1
|
Astaf'eva TV, Yambulatov DS, Nikolaevskii SA, Shmelev MA, Babeshkin KA, Efimov NN, Poddel'sky AI, Eremenko IL, Kiskin MA. The First Tetranuclear Iron(II)‐Gadolinium(III) Carboxylate Complex [Fe
2
Gd
2
(piv)
10
(bpy)
2
]: Synthesis, Structure Elucidation and Magnetic Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202203612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tatiana V. Astaf'eva
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Dmitriy S. Yambulatov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Stanislav A. Nikolaevskii
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Maxim A. Shmelev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Konstantin A. Babeshkin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Nikolay N. Efimov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Andrey I. Poddel'sky
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Igor L. Eremenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Mikhail A. Kiskin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| |
Collapse
|
2
|
Wang S, Wang C, Zhou Q. Strong Foam-like Composites from Highly Mesoporous Wood and Metal-Organic Frameworks for Efficient CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29949-29959. [PMID: 34130452 PMCID: PMC8289243 DOI: 10.1021/acsami.1c06637] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Mechanical stability and multicycle durability are essential for emerging solid sorbents to maintain an efficient CO2 adsorption capacity and reduce cost. In this work, a strong foam-like composite is developed as a CO2 sorbent by the in situ growth of thermally stable and microporous metal-organic frameworks (MOFs) in a mesoporous cellulose template derived from balsa wood, which is delignified by using sodium chlorite and further functionalized by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation. The surface carboxyl groups in the TEMPO-oxidized wood template (TO-wood) facilitate the coordination of the cellulose network with multivalent metal ions and thus enable the nucleation and in situ growth of MOFs including copper benzene-1,3,5-tricarboxylate [Cu3(BTC)2], zinc 2-methylimidazolate, and aluminum benzene-1,3,5-tricarboxylate. The TO-wood/Cu3(BTC)2 composite shows a high specific surface area of 471 m2 g-1 and a high CO2 adsorption capacity of 1.46 mmol g-1 at 25 °C and atmospheric pressure. It also demonstrates high durability during the temperature swing cyclic CO2 adsorption/desorption test. In addition, the TO-wood/Cu3(BTC)2 composite is lightweight but exceptionally strong with a specific elastic modulus of 3034 kN m kg-1 and a specific yield strength of 68 kN m kg-1 under the compression test. The strong and durable TO-wood/MOF composites can potentially be used as a solid sorbent for CO2 capture, and their application can possibly be extended to environmental remediation, gas separation and purification, insulation, and catalysis.
Collapse
Affiliation(s)
- Shennan Wang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE-106 91, Sweden
| | - Cheng Wang
- Advanced
Fibro-Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Qi Zhou
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE-106 91, Sweden
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
3
|
Peng S, Qi YJ, Li XH, Sun C, Li LY, Li XX, Zheng ST, Zhang Q. Two isomeric zeolite-like metal–organic frameworks with mechanically responsive luminescence emission and gas adsorption properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00464f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The two isomeric zeolite-like metal–organic frameworks based on tetrahedral TPO3− ligands and tetrahedrally connected Cd2+ ions were prepared. One of the compounds shows mechanic-responsive luminescence after the crystals were ground for different time.
Collapse
Affiliation(s)
- Shuang Peng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Jie Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Hao Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ling-Yun Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
4
|
Song DN, Zhang DJ, Wang YL, Wang JJ, Xing XS, Lv ZY, Liu F, Han JX, Zhang RC, Liao SJ, Zhang R. Luminescent Thermochromic Silver Iodides as Wavelength-Dependent Thermometers. Inorg Chem 2020; 59:13067-13077. [PMID: 32870670 DOI: 10.1021/acs.inorgchem.0c00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luminescent thermochromic materials with a dramatic shift of emission band under different temperatures are highly desirable in temperature sensing fields. However, the design of the synthesis of such compounds remains a great challenge. In this work, two new luminescent thermochromic silver iodides, (emIm)Ag3I4 (1) and (emIm)Ag2I3 (2) (emIm = 1-ethyl-3-methyl imidazole), have been synthesized under solvothermal conditions. Compound 1 features a [Ag3I4]- anionic layer, while compound 2 possesses an infinite [Ag2I3]- chain structure, both of which are charge balanced by emIm+ cations. Particularly, they display luminescent thermochromism with a significant wavelength shift of emission maximum with temperature change. They represent rare examples of infinite layered or chain silver iodides that show luminescent thermochromism. Furthermore, the results indicate that compounds 1 and 2 are promising wavelength-dependent luminescent thermometers.
Collapse
Affiliation(s)
- Dan-Na Song
- College of Basic Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Dao-Jun Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-10691, Sweden
| | - Jun-Jie Wang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Xiu-Shuang Xing
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Zhi-Ying Lv
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Fan Liu
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Jiang-Xia Han
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Ren-Chun Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Shui-Jiao Liao
- College of Basic Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Yu C, Wang X, Wu T, Gu X, Huang W, Kirillov AM, Wu D. Color tuning of intrinsic white-light emission in anthracene-linker coordination networks. Dalton Trans 2020; 49:12082-12087. [PMID: 32820779 DOI: 10.1039/d0dt02033h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
White light-emitting diodes (WLEDs) have aroused great attention due to their potential technological applications. In this work, we present two new Zn(ii) anthracene-linker-driven coordination polymers that exhibit intrinsic white-light emission. The emission covers the whole visible spectrum at room temperature. The chromaticity coordinates of the broadband emission can be tuned under external stimuli, including thermal and mechanical grinding. The obtained coordination polymer materials emit a "warm" white light at room temperature suitable for indoor lighting applications as well as a "cold" white light at the cryogenic temperature. Hence, the well-defined structures and mechanically tunable emission provide an excellent opportunity for realizing their potential as white emitters in optoelectronics.
Collapse
Affiliation(s)
- Chengfeng Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Ting Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xiangwei Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal and Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russia
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
6
|
Wang L, Wang X, Ou L, Liu N, Yang G. Butterfly and chair clusters using N,O‐chelating ligands: A combined crystallographic and mass spectrometric study. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ling‐Yun Wang
- School of Material and Chemical EngineeringHunan Institute of Technology Hengyang 421002 China
| | - Xia Wang
- School of Material and Chemical EngineeringHunan Institute of Technology Hengyang 421002 China
| | - Li‐Juan Ou
- School of Material and Chemical EngineeringHunan Institute of Technology Hengyang 421002 China
| | - Ning Liu
- School of Material and Chemical EngineeringHunan Institute of Technology Hengyang 421002 China
| | - Guo‐Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and InstrumentationEast China University of Technology Nanchang 330013 China
| |
Collapse
|
7
|
Li R, Xu FF, Gong ZL, Zhong YW. Thermo-responsive light-emitting metal complexes and related materials. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00779j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the fundamentals and design strategies for the development of thermo-responsive metal–ligand coordination materials and the applications of these materials in temperature sensing, bioimaging, information security, etc.
Collapse
Affiliation(s)
- Rui Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Fa-Feng Xu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
8
|
Xiong G, Wang BB, He Y, you L, Ren B, Sun Y. Syntheses, structures, and luminescence of a series of novel trimetallic coordination polymers constructed by Cu-I clusters and alkaline-carboxyl- alkaline-earth building units. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Ghorai P, Brandão P, Bauzá A, Frontera A, Saha A. Synthesis of Multinuclear Zn(II) Complexes Involving 8‐Aminoquinoline‐ Based Schiff‐Base Ligand: Structural Diversity, DNA Binding Studies and Theoretical Calculations. ChemistrySelect 2018. [DOI: 10.1002/slct.201801273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Pravat Ghorai
- Department of ChemistryJadavpur University Kolkata- 700032 India
| | - Paula Brandão
- Departamento de QuímicaCICECOUniversidade de Aveiro 3810-193 Aveiro Portugal
| | - Antonio Bauzá
- Departament de QuímicaUniversitat de les IllesBalears, Crta. De Valldemossa km 7.5 07122 Palma (Baleares) Spain
| | - Antonio Frontera
- Departament de QuímicaUniversitat de les IllesBalears, Crta. De Valldemossa km 7.5 07122 Palma (Baleares) Spain
| | - Amrita Saha
- Department of ChemistryJadavpur University Kolkata- 700032 India
| |
Collapse
|
10
|
Yuan J, Wu SQ, Liu MJ, Sato O, Kou HZ. Rhodamine 6G-Labeled Pyridyl Aroylhydrazone Fe(II) Complex Exhibiting Synergetic Spin Crossover and Fluorescence. J Am Chem Soc 2018; 140:9426-9433. [DOI: 10.1021/jacs.8b00103] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Juan Yuan
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| | - Mei-Jiao Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Ke H, Wei W, Zhang YQ, Zhang J, Xie G, Chen S. Influence of alcoholic solvent and acetate anion coordination mode variations on structures and magnetic properties of heterometallic Zn2Dy2 tetranuclear clusters. Dalton Trans 2018; 47:16616-16626. [DOI: 10.1039/c8dt03983f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We clarify that slight modifications of the synthetic conditions generate two Zn2Dy2 clusters with acetate anion coordination mode variation and different magnetic behaviors.
Collapse
Affiliation(s)
- Hongshan Ke
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Wen Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering
- Anhui Jianzhu University
- Hefei
- P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|
12
|
Wang HL, Ma XF, Zou HH, Wang K, Li B, Chen ZL, Liang FP. Mixed chelating ligands used to regulate the luminescence of Ln(iii) complexes and single-ion magnet behavior in Dy-based analogues. Dalton Trans 2018; 47:15929-15940. [DOI: 10.1039/c8dt03133a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The organic ligands 5,7-dibromo-2-methyl-8-quinolinol (L1), 1,10-phenanthroline (L2), and 5,7-dichloro-2-methyl-8-quinolinol (L3) were used to react with Dy(NO3)3·6H2O under solvothermal conditions at 80 °C to obtain the complexes [Dy(L1)3(H2O)] (1), [Dy(L2)2(NO3)3] (2), and [Dy(L3)3(H2O)] (3), respectively.
Collapse
Affiliation(s)
- Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xiong-Feng Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- P. R. China
| | - Zi-Lu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
| |
Collapse
|
13
|
Three d10 coordination polymers based on rigid ligands with flexible functional groups: Syntheses, structures and luminescence. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|