1
|
Duary S, Jana A, Das A, Acharya S, Kini AR, Roy J, Poonia AK, Patel DK, Yadav V, Antharjanam PKS, Pathak B, Kumaran Nair Valsala Devi A, Pradeep T. Milling-Induced "Turn-off" Luminescence in Copper Nanoclusters. Inorg Chem 2024; 63:18727-18737. [PMID: 39321419 DOI: 10.1021/acs.inorgchem.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Atomically precise copper nanoclusters (NCs) attract research interest due to their intense photoluminescence, which enables their applications in photonics, optoelectronics, and sensing. Exploring these properties requires carefully designed clusters with atomic precision and a detailed understanding of their atom-specific luminescence properties. Here, we report two copper NCs, [Cu4(MNA)2(DPPE)2] and [Cu6(MNA-H)6], shortly Cu4 and Cu6, protected by 2-mercaptonicotinic acid (MNA-H2) and 1,2-bis(diphenylphosphino)ethane (DPPE), showing "turn-off" mechanoresponsive luminescence. Single-crystal X-ray diffraction reveals that in the Cu4 cluster, two Cu2 units are appended with two thiols, forming a flattened boat-shaped Cu4S2 kernel, while in the Cu6 cluster, two Cu3 units form an adamantane-like Cu6S6 kernel. High-resolution electrospray ionization mass spectrometry studies reveal the molecular nature of these clusters. Lifetime decay profiles of the two clusters show the average lifetimes of 0.84 and 1.64 μs, respectively. These thermally stable Cu NCs become nonluminescent upon mechanical milling but regain their emission upon exposure to solvent vapors. Spectroscopic data of the clusters match well with their computed electronic structures. This work expands the collection of thermally stable and mechanoresponsive luminescent coinage metal NCs, enriching the diversity and applications of such materials.
Collapse
Affiliation(s)
- Subrata Duary
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Arijit Jana
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Amitabha Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Swetashree Acharya
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Jayoti Roy
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Ajay Kumar Poonia
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Deepak Kumar Patel
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Vivek Yadav
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - P K Sudhadevi Antharjanam
- Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai 600036, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | | | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| |
Collapse
|
2
|
Jana A, Duary S, Das A, Kini AR, Acharya S, Machacek J, Pathak B, Base T, Pradeep T. Multicolor photoluminescence of Cu 14 clusters modulated using surface ligands. Chem Sci 2024; 15:13741-13752. [PMID: 39211504 PMCID: PMC11352640 DOI: 10.1039/d4sc01566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Copper nanoclusters exhibit unique structural features and their molecular assembly results in diverse photoluminescence properties. In this study, we present ligand-dependent multicolor luminescence observed in a Cu14 cluster, primarily protected by ortho-carborane-9,12-dithiol (o-CBDT), featuring an octahedral Cu6 inner kernel enveloped by eight isolated copper atoms. The outer layer of the metal kernel consists of six bidentate o-CBDT ligands, in which carborane backbones are connected through μ3-sulphide linkages. The initially prepared Cu14 cluster, solely protected by six o-CBDT ligands, did not crystallize in its native form. However, in the presence of N,N-dimethylformamide (DMF), the cluster crystallized along with six DMF molecules. Single-crystal X-ray diffraction (SCXRD) revealed that the DMF molecules were directly coordinated to six of the eight capping Cu atoms, while oxygen atoms were bound to the two remaining Cu apices in antipodal positions. Efficient tailoring of the cluster surface with DMF shifted its luminescence from yellow to bright red. Luminescence decay profiles showed fluorescence emission for these clusters, originating from the singlet states. Additionally, we synthesized microcrystalline fibers with a one-dimensional assembly of DMF-appended Cu14 clusters and bidentate DPPE linkers. These fibers exhibited bright greenish-yellow phosphorescence emission, originating from the triplet state, indicating the drastic surface tailoring effect of secondary ligands. Theoretical calculations provided insights into the electronic energy levels and associated electronic transitions for these clusters. This work demonstrated dynamic tuning of the emissive excited states of copper nanoclusters through the efficient engineering of ligands.
Collapse
Affiliation(s)
- Arijit Jana
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Subrata Duary
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Amitabha Das
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 India
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Swetashree Acharya
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Jan Machacek
- Department of Syntheses, Institute of Inorganic Chemistry, The Czech Academy of Sciences 1001 Husinec - Rez 25068 Czech Republic
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 India
| | - Tomas Base
- Department of Syntheses, Institute of Inorganic Chemistry, The Czech Academy of Sciences 1001 Husinec - Rez 25068 Czech Republic
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| |
Collapse
|
3
|
Liu X, Zhang T, Zhou L, Li M, He R. Dual-Emissive γ-[Cu 4I 8] 4- Enables Luminescent Thermochromism in an Organic-Inorganic Hybrid Copper(I) Halide. Inorg Chem 2024; 63:5821-5830. [PMID: 38511502 DOI: 10.1021/acs.inorgchem.3c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A highly luminescent (C13H28N2)2Cu4I8 single crystal containing isolated γ-[Cu4I8]4- anionic cluster was synthesized without the use of unsaturated cations. To the best of our knowledge, compounds bearing such like anions are not dual-emitting under UV excitation. However, dual emission does occur in (C13H28N2)2Cu4I8. Moreover, the emission bands were found to be temperature-sensitive, allowing tuning of the emission colors from blue (0.19, 0.20) to green (0.33, 0.47) in the Commission International de L' Eclairage (CIE) chromaticity coordinates. Remarkably, the color could be restored on returning to the initial temperature, confirming an efficient and reversible luminescent thermochromic effect in (C13H28N2)2Cu4I8. The origin of this excellent optical performance is discussed, and the difference in the mechanism with the dual-emissive Cu(I) halide complexes is also elucidated. Overall, our work provides a promising way to achieve efficient luminescent thermochromism. The developed (C13H28N2)2Cu4I8 represents one of the viable alternatives for eco-friendly luminescent thermochromic materials.
Collapse
Affiliation(s)
- Xing Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ting Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ming Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Rongxing He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Galimova MF, Zueva EM, Petrova MM, Dobrynin AB, Kolesnikov IE, Musina EI, Musin RR, Karasik AA, Sinyashin OG. Design of luminescent complexes with different Cu 4I 4 cores based on pyridyl phenoxarsines. Dalton Trans 2024; 53:1087-1098. [PMID: 38099621 DOI: 10.1039/d3dt03273f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A series of luminescent Cu4I4 clusters with stair-step, cubane, and octahedral geometries supported by a novel type of cyclic As,N-ligand, pyridyl-containing 10-phenoxarsines, were synthesized and characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction analysis. An unusual arrangement of As,N-bidentate and μ2-iodo ligands was found in the octahedral cluster. The structural diversity of the Cu(I) complexes is reflected in their photophysical properties: the phosphorescence spectra of the compounds display emission in a broad spectral range of 495-597 nm. The complex with the Cu4I4L2 stoichiometry bearing a stair-step Cu4I4 core demonstrates temperature-dependent dual emission. The luminescence properties of all complexes were rationalized by DFT calculations.
Collapse
Affiliation(s)
- Milyausha F Galimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | - Ekaterina M Zueva
- Kazan National Research Technological University, 68 K. Marx Street, 420015 Kazan, Russian Federation
| | - Maria M Petrova
- Kazan National Research Technological University, 68 K. Marx Street, 420015 Kazan, Russian Federation
| | - Alexey B Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St Petersburg University, 5 Ulianovskaya Street, 198504 Saint Petersburg, Russian Federation
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | - Rustem R Musin
- Kazan National Research Technological University, 68 K. Marx Street, 420015 Kazan, Russian Federation
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| |
Collapse
|
5
|
Jamshidi M, Bouheriche J, Gardner JM. Photoluminescent copper(I) iodide alkylpyridine thin films as sensors for volatile halogenated compounds. Front Chem 2023; 11:1330227. [PMID: 38146426 PMCID: PMC10749296 DOI: 10.3389/fchem.2023.1330227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
The paper presents the fabrication and characterization of [CuI(L)]n thin films, where L represents various alkylpyridine ligands including 4-methylpyridine, 3-methylpyridine, 2-methylpyridine, 4-tbutylpyridine, 3,4-dimethylpyridine, and 3,5-dimethylpyridine. The thin films were synthesized by exposing the corresponding ligands to CuI thin films through vapor deposition. The coordination reactions occurring on the films were investigated using PXRD and time-dependent photoluminescence spectroscopy, and a comparison was made between the structures of the thin films and the corresponding powder phases. The films showed primarly blue emission (λem = 457-515 nm) and polymeric structures with excited state lifetimes ranging from 0.6 to 5.5 μs. Significantly, the studied compounds exhibited fast reversible luminescence quenching when exposed to vapors of dichloromethane and dibromomethane (15 and 30 min respectively), and the luminescence was restored upon re-exposure to the alkylpyridine ligand (after 20 min). These findings indicate that these thin films hold promise for applications as sensors (with sensitive and reversible detection capability) for volatile halogen-based compounds (VHC).
Collapse
Affiliation(s)
| | | | - James M. Gardner
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
6
|
Garcia JV, Guzman C, Mikhailovsky AA, Devitt S, Tinsley JR, DiBenedetto JA, Ford PC. Time-resolved radioluminescence of the Cu(I) cluster Cu 4I 62-. Different responses to photo, X-ray, β-ray and α-particle excitation. Chem Commun (Camb) 2023; 59:14455-14458. [PMID: 37982517 DOI: 10.1039/d3cc04870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Time-resolved radioluminescence (TRRL) properties of the Cu(I) cluster Cu4I62- upon pulsed X-ray, β-ray or α-particle excitation are described. The longer (>2 μs) TRRL component displays exponential decay comparable to pulsed UV excitation; however, temporal behaviour at shorter times indicates that high local excited state density provides an alternative decay channel.
Collapse
Affiliation(s)
- John V Garcia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106-9510, USA.
| | - Camilo Guzman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106-9510, USA.
| | - Alexander A Mikhailovsky
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106-9510, USA.
| | - Sean Devitt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106-9510, USA.
| | - James R Tinsley
- Special Technologies Laboratory, Nevada National Security Sites, 5520 Ekwill Street, Suite B, Santa Barbara, CA 93117, USA.
| | - John A DiBenedetto
- Special Technologies Laboratory, Nevada National Security Sites, 5520 Ekwill Street, Suite B, Santa Barbara, CA 93117, USA.
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106-9510, USA.
| |
Collapse
|
7
|
Peng QC, Si YB, Yuan JW, Yang Q, Gao ZY, Liu YY, Wang ZY, Li K, Zang SQ, Zhong Tang B. High Performance Dynamic X-ray Flexible Imaging Realized Using a Copper Iodide Cluster-Based MOF Microcrystal Scintillator. Angew Chem Int Ed Engl 2023; 62:e202308194. [PMID: 37366600 DOI: 10.1002/anie.202308194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal-organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm-1 .
Collapse
Affiliation(s)
- Qiu-Chen Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Bing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia-Wang Yuan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zi-Ying Gao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan-Yuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Kai Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
8
|
Baranov AY, Rakhmanova MI, Hei X, Samsonenko DG, Stass DV, Bagryanskaya IY, Ryzhikov MR, Fedin VP, Li J, Artem'ev AV. A new subclass of copper(I) hybrid emitters showing TADF with near-unity quantum yields and a strong solvatochromic effect. Chem Commun (Camb) 2023; 59:2923-2926. [PMID: 36799209 DOI: 10.1039/d3cc00119a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We introduce here a new subclass of copper(I) hybrid emitters simultaneously containing [CuxIy]z- anions and Cu+ cations, separated in space by a Janus head ligand. When UV-irradiated at 298 K, these unique "Two-In-One" hybrids exhibit a short-lived green TADF with near-unity quantum yield and a strong solvatochromic effect. Moreover, they manifest a strong radioluminescence upon X-ray irradiation. These findings open up new possibilities for the design of highly performing TADF materials.
Collapse
Affiliation(s)
- Andrey Yu Baranov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Dmitri V Stass
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya St., Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Irina Yu Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maxim R Ryzhikov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| |
Collapse
|
9
|
Artem'ev AV, Doronina EP, Rakhmanova MI, Hei X, Stass DV, Tarasova OA, Bagryanskaya IY, Samsonenko DG, Novikov AS, Nedolya NA, Li J. A family of CuI-based 1D polymers showing colorful short-lived TADF and phosphorescence induced by photo- and X-ray irradiation. Dalton Trans 2023; 52:4017-4027. [PMID: 36880169 DOI: 10.1039/d3dt00035d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exploiting 2-(alkylsulfonyl)pyridines as 1,3-N,S-ligands, herein we have constructed 1D CuI-based coordination polymers (CPs) bearing unprecedented (CuI)n chains and possessing remarkable photophysical properties. At room temperature, these CPs show efficient TADF, phosphorescence or dual emission in the deep-blue to red range with outstandingly short decay times of 0.4-2.0 μs and good quantum performance. Owing to great structural diversity, the CPs demonstrate a variety of emissive mechanisms, spanning from TADF of 1(M + X)LCT type to 3CC and 3(M + X)LCT phosphorescence. Moreover, the designed compounds emit strong X-ray radioluminescence with the quantum efficiency of up to an impressive 55% relative to all-inorganic BGO scintillators. The presented findings push the boundaries in designing TADF and triplet emitters with very short decay times.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Evgeniya P Doronina
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS, 1 Favorsky Str., Irkutsk, 664033 Russia
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Dmitri V Stass
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk, 630090, Russia.,Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Ol'ga A Tarasova
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS, 1 Favorsky Str., Irkutsk, 664033 Russia
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Alexander S Novikov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Nina A Nedolya
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS, 1 Favorsky Str., Irkutsk, 664033 Russia
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
10
|
Artem’ev AV, Baranov AY, Berezin AS, Stass DV, Hettstedt C, Kuzmina UA, Karaghiosoff K, Bagryanskaya IY. TADF and X-ray Radioluminescence of New Cu(I) Halide Complexes: Different Halide Effects on These Processes. Int J Mol Sci 2023; 24:ijms24065145. [PMID: 36982219 PMCID: PMC10049412 DOI: 10.3390/ijms24065145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
A series of complexes [Cu2X2(Pic3PO)2] (X = Cl, Br, I) based on tris(pyridin-2-ylmethyl)phosphine oxide (Pic3PO) has been synthesized. At 298 K, these compounds exhibit thermally activated delayed fluorescence (TADF) of 1(M+X)LCT type with λmax varying from 485 to 545 nm, and quantum efficiency up to 54%. In the TADF process, the halide effect appears as the emission intensification and bathochromic shift of λmax in the following order X = I < Br < Cl. Upon X-ray irradiation, the title compounds emit radioluminescence, the emission bands of which have the same shape as those at TADF, thereby meaning a similar radiative excited state. By contrast to TADF, the halide effect in the radioluminescence is reversed: its intensity grows in the order X = Cl < Br < I, since heavier atoms absorb X-rays more efficiently. These findings essentially contribute to our knowledge about the halide effect in the photo- and radioluminescent Cu(I) halide emitters.
Collapse
Affiliation(s)
- Alexander V. Artem’ev
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Correspondence:
| | - Andrey Yu. Baranov
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry V. Stass
- Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya St., Novosibirsk 630090, Russia
| | - Christina Hettstedt
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany
| | - Ul’yana A. Kuzmina
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
11
|
Zhang G, Guo M, Ma H, Wang J, Zhang XD. Catalytic nanotechnology of X-ray photodynamics for cancer treatments. Biomater Sci 2023; 11:1153-1181. [PMID: 36602259 DOI: 10.1039/d2bm01698b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) has been applied in cancer treatment because of its high selectivity, low toxicity, and non-invasiveness. However, the limited penetration depth of the light still hampers from reaching deep-seated tumors. Considering the penetrating ability of high-energy radiotherapy, X-ray-induced photodynamic therapy (X-PDT) has evolved as an alternative to overcome tissue blocks. As the basic principle of X-PDT, X-rays stimulate the nanoparticles to emit scintillating or persistent luminescence and further activate the photosensitizers to generate reactive oxygen species (ROS), which would cause a series of molecular and cellular damages, immune response, and eventually break down the tumor tissue. In recent years, catalytic nanosystems with unique structures and functions have emerged that can enhance X-PDT therapeutic effects via an immune response. The anti-cancer effect of X-PDT is closely related to the following factors: energy conversion efficiency of the material, the radiation dose of X-rays, quantum yield of the material, tumor resistance, and biocompatibility. Based on the latest research in this field and the classical theories of nanoscience, this paper systematically elucidates the current development of the X-PDT and related immunotherapy, and highlights its broad prospects in medical applications, discussing the connection between fundamental science and clinical translation.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | - Junying Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China. .,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Jana A, Jash M, Dar WA, Roy J, Chakraborty P, Paramasivam G, Lebedkin S, Kirakci K, Manna S, Antharjanam S, Machacek J, Kucerakova M, Ghosh S, Lang K, Kappes MM, Base T, Pradeep T. Carborane-thiol protected copper nanoclusters: stimuli-responsive materials with tunable phosphorescence. Chem Sci 2023; 14:1613-1626. [PMID: 36794193 PMCID: PMC9906781 DOI: 10.1039/d2sc06578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Atomically precise nanomaterials with tunable solid-state luminescence attract global interest. In this work, we present a new class of thermally stable isostructural tetranuclear copper nanoclusters (NCs), shortly Cu4@oCBT, Cu4@mCBT and Cu4@ICBT, protected by nearly isomeric carborane thiols: ortho-carborane-9-thiol, meta-carborane-9-thiol and ortho-carborane 12-iodo 9-thiol, respectively. They have a square planar Cu4 core and a butterfly-shaped Cu4S4 staple, which is appended with four respective carboranes. For Cu4@ICBT, strain generated by the bulky iodine substituents on the carboranes makes the Cu4S4 staple flatter in comparison to other clusters. High-resolution electrospray ionization mass spectrometry (HR ESI-MS) and collision energy-dependent fragmentation, along with other spectroscopic and microscopic studies, confirm their molecular structure. Although none of these clusters show any visible luminescence in solution, bright μs-long phosphorescence is observed in their crystalline forms. The Cu4@oCBT and Cu4@mCBT NCs are green emitting with quantum yields (Φ) of 81 and 59%, respectively, whereas Cu4@ICBT is orange emitting with a Φ of 18%. Density functional theory (DFT) calculations reveal the nature of their respective electronic transitions. The green luminescence of Cu4@oCBT and Cu4@mCBT clusters gets shifted to yellow after mechanical grinding, but it is regenerated after exposure to solvent vapour, whereas the orange emission of Cu4@ICBT is not affected by mechanical grinding. Structurally flattened Cu4@ICBT didn't show mechanoresponsive luminescence in contrast to other clusters, having bent Cu4S4 structures. Cu4@oCBT and Cu4@mCBT are thermally stable up to 400 °C. Cu4@oCBT retained green emission even upon heating to 200 °C under ambient conditions, while Cu4@mCBT changed from green to yellow in the same window. This is the first report on structurally flexible carborane thiol appended Cu4 NCs having stimuli-responsive tunable solid-state phosphorescence.
Collapse
Affiliation(s)
- Arijit Jana
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| | - Madhuri Jash
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| | - Wakeel Ahmed Dar
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| | - Jayoti Roy
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| | - Papri Chakraborty
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Eggenstein Leopoldshafen 76344 Germany
| | - Ganesan Paramasivam
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| | - Sergei Lebedkin
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Eggenstein Leopoldshafen 76344 Germany
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry, The Czech Academy of Science 25068 Rez Czech Republic
| | - Sujan Manna
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| | - Sudhadevi Antharjanam
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| | - Jan Machacek
- Institute of Inorganic Chemistry, The Czech Academy of Science 25068 Rez Czech Republic
| | - Monika Kucerakova
- Institute of Physics, Academy of Sciences of the Czech Republic Na Slovance4 1999/2, 182 21, Prague 8 Czech Republic
| | - Sundargopal Ghosh
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| | - Kamil Lang
- Institute of Inorganic Chemistry, The Czech Academy of Science 25068 Rez Czech Republic
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Eggenstein Leopoldshafen 76344 Germany
| | - Tomas Base
- Institute of Inorganic Chemistry, The Czech Academy of Science 25068 Rez Czech Republic
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai - 600036 India
| |
Collapse
|
13
|
Liu X, Li R, Xu X, Jiang Y, Zhu W, Yao Y, Li F, Tao X, Liu S, Huang W, Zhao Q. Lanthanide(III)-Cu 4 I 4 Organic Framework Scintillators Sensitized by Cluster-Based Antenna for High-Resolution X-ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206741. [PMID: 36303536 DOI: 10.1002/adma.202206741] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Scintillator-based X-ray imaging has attracted great attention from industrial quality inspection and security to medical diagnostics. Herein, a series of lanthanide(III)-Cu4 I4 heterometallic organic frameworks (Ln-Cu4 I4 MOFs)-based X-ray scintillators are developed by rationally assembling X-ray absorption centers ([Cu4 I4 ] clusters) and luminescent chromophores (Ln(III) ions) in a specific manner. Under X-ray irradiation, the heavy inorganic units ([Cu4 I4 ] clusters) absorb the X-ray energy to populate triplet excitons via halide-to-ligand charge transfer (XLCT) combined with the metal-to-ligand charge-transfer (MLCT) state (defined as the X/MLCT state), and then the 3 X/MLCT excited state sensitizes Tb3+ for intense X-ray-excited luminescence via excitation energy transfer. The obtained Tb-Cu4 I4 MOF scintillators exhibit high resistance to humidity and radiation, excellent linear response to X-ray dose rate, and high X-ray relative light yield of 29 379 ± 3000 photons MeV-1 . The relative light yield of Tb-Cu4 I4 MOFs is ≈3 times higher than that of the control Tb(III) complex. X-ray imaging tests show that the Tb-Cu4 I4 MOFs-based flexible scintillator film exhibits a high spatial resolution of 12.6 lp mm-1 . These findings not only provide a promising design strategy to develop lanthanide-MOF-based scintillators with excellent scintillation performance, but also exhibit high-resolution X-ray imaging for biological specimens and electronic chips.
Collapse
Affiliation(s)
- Xiangmei Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
| | - Ruhua Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
| | - Xueli Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
| | - Yangyang Jiang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenjuan Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Yu Yao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
| | - Feiyang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
| | - Xiaofang Tao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan, Nanjing, Jiangsu, 210023, P. R. China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| |
Collapse
|
14
|
Green Emissive Copper(I) Coordination Polymer Supported by the Diethylpyridylphosphine Ligand as a Luminescent Sensor for Overheating Processes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020706. [PMID: 36677764 PMCID: PMC9863830 DOI: 10.3390/molecules28020706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Tertiary diethylpyridylphosphine was synthesized by the reaction of pyridylphosphine with bromoethane in a suberbasic medium. The reaction of phosphine with the copper(I) iodide led to the formation of a copper(I) coordination polymer, which, according to the X-ray diffraction data, has an intermediate structure with a copper-halide core between the octahedral and stairstep geometries of the Cu4I4 clusters. The obtained coordination polymer exhibits a green emission in the solid state, which is caused by the 3(M+X)LCT transitions. The heating up of the copper(I) coordination polymer to 138.5 °C results in its monomerization and the formation of a new solid-state phase. The new phase exhibits a red emission, with the emission band maximum at 725 nm. According to the experimental data and quantum chemical computations, it was concluded that depolymerization probably leads to a complex that is formed with the octahedral structure of the copper-halide core. The resulting solid-state phase can be backward-converted to the polymer phase via recrystallization from the acetone or DMF. Therefore, the obtained coordination polymer can be considered a sensor or detector for the overheating of processes that should be maintained at temperatures below 138 °C (e.g., engines, boiling liquids, solar heat systems, etc.).
Collapse
|
15
|
Dai ZQ, Song L, Wang YY, Wang JT, Jia YF, Zhang DQ, Yan S, Chai WX. Two Luminescent Materials of CuI Clusters Based on Mono-phosphine Ligands and Their Fluorescence Sensing Properties. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Miao H, Pan X, Li M, Zhaxi W, Wu J, Huang Z, Liu L, Ma X, Jiang S, Huang W, Zhang Q, Wu D. A Copper Iodide Cluster-Based Coordination Polymer as an Unconventional Zero-Thermal-Quenching Phosphor. Inorg Chem 2022; 61:18779-18788. [DOI: 10.1021/acs.inorgchem.2c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huixian Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xiancheng Pan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Wenjiang Zhaxi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zetao Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| |
Collapse
|
17
|
Nguyen NTK, Lebastard C, Wilmet M, Dumait N, Renaud A, Cordier S, Ohashi N, Uchikoshi T, Grasset F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb 6, Mo 6, Ta 6, W 6, Re 6): inorganic 0D and 2D powders and films. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:547-578. [PMID: 36212682 PMCID: PMC9542349 DOI: 10.1080/14686996.2022.2119101] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/29/2023]
Abstract
This review is dedicated to various functional nanoarchitectonic nanocomposites based on molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6). Powder and film nanocomposites with two-dimensional, one-dimensional and zero-dimensional morphologies are presented, as well as film matrices from organic polymers to inorganic layered oxides. The high potential and synergetic effects of these nanocomposites for biotechnology applications, photovoltaic, solar control, catalytic, photonic and sensor applications are demonstrated. This review also provides a basic level of understanding how nanocomposites are characterized and processed using different techniques and methods. The main objective of this review would be to provide guiding significance for the design of new high-performance nanocomposites based on transition metal atom clusters.
Collapse
Affiliation(s)
- Ngan T. K. Nguyen
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Young Scientists, ICYS-Sengen, Global Networking Division, NIMS, Tsukuba, Japan
| | - Clément Lebastard
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Maxence Wilmet
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
- Saint Gobain Research Paris, Aubervilliers, France
| | - Noée Dumait
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Adèle Renaud
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | | | - Naoki Ohashi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Tetsuo Uchikoshi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Fabien Grasset
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| |
Collapse
|
18
|
Demyanov YV, Sadykov EH, Rakhmanova MI, Novikov AS, Bagryanskaya IY, Artem’ev AV. Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186059. [PMID: 36144790 PMCID: PMC9503387 DOI: 10.3390/molecules27186059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
The coordination behavior of tris(2-pyridyl)arsine (Py3As) has been studied for the first time on the example of the reactions with CuI, CuBr and AgClO4. When treated with CuI in CH2Cl2 medium, Py3As unexpectedly affords the scorpionate complex [Cu(Py3As)I]∙CH2Cl2 only, while this reaction in MeCN selectively leads to the dimer [Cu2(Py3As)2I2]. At the same time, the interaction of CuBr with Py3As exclusively gives the dimer [Cu2(Py3As)2Br2]. It is interesting to note that the scorpionate [Cu(Py3As)I]∙CH2Cl2, upon fuming with a MeCN vapor (r.t., 1 h), undergoes quantitative dimerization into the dimer [Cu2(Py3As)2I2]. The reaction of Py3As with AgClO4 produces complex [Ag@Ag4(Py3As)4](CIO4)5 featuring a Ag-centered Ag4 tetrahedral kernel. At ambient temperature, the obtained Cu(I) complexes exhibit an unusually short-lived photoluminescence, which can be tentatively assigned to the thermally activated delayed fluorescence of (M + X) LCT type (M = Cu, L = Py3As; X = halogen). For the title Ag(I) complexes, QTAIM calculations reveal the pronounced argentophilic interactions for all short Ag∙∙∙Ag contacts (3.209–3.313 Å).
Collapse
Affiliation(s)
- Yan V. Demyanov
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Evgeniy H. Sadykov
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Marianna I. Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexander S. Novikov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexander V. Artem’ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
19
|
Zhaxi W, Li M, Wu J, Liu L, Huang Z, Miao H, Ma X, Jiang S, Zhang Q, Huang W, Wu D. A Red-Emitting Cu(I)–Halide Cluster Phosphor with Near-Unity Photoluminescence Efficiency for High-Power wLED Applications. Molecules 2022; 27:molecules27144441. [PMID: 35889315 PMCID: PMC9318059 DOI: 10.3390/molecules27144441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Solid-state lighting technology, where light-emitting diodes (LEDs) are used for energy conversion from electricity to light, is considered a next-generation lighting technology. One of the significant challenges in the field is the synthesis of high-efficiency phosphors for designing phosphor-converted white LEDs under high flux operating currents. Here, we reported the synthesis, structure, and photophysical properties of a tetranuclear Cu(I)–halide cluster phosphor, [bppmCu2I2]2 (bppm = bisdiphenylphosphinemethane), for the fabrication of high-performance white LEDs. The PL investigations demonstrated that the red emission exhibits a near-unity photoluminescence quantum yield at room temperature and unusual spectral broadening with increasing temperature in the crystalline state. Considering the excellent photophysical properties, the crystalline sample of [bppmCu2I2]2 was successfully applied for the fabrication of phosphor-converted white LEDs. The prototype white LED device exhibited a continuous rise in brightness in the range of a high bias current (100–1000 mA) with CRI as high as 84 and CCT of 5828 K, implying great potential for high-quality white LEDs.
Collapse
Affiliation(s)
- Wenjiang Zhaxi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Jing Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Zetao Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Huixian Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China; (S.J.); (Q.Z.)
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China; (S.J.); (Q.Z.)
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
- Correspondence: (W.H.); (D.W.)
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
- Correspondence: (W.H.); (D.W.)
| |
Collapse
|
20
|
Galimova MF, Zueva EM, Dobrynin AB, Kolesnikov IE, Musin RR, Musina EI, Karasik AA. Luminescent Cu 4I 4-cubane clusters based on N-methyl-5,10-dihydrophenarsazines. Dalton Trans 2021; 50:13421-13429. [PMID: 34477191 DOI: 10.1039/d1dt02344f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two luminescent Cu4I4-cubane tetramers with N-methyl-10-(p-halogenophenyl)-5,10-dihydrophenarsazine ligands were synthesized and characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction analysis. The UV-Vis absorption and emission properties were studied and rationalized by DFT and time-dependent DFT calculations. The luminescence behavior was found to be rather different from that of recently reported tetranuclear copper iodide cubane clusters based on As,O-analogues - 10-(aryl)phenoxarsines. The crystalline powders of both complexes exhibit the temperature-dependent dual-band emission: the low-energy emission originates from the cluster-centered (3CC) triplet state, whereas the high-energy emission was attributed to the intraligand (3IL) triplet state.
Collapse
Affiliation(s)
- Milyausha F Galimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation.
| | - Ekaterina M Zueva
- Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russian Federation
| | - Alexey B Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation.
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, Saint Petersburg State University, 5 Ulianovskaya Street, Saint Petersburg 198504, Russian Federation
| | - Rustem R Musin
- Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russian Federation
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation.
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation.
| |
Collapse
|
21
|
Kobayashi R, Inaba R, Imoto H, Naka K. Multi-Mode Switchable Luminescence of Tetranuclear Cubic Copper(I) Iodide Complexes with Tertiary Arsine Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryosuke Kobayashi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoto Inaba
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
22
|
Kobayashi R, Kihara H, Kusukawa T, Imoto H, Naka K. Dinuclear Rhombic Copper(I) Iodide Complexes with Rigid Bidentate Arsenic Ligands. CHEM LETT 2021. [DOI: 10.1246/cl.200763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ryosuke Kobayashi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hyota Kihara
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
23
|
Troyano J, Zamora F, Delgado S. Copper(i)–iodide cluster structures as functional and processable platform materials. Chem Soc Rev 2021; 50:4606-4628. [DOI: 10.1039/d0cs01470b] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review provides a complete overview of the progress towards implementation of CuI-nanoclusters in functional materials and devices.
Collapse
Affiliation(s)
- Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Yoshida
- Sakyo-ku
- Kyoto 606-8501
- Japan
| | - Félix Zamora
- Departamento de Química Inorgánica, Facultad de Ciencias
- Universidad Autónoma de Madrid
- Madrid 28049
- Spain
- Institute for Advanced Research in Chemical Sciences
| | - Salomé Delgado
- Departamento de Química Inorgánica, Facultad de Ciencias
- Universidad Autónoma de Madrid
- Madrid 28049
- Spain
- Institute for Advanced Research in Chemical Sciences
| |
Collapse
|
24
|
Galimova MF, Zueva EM, Dobrynin AB, Samigullina AI, Musin RR, Musina EI, Karasik AA. Cu4I4-cubane clusters based on 10-(aryl)phenoxarsines and their luminescence. Dalton Trans 2020; 49:482-491. [DOI: 10.1039/c9dt04122b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis, structural and photophysical characterization, and theoretical study of tetranuclear copper(i) cubane-type Cu4I4 clusters with different 10-(aryl)phenoxarsine ligands are presented.
Collapse
Affiliation(s)
- Milyausha F. Galimova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - Ekaterina M. Zueva
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - Alexey B. Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - Rustem R. Musin
- Kazan National Research Technological University
- Kazan 420015
- Russian Federation
| | - Elvira I. Musina
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - Andrey A. Karasik
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| |
Collapse
|
25
|
Liu JH, Zhang J, Zhao D, Lin LD, Sun YQ, Li XX, Zheng ST. The incorporation of heterovalent copper-oxo and copper-halide clusters for the fabrication of three porous cluster organic frameworks: syntheses, structures and iodine adsorption/release study. CrystEngComm 2020. [DOI: 10.1039/c9ce01745c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three porous cluster organic frameworks constructed from the paddle-wheel Cu2(CO2)4 and cubane-like Cu4I4 clusters have been synthesized and characterized. Interestingly, compound 2 shows moderate gas uptake ability and I2 adsorption/release feature.
Collapse
Affiliation(s)
- Jin-Hua Liu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Jing Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Dan Zhao
- Fuqing Branch of Fujian Normal University
- Fuzhou
- China
| | - Li-Dan Lin
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
26
|
Yin SY, Wang Z, Liu ZM, Yu HJ, Zhang JH, Wang Y, Mao R, Pan M, Su CY. Multiresponsive UV-One-Photon Absorption, Near-Infrared-Two-Photon Absorption, and X/γ-Photoelectric Absorption Luminescence in One [Cu4I4] Compound. Inorg Chem 2019; 58:10736-10742. [DOI: 10.1021/acs.inorgchem.9b00876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shao-Yun Yin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Zhi-Min Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hui-Juan Yu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Jian-Hua Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Yong Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Rihua Mao
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
27
|
Water stable tetranuclear copper(I) iodide cluster for visible-light driven photocatalytic application. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Wang RY, Yu JH, Xu JQ. Bisimidazole-based phosphorescent thiocyanatocadmates. Dalton Trans 2019; 48:5674-5682. [PMID: 30968918 DOI: 10.1039/c9dt00852g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Simple room-temperature self-assemblies between Cd2+ salts, SCN- and bisimidazole molecules at pH = 2 created three new organically templated thiocyanatocadmates [H2(L1)][Cd(SCN)4]·H2O (L1 = 1,4-bis(1H-imidazol-1-yl)benzene) 1, [H2(L2)][Cd(SCN)4] (L2 = 1,3-bis(2-methylimidazol-1-yl)propane) 2, and [H2(L3)][Cd2(SCN)6] (L3 = 1,4-bis(2-methyl-1H-imidazol-1-yl)butane) 3. X-ray single-crystal diffraction analysis reveals that (i) in 1-3, the SCN- groups doubly bridge the Cd2+ centers to form different thiocyanatocadmates: a linear chain in 1; a zigzag chain in 2; and a 2-D layer network (63 net) in 3; and (ii) in 1, via Nbase-HNSCN interactions, the L1 molecules extend the thiocyanatocadmate chains into a 2-D supramolecular layer, whereas in 2, the zigzag thiocyanatocadmate chains self-assemble into a 3-D supramolecular network via weak SS interactions. Photoluminescence analysis indicates that the three title compounds all emit light: blue light for 1 and 2 and green light for 3. At low temperatures, the emission positions of the three compounds hardly change, but the emission intensities are largely enhanced. Interestingly, after turning off the UV lamp, 1 and 2 still briefly emit light (ca. 2 s), which means that 1 and 2 possess phosphorescence properties. Phosphorescence lifetimes at 77 K are 1619 ms for 1 and 247 ms for 2.
Collapse
Affiliation(s)
- Rong-Yan Wang
- College of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012, China.
| | | | | |
Collapse
|
29
|
Wang RY, Zhang X, Yu JH, Xu JQ. Copper(i)-polymers and their photoluminescence thermochromism properties. Photochem Photobiol Sci 2019; 18:477-486. [PMID: 30520490 DOI: 10.1039/c8pp00474a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Under hydro(solvo)thermal conditions, four organic bidentate bridging N,N'-donor ligands 1,3-bis(2-methylimidazol-1-yl)propane (L1), 4,4'-di(1H-imidazol-1-yl)-1,1'-biphenyl (L2), 1,2-bis(2-methyl-1H-imidazol-1-ylmethyl)benzene (L3) and 5,6,7,8-tetrahydroquinoxaline (L4) were employed to react with CuBr/CuI, generating four 2-D layered copper(i)-polymer coordination polymer materials [Cu2Br2(L1)] 1, [CuI(L2)] 2, [CuI(L3)] 3 and [CuI(L4)0.5] 4. In 1-4, different Cu-X motifs are found: a cubic Cu4Br4 core in 1; a castellated Cu-I single chain in 2; a rhombic Cu2I2 core in 3; and a staircase-like Cu-I double chain in 4. The 2-D layer networks of 1-3 can all be simplified into a simple 44 topology (planar for 1 and 3; wave-like for 2), while the 2-D layer network of 4 has a 63 topology. The photoluminescence behaviors of 1-4 under a UV lamp suggest that 1 and 2 possess fluorescence thermochromism properties. Under the UV lamp, with the decrease in temperature, (i) 1 exhibits a yellow-to-red emission; (ii) 2 exhibits a yellow-to-green emission; (iii) 3 always emits green light; and (iv) 4 never emits light. These are further confirmed by their emission spectra. From 297 K to 77 K, the emission of 1 exhibits a large red shift from 561 nm to 623 nm; the emission of 2 exhibits a large blue shift from 571 nm to 515 nm; only a minor red shift is observed for the emission of 3; and no peaks appear in the emission spectra of 4. The crystal data of 1 and 2 at different temperatures have been collected for revealing the origination of their fluorescence thermochromism properties. Based on the above investigations, the effect of the rigidity/flexibility of the organic ligand on the fluorescence thermochromism properties of copper(i)-polymer coordination polymer materials is discussed. The quantum yields at 297 K and the photoluminescence lifetimes at 297 K and 77 K for 1-3 were also measured for better understanding their photoluminescence properties.
Collapse
Affiliation(s)
- Rong-Yan Wang
- College of Chemistry, and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Jie-Hui Yu
- College of Chemistry, and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ji-Qing Xu
- College of Chemistry, and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
30
|
Chen X, Song J, Chen X, Yang H. X-ray-activated nanosystems for theranostic applications. Chem Soc Rev 2019; 48:3073-3101. [PMID: 31106315 DOI: 10.1039/c8cs00921j] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
Collapse
Affiliation(s)
- Xiaofeng Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | | | | | | |
Collapse
|
31
|
Wang RY, Zhang X, Yu JH, Xu JQ. New iodometallates(I) with in situ generated organic base derivatives as countercations (M+ = Ag+, Cu+). J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Liu JH, Qi YJ, Zhao D, Li HH, Zheng ST. Heterometallic Organic Frameworks Built from Trinuclear Indium and Cuprous Halide Clusters: Ligand-Oriented Assemblies and Iodine Adsorption Behavior. Inorg Chem 2018; 58:516-523. [DOI: 10.1021/acs.inorgchem.8b02734] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin-Hua Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Jie Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Dan Zhao
- Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China
| | - Hao-Hong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
33
|
Progress in the development of nanosensitizers for X-ray-induced photodynamic therapy. Drug Discov Today 2018; 23:1791-1800. [DOI: 10.1016/j.drudis.2018.05.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
|
34
|
Nagaoka S, Ozawa Y, Toriumi K, Abe M. A Dual-emission Strategy for a Wide-range Phosphorescent Color-tuning of a Crystalline-state Molecular Cluster [Cu4I4(2-Bzpy)4] (2-Bzpy = 2-Benzylpyridine). CHEM LETT 2018. [DOI: 10.1246/cl.180435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shiori Nagaoka
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Hyogo 678-1297, Japan
- Research Center for New Functional Materials, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Hyogo 678-1297, Japan
| | - Koshiro Toriumi
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Hyogo 678-1297, Japan
- Research Center for New Functional Materials, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Hyogo 678-1297, Japan
| |
Collapse
|
35
|
Li CA, Ji W, Qu J, Jing S, Gao F, Zhu DR. A PEG/copper(i) halide cluster as an eco-friendly catalytic system for C-N bond formation. Dalton Trans 2018; 47:7463-7470. [PMID: 29786101 DOI: 10.1039/c8dt01310a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic activities of eight copper(i) halide clusters assembled from copper(i) halide and ferrocenyltelluroethers, 1-8, were investigated in C-N formation under various conditions. A catalytic procedure using poly(ethylene glycol) (PEG-400) as a greener alternative organic solvent has been developed. The PEG-400/5 system can achieve 99% targeted yield with a mild reaction temperature and short reaction time. After the isolation of the products by extraction with diethyl ether, this PEG-400/cluster system could be easily recycled. Spectroscopic studies elucidate a stepwise mechanism: firstly, proton-coupled electron transfer (PCET) involving the transfer of an electron from Cu+ and a proton from imidazole results in the formation of a labile penta-coordinated Cu2+ and aryl radical; the following effective electron transfer from the ferrocene unit reduces Cu2+ and forms the target product; finally, the ferrocenium unit is reduced by the I- anion. The merits of this eco-friendly synthesis are the efficient utilization of reagents and easy recyclability.
Collapse
Affiliation(s)
- Cheng-An Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | | | | | | | | | | |
Collapse
|
36
|
Hu J, Zhao Y, Yang F, Liao C, Zhao J. Ag/Cd coordination architecture and photoluminescence behaviors. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1467008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jiyong Hu
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, PR China
| | - Yujie Zhao
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, PR China
| | - Fan Yang
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, PR China
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, PR China
| | - Jin’an Zhao
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, PR China
| |
Collapse
|
37
|
Luminescent mixed-ligand iodido copper(I) coordination polymers having antenna effect. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Liu JH, Gu YN, Chen Y, Qi YJ, Li XX, Zheng ST. Incorporating cuprous-halide clusters and lanthanide clusters to construct Heterometallic cluster organic frameworks with luminescence and gas adsorption properties. CrystEngComm 2018. [DOI: 10.1039/c7ce01963g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of heterometallic cluster organic frameworks based on cuprous-halide Cu4I4 clusters and lanthanide clusters have been successfully synthesized under solvothermal conditions.
Collapse
Affiliation(s)
- Jin-Hua Liu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Ya-Nan Gu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Yi Chen
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Yan-Jie Qi
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
39
|
Wang RY, Zhang X, Yu JH, Xu JQ. New photoluminescent iodoargentates with bisimidazole derivatives as countercations. RSC Adv 2018; 8:36150-36160. [PMID: 35558457 PMCID: PMC9088399 DOI: 10.1039/c8ra05760e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022] Open
Abstract
In this article, three bisimidazole derivatives (1,4-bis(2-ethylimidazol-1-yl)butane, L1; 4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl, L2′; and 1,3-bis(2-ethylimidazol-1-yl)propane, L3) were employed to solvothermally react with AgI in an acidic environment, creating three new 1-D chained iodoargentates [H(L1)][Ag5I6]·DMF (DMF = N,N′-dimethylformamide) 1, [L2][Ag3I5] (L22+ = 4,4′-di(1H-imidazol-1-ium)-1,1′-biphenyl) 2, and [H2(L3)][Ag2I4] 3. L22+ in 2 originated from the in situ N-alkylation of L2′ with the CH3OH solvent. X-ray single-crystal diffraction analysis reveals that (i) in 1, Ag+ and I− aggregate to form a 1-D tube-like iodoargentate, which exhibits the same topology as the carbon tube; (ii) the chain structure of the iodoargentate in 2 is based on a kind of trinuclear Ag–I cluster, which can be viewed as a segment of the classical cubic M4I4 cluster; (iii) the chain structure of the iodoargentate in 3 is simple, which can be described as a linear arrangement of the AgI4 tetrahedra by sharing edges. The photoluminescence analysis reveals that at 77 K, (i) 1 and 2 emit strong yellow light with ms-grade photoluminescence lifetimes (5.460 ms for 1, 6.931 ms for 2); (ii) 3 possesses photochromic luminescence properties. Upon excitation at 254 nm, it emits blue-green light, whereas upon excitation at 365 nm, it emits yellow light. Three bisimidazole-based chained iodoargentates were solvothermally synthesized, and their photoluminescent behaviors at different temperatures were investigated. Of those, 3 has been found to possess photochromic luminescence properties.![]()
Collapse
Affiliation(s)
- Rong-Yan Wang
- College of Chemistry
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun
- China
| | - Xiao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jie-Hui Yu
- College of Chemistry
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun
- China
| | - Ji-Qing Xu
- College of Chemistry
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
40
|
Zhan SZ, Li M, Zheng J, Wang QJ, Ng SW, Li D. Luminescent Cu4I4–Cu3(Pyrazolate)3 Coordination Frameworks: Postsynthetic Ligand Substitution Leads to Network Displacement and Entanglement. Inorg Chem 2017; 56:13446-13455. [DOI: 10.1021/acs.inorgchem.7b02144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shun-Ze Zhan
- Department of Chemistry
and Key Laboratory for Preparation and Application of Ordered Structural
Materials of Guangdong Province, Shantou University, Shantou 515063, People’s Republic of China
| | - Mian Li
- Department of Chemistry
and Key Laboratory for Preparation and Application of Ordered Structural
Materials of Guangdong Province, Shantou University, Shantou 515063, People’s Republic of China
| | - Ji Zheng
- Department of Chemistry
and Key Laboratory for Preparation and Application of Ordered Structural
Materials of Guangdong Province, Shantou University, Shantou 515063, People’s Republic of China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qiu-Juan Wang
- Department of Chemistry
and Key Laboratory for Preparation and Application of Ordered Structural
Materials of Guangdong Province, Shantou University, Shantou 515063, People’s Republic of China
| | - Seik Weng Ng
- The University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
41
|
Chan TW, Zhan SZ, Razali MR. Solvent-mediated single-crystal-to-single-crystal transformation from a dimeric to tetrameric copper(i) complex based on a substituted pyridine derived from a Diels–Alder adduct. NEW J CHEM 2017. [DOI: 10.1039/c7nj01552f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A solution of [Cu2I2L2(MeCN)2] (1) in dichloromethane (DCM) assisted the removal of MeCN and N-(4-pyridinyl)-9,10-dihydroethanoanthracene-11,12-dicarboximide (L) from the crystal of 1, leading to an unprecedented SCSC transformation.
Collapse
Affiliation(s)
- Tai-Wei Chan
- School of Chemical Sciences
- Universiti Sains Malaysia
- Malaysia
| | - Shun-Ze Zhan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials
- Guangdong Province
- Shantou University
- P. R. China
| | - Mohd. R. Razali
- School of Chemical Sciences
- Universiti Sains Malaysia
- Malaysia
| |
Collapse
|