (Mo) charge separation.
Collapse
|
14
|
Zhu JJ, Benages-Vilau R, Gomez-Romero P. Can polyoxometalates enhance the capacitance and energy density of activated carbon in organic electrolyte supercapacitors? Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Konishi T, Kodani K, Hasegawa T, Ogo S, Guo SX, Boas JF, Zhang J, Bond AM, Ueda T. Impact of the Lithium Cation on the Voltammetry and Spectroscopy of [XVM 11O 40] n- (X = P, As ( n = 4), S ( n = 3); M = Mo, W): Influence of Charge and Addenda and Hetero Atoms. Inorg Chem 2020; 59:10522-10531. [PMID: 32786655 DOI: 10.1021/acs.inorgchem.0c00876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyoxometalates (POMs) have been proposed as electromaterials for lithium-based batteries because they provide access to multiple electron transfer reactions coupled to fast lithium ion transport processes and high stability over many redox cycles. Consequently, knowledge of reversible potentials and Li+ cation-POM anion interactions provides a strategic basis for their further development. In this study, detailed cyclic voltammetric studies of a series of [XVVM11O40]n- (XVM11n-) POMs (where X (heteroatom) = P (n = 4), As (n = 4), and S (n = 3) and M (addenda atom) = Mo, W) have been undertaken in CH3CN in the presence of LiClO4, with n-Bu4NPF6 also present when required to keep the ionic strength close to constant value of 0.1 M. An analysis of the data has allowed the impact of the POM charge, and addenda and hetero atoms on the reversible potentials and the interaction between Li+ and the oxidized XVVM11n- and reduced XVIVM11(n+1)- forms of the VV/IV redox couple to be determined. The SVV/IVM113-/4- process is independent of the Li+ concentration, implying the absence of the association of this cation with either SVVM113- or SVIVM114- redox levels. However, lithium-ion association constants for both VV and VIV redox levels were obtained from a comparison of simulated and experimental cyclic voltammograms for the reduction of the more negatively charged XVVM114- (X = P, As; M = Mo, W), since the Li+ interaction with these more negatively charged POMs is much stronger. The interaction between Li+ and the oxidized, XVVM11n-, and reduced, XVIVM11(n+1)-, forms was also investigated by 51V NMR and EPR spectroscopy, respectively, and it was confirmed that, due to their lower charge density, SVVM113- and SVIVM114- interact significantly less strongly with the lithium ion than XVVM114- and XVIVM115- (X = P, As). The lithium-POM association constants are substantially smaller than the corresponding proton association constants reported previously, which is attributed to a smaller surface charge density. The much stronger impact of Li+ on the WVI/V- and MoVI/V-based reductions that occur at more negative potentials than the VV/IV process also has been qualitatively evaluated.
Collapse
Affiliation(s)
- Toru Konishi
- Department of Applied Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | - Keisuke Kodani
- Department of Applied Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | - Takuya Hasegawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shuhei Ogo
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Si-Xuan Guo
- School of Chemistry, and ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - John F Boas
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Jie Zhang
- School of Chemistry, and ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M Bond
- School of Chemistry, and ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Tadaharu Ueda
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan.,Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
16
|
Tanaka Y, Hasegawa T, Shimamura T, Ukeda H, Ueda T. Potentiometric evaluation of antioxidant capacity using polyoxometalate-immobilized electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Use of symmetrical and pendant pyrazole derivatives for the construction of two polyoxometalate-based complexes as electrochemical sensors. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0250-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Ueda T. Electrochemistry of Polyoxometalates: From Fundamental Aspects to Applications. ChemElectroChem 2018. [DOI: 10.1002/celc.201701170] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tadaharu Ueda
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science; Kochi University; Monobe-Otsu 200 Nankoku 783-8502 Japan
- Center for Advanced Marine Core Research; Kochi University; Monobe-Otsu 200 Nankoku 783-8502 Japan
| |
Collapse
|
19
|
Tian A, Liu J, Li T, Tian Y, Liu G, Ying J. Amperometric sensing and photocatalytic properties under sunlight irradiation of a series of Keggin–AgI compounds through tuning single and mixed ligands. CrystEngComm 2018. [DOI: 10.1039/c7ce02214j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we synthesized eight compounds based on Keggin anions and AgI ions by introducing La and Lb.
Collapse
Affiliation(s)
- Aixiang Tian
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Jiani Liu
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Tingting Li
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Yan Tian
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| | - Guiying Liu
- Liaoning Ocean and Fisheries Science Research Institute
- Dalian
- P.R. China
| | - Jun Ying
- Department of Chemistry
- Bohai University
- Jinzhou
- P. R. China
| |
Collapse
|
20
|
Wang G, Chen T, Wang X, Ma H, Pang H. High-Performance Supercapacitor Afforded by a High-Connected Keggin-Based 3D Coordination Polymer. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guangning Wang
- Key Laboratory of Green Chemical Engineering and Technology; College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; 150040 Harbin China
- Key Laboratory for Photonic and Electronic Band gap Materials; Ministry of Education; School of Physics and Electronic Engineering; Harbin Normal University; 150025 Harbin China
| | - Tingting Chen
- Key Laboratory of Green Chemical Engineering and Technology; College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; 150040 Harbin China
- Key Laboratory for Photonic and Electronic Band gap Materials; Ministry of Education; School of Physics and Electronic Engineering; Harbin Normal University; 150025 Harbin China
| | - Xinming Wang
- Key Laboratory of Green Chemical Engineering and Technology; College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; 150040 Harbin China
| | - Huiyuan Ma
- Key Laboratory of Green Chemical Engineering and Technology; College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; 150040 Harbin China
| | - Haijun Pang
- Key Laboratory of Green Chemical Engineering and Technology; College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; 150040 Harbin China
| |
Collapse
|
21
|
Cong B, Su Z, Zhao Z, Zhao W, Ma X, Zhou B. A new rhombic 2D interpenetrated organic-inorganic hybrid material base on [HxAs2Mo6O26](6−x)− polyoxoanion and Co-btb complexes. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|