1
|
Kuramochi Y, Tanahashi K, Satake A. Synthesis and Photocatalytic CO 2 Reduction of a Cyclic Zinc(II) Porphyrin Trimer with an Encapsulated Rhenium(I) Bipyridine Tricarbonyl Complex. Chemistry 2024; 30:e202303324. [PMID: 38099393 DOI: 10.1002/chem.202303324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 12/30/2023]
Abstract
We previously reported a cyclic Zn(II) porphyrin trimer in which three Zn porphyrins are alternately bridged by three 2,2'-bipyridine (bpy) moieties, enabling the encapsulation of metal complexes within the nanopore formed by the Zn porphyrins. In this study, we introduced a [Re(CO)3 Br] fragment into one of the bpy moieties of the cyclic trimer to form the catalytic Re(4,4'-R2 -bpy)(CO)3 Br center (R=methyl ester). The ester groups (R) play an important role in the synthesis of the cyclic structure. However, it was observed that these ester groups significantly deactivated the photocatalytic CO2 reduction reaction. Therefore, we converted the ester groups with a suitable reducing reagent into hydroxymethyl groups, followed by acetylation to form acetoxymethyl groups. This modification remarkably enhanced the photocatalytic activity of the cyclic trimer=Re complex system for CO2 reduction. Moreover, in the modified system, the presence of the Re complex induced room-temperature phosphorescence of the Zn porphyrin. The phosphorescence was significantly quenched by 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole, indicating that efficient electron transfer mediated by the excited triplet state of the Zn porphyrin occurs during the photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| | - Kotaro Tanahashi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| | - Akiharu Satake
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| |
Collapse
|
2
|
Moss A, Jang Y, Arvidson J, Wang H, D'Souza F. Highly Coupled Heterobicycle-Fused Porphyrin Dimers: Excitonic Coupling and Charge Separation with Coordinated Fullerene, C 60. CHEMSUSCHEM 2023; 16:e202202289. [PMID: 36655889 DOI: 10.1002/cssc.202202289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Porphyrin dimers have been widely explored and studied owing to their importance in photosynthetic systems. A vast variety of dimers linked by different groups and at different angles have been synthesized and studied; however, the means by which to synthesize rigidly fused porphyrins with direct conjugation of the chromophores remains limited. Such a class of porphyrins may possess interesting properties that unconjugated or stacked dimers may not exhibit. In this study, bisbenzimidazole-fused porphyrin dimers and their mono- and bis-zinc derivatives are synthesized and characterized. As a consequence of excitonic coupling, these dimers exhibit a split Soret band irrespective of the metal ion in the porphyrin cavity. Steady-state fluorescence and excitation spectra followed by femtosecond transient absorption spectral studies of the heterometallated dimer, (free-base and zinc porphyrin) reveals the occurrence of efficient singlet-singlet energy transfer (>95 % efficiency and rate constant >1012 s-1 ) within the dyad. Further, donor-acceptor conjugates were formed by metal-ligand axial coordination of phenyl imidazole functionalized C60 and were characterized by a variety of physicochemical techniques. Excited state charge separation from both singlet and triplet excited states of ZnP in the conjugates has been established. The lifetime of the final charge-separated state was in the 30-40 μs range revealing charge stabilization. Interestingly, no charge separation in the conjugate derived from the heterometallated dimer was observed wherein excitation transfer dominated the process. The present study brings out the importance of the rigid π-spacer connecting porphyrin dimers in governing the energy and electron transfer events when coupled with an electron acceptor.
Collapse
Affiliation(s)
- Austen Moss
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Jacob Arvidson
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
3
|
Chen M, Guo J, Mo F, Yu W, Fu Y. Highly Sensitive Photoelectrochemical Immunosensor Based on Organic Multielectron Donor Nanocomposite as Signal Probe. Anal Chem 2022; 94:17039-17045. [PMID: 36455203 DOI: 10.1021/acs.analchem.2c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Organic photoelectric materials with conjugated electron-rich structures and good biocompatibilities have broad application prospects in biosensors. Herein, we report a promising organic photoelectric multielectron donor nanocomposite for highly sensitive PEC immunoassays. Specifically, the organic multielectron donor nanocomposite (DA-ZnTCPP-g-C3N4) was prepared from dopamine (DA, polyphenol hydroxyl structure substance), zinc tetracarboxylate porphyrin (ZnTCPP, large p-π conjugated heterocyclic compound), and two-dimensional graphene-like nitrogen carbide (g-C3N4) via an amidation reaction. With a multielectron donor structure and photoelectricity, this nanocomposite can achieve sensitization by self-structure without the addition of an electron donor in the test solution. It was utilized to label the carcinoembryonic detection antibody as a immuno-probe (Ab2-DA-ZnTCPP-g-C3N4). Meanwhile, the glassy carbon electrode electrodeposited with gold nanoparticles anchoring the capture antibody was used as a PEC immunomatrix (Ab1/DpAu/GCE). The enhanced PEC current, "signal on", was confirmed by the immunosensor via sandwich immunorecognition of a carcinoembryonic antigen (CEA). Under optimal conditions, the as-prepared sensing platform displayed high sensitivity for CEA with a dynamic linear response range from 10 fg·mL-1 to 1 mg·mL-1 and a lower detection limit of 3.6 fg·mL-1. This organic nanocomposite showed good sensitivity and stability in an immunosensing system with a low background. This strategy affords a promising approach for biological applications of organic photoelectric materials.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wanqing Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Bichan N, Tsaturyan A, Ovchenkova E, Kudryakova N, Gostev F, Shelaev I, Aybush A, Nadtochenko V, Lomova T. Donor-acceptor interactions of gold(III) porphyrins with cobalt(II) phthalocyanine: chemical structure of products, their spectral characterization and DFT study. Dalton Trans 2022; 51:9072-9084. [PMID: 35647909 DOI: 10.1039/d2dt01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of the development of coordination energy-harvesting systems, the axial bonding of cobalt(II) octakis(3,5-di-tert-butylphenoxy)phthalocyanine (1) with gold(III) 2,3,7,8,12,18-hexamethyl,13,17-diethyl,5-(pyridin-4-yl)- and (2,3,7,8,12,18-hexamethyl,13,17-diethyl,5-(pyridin-3-yl)porphin (2 and 3), the structure, the spectral/electrochemical properties of the resulting donor-acceptor complexes and photoinduced electron transfer in them are studied. The process of the dyad formation passing as self-assembly in the donor-acceptor phthalocyanine-porphyrin systems was explored using UV-Visible, IR, and 1H NMR spectroscopy and mass spectrometry. The geometric and electronic structures of the dyads were identified using density functional theory (DFT) and time-dependent DFT calculations. The electron transfer in the coordination complexes studied was confirmed by recording the radical ion pairs namely 1˙+ : 2˙-/1˙+ : 3˙- and measuring the kinetics of the photoinduction and decay of these states by a femtosecond laser photolysis technique. The effect of the gold(III) porphyrin macrocycle nature in the lifetime of radical ion pairs was shown. The redox potential values for the coordination dyads and the photoelectrochemical parameters defining their perspective in design and understanding of PET systems were observed using the cyclic voltammetry/amperometry methods and the short-circuited electrochemical cell Ti|a dyad film|0.5 M Na2SO4|Pt, respectively.
Collapse
Affiliation(s)
- Nataliya Bichan
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Arshak Tsaturyan
- Univ Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516, F-42023 St-Etienne, France. .,Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Ekaterina Ovchenkova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Nadezhda Kudryakova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Fedor Gostev
- N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan Shelaev
- N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Arseny Aybush
- N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Victor Nadtochenko
- N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana Lomova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| |
Collapse
|
5
|
Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kuramochi Y, Sato R, Sakuma H, Satake A. Photocatalytic CO 2 reduction sensitized by a special-pair mimic porphyrin connected with a rhenium( i) tricarbonyl complex. Chem Sci 2022; 13:9861-9879. [PMID: 36128228 PMCID: PMC9430738 DOI: 10.1039/d2sc03251a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
Zn porphyrins with an imidazolyl group at the meso position generate a highly stable porphyrin dimer by complementary coordination from the imidazolyl to the Zn ion in noncoordinating solvents such as chloroform, which mimics the natural special pair in photosynthesis. In this work, we have synthesized an imidazolyl-substituted Zn porphyrin connected with a Re 2,2-bipyridine tricarbonyl complex as a CO2 reduction catalyst via a p-phenylene linker, affording a homodimer with two Re complexes on both sides (ReDRe). The dimeric structure is easily dissociated into the corresponding monomers in coordinating solvents. Therefore, we prepared a mixture containing a heterodimer with the Re carbonyl complex on one side (ReD) by simple mixing with an imidazolyl Zn porphyrin and evaporating the solvent. Using the Grubbs catalyst, the subsequent olefin metathesis reaction of the mixture gave covalently linked porphyrin dimers through the allyloxy side chains, enabling the isolation of the stable hetero- (ReD′) and homo-dimers (ReD′Re) with gel permeation chromatography. The Zn porphyrin dimers have intense absorption bands in the visible light region and acted as good photosensitizers in photocatalytic CO2 reduction in a mixture of N,N-dimethylacetamide and triethanolamine (5 : 1 v/v) containing 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the electron donor, giving CO with high selectivity and durability. Under irradiation with strong light intensity, the reaction rate in ReD′ exceeded that of the previous porphyrin
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
Re complex dyad, ZnP-phen=Re. For instance, after irradiation at 560 nm for 18 h, the turnover number (TONCO) of ReD′ reached 2800, whereas the TONCO of ZnP-phen=Re was 170. The high activity in the system using the porphyrin dimer originates from no accumulation of the one-electron reduced species of the porphyrin that inhibit light absorption due to the inner-filter effect. An artificial special pair was connected with a Re 2,2-bipyridine tricarbonyl complex. The special pair derivative acted as a good photosensitizer in photocatalytic CO2 reduction, giving CO with high selectivity and durability.![]()
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Japan
| | - Ren Sato
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| | - Hiroki Sakuma
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Japan
| | - Akiharu Satake
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Japan
| |
Collapse
|
7
|
Xue S, Liu N, Mei P, Kuzuhara D, Zhou M, Pan J, Yamada H, Qiu F. Porphyrin(2.1.2.1) as a novel binucleating ligand: synthesis and molecular structures of mono- and di-rhodium(I) complexes. Chem Commun (Camb) 2021; 57:12808-12811. [PMID: 34783800 DOI: 10.1039/d1cc05641g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of monovalent and bimetallic porphyrins(2.1.2.1), the rhodium(I) complex of porphyrin(2.1.2.1), was readily obtained under controlled conditions. The coordinated rhodium(I) drastically influenced the molecular structure and optical and electronic properties. Our results clearly demonstrate that porphyrin(2.1.2.1) could be developed as a new binucleating ligand for the fabrication of bimetallic complexes.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China. .,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Changsha, Hunan 410081, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Peifeng Mei
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Mingbo Zhou
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Changsha, Hunan 410081, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
|
9
|
Nayak S, Ray A, Bhattacharya S. Size selective supramolecular interaction upon molecular complexation of a designed porphyrin with C60 and C70 in solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Kuramochi Y, Satake A. Photocatalytic CO 2 Reductions Catalyzed by meso-(1,10-Phenanthrolin-2-yl)-Porphyrins Having a Rhenium(I) Tricarbonyl Complex. Chemistry 2020; 26:16365-16373. [PMID: 32726503 PMCID: PMC7756820 DOI: 10.1002/chem.202002558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/12/2020] [Indexed: 11/17/2022]
Abstract
We have prepared Zn and free-base porphyrins appended with a fac-Re(phen)(CO)3 Br (where phen is 1,10-phenanthroline) at the meso position of the porphyrin, and performed photocatalytic CO2 reduction using porphyrin-Re dyads in the presence of either triethylamine (TEA) or 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as an electron donor. The Zn porphyrin dyad showed a high turnover number for CO production compared with the free-base porphyrin dyad, suggesting that the central Zn ion of porphyrin plays an important role in suppressing electron accumulation on the porphyrin part and achieving high durability of the photocatalytic CO2 reduction using both TEA and BIH. The effect of acids on the CO2 reduction was investigated using the Zn porphyrin-Re dyad and BIH. Acetic acid, a relatively strong Brønsted acid, rapidly causes the porphyrin's color to fade upon irradiation and dramatically decreases CO production, whereas proper weak Brønsted acids such as 2,2,2-trifluoroethanol and phenol enhance the CO2 reduction.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Graduate School of ScienceTokyo University of Science1–3 KagurazakaShinjuku-kuTokyo162-8601Japan
- Department of Chemistry, Faculty of Science Division IITokyo University of Science1–3 KagurazakaShinjuku-kuTokyo162-8601Japan
| | - Akiharu Satake
- Graduate School of ScienceTokyo University of Science1–3 KagurazakaShinjuku-kuTokyo162-8601Japan
- Department of Chemistry, Faculty of Science Division IITokyo University of Science1–3 KagurazakaShinjuku-kuTokyo162-8601Japan
| |
Collapse
|
11
|
Kuramochi Y, Fujisawa Y, Satake A. Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin. J Am Chem Soc 2019; 142:705-709. [DOI: 10.1021/jacs.9b12712] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yusuke Kuramochi
- Graduate School of Chemical Sciences and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshitaka Fujisawa
- Graduate School of Chemical Sciences and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Akiharu Satake
- Graduate School of Chemical Sciences and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
12
|
Costa JIT, Farinha ASF, Paz FAA, Tomé AC. A Convenient Synthesis of Pentaporphyrins and Supramolecular Complexes with a Fulleropyrrolidine. Molecules 2019; 24:E3177. [PMID: 31480572 PMCID: PMC6749455 DOI: 10.3390/molecules24173177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 11/16/2022] Open
Abstract
A simple and straightforward synthesis of diporphyrins and pentaporphyrins is reported here. The supramolecular interactions of the new porphyrin derivatives with C60 and PyC60 (a pyridyl [60]fulleropyrrolidine) were evaluated by absorption and fluorescence titrations in toluene. While no measurable modifications of the absorption and fluorescence spectra were observed upon addition of C60 to the porphyrin derivatives, the addition of PyC60 to the corresponding mono-Zn(II) porphyrins resulted in the formation of Zn(porphyrin)-PyC60 coordination complexes and the binding constants were calculated. Results show that the four free-base porphyrin units in pentaporphyrin 6 have a significant contribution in the stabilization of the 6-PyC60 complex. The crystal and molecular features of the pentaporphyrin Zn5 were unveiled using single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Joana I T Costa
- QOPNA and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia S F Farinha
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences (BESE), Thuwal, Saudi Arabia
| | - Filipe A Almeida Paz
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- QOPNA and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Zatsikha YV, Swedin RK, Healy AT, Goff PC, Didukh NO, Blesener TS, Kayser M, Kovtun YP, Blank DA, Nemykin VN. Synthesis, Characterization, and Electron‐Transfer Properties of Ferrocene–BODIPY–Fullerene Near‐Infrared‐Absorbing Triads: Are Catecholopyrrolidine‐Linked Fullerenes a Good Architecture to Facilitate Electron‐Transfer? Chemistry 2019; 25:8401-8414. [DOI: 10.1002/chem.201901225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Department of Chemistry & Biochemistry University of Minnesota Duluth Duluth MN 55812 USA
| | - Rachel K. Swedin
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Andrew T. Healy
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Philip C. Goff
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Natalia O. Didukh
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Institute of Organic Chemistry National Academy of Sciences Kyiv 02660 Ukraine
| | - Tanner S. Blesener
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Mathew Kayser
- Department of Chemistry & Biochemistry University of Minnesota Duluth Duluth MN 55812 USA
| | - Yuriy P. Kovtun
- Institute of Organic Chemistry National Academy of Sciences Kyiv 02660 Ukraine
| | - David A. Blank
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Victor N. Nemykin
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Department of Chemistry & Biochemistry University of Minnesota Duluth Duluth MN 55812 USA
| |
Collapse
|
14
|
Girichev GV, Tverdova NV, Giricheva NI, Savelyev DS, Ol'shevskaya VA, Ageeva TA, Zaitsev AV, Koifman OI. Geometric and electronic structures of 5,10,15,20-tetraphenylporphyrinato Palladium(II) and Zinc(II): Phenomenon of Pd(II) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Gao D, Aly SM, Karsenti PL, Harvey PD. What does it take to induce equilibrium in bidirectional energy transfers? Phys Chem Chem Phys 2018; 20:13682-13692. [PMID: 29745390 DOI: 10.1039/c7cp07879j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two dyads built with a co-facial slipped bis(zinc(ii)porphyrin), a free base and a bridge, [Zn2]-bridge-[Fb] (bridge = C6H4C[triple bond, length as m-dash]C, 1 and C6H4C[triple bond, length as m-dash]CC6H4, 2), exhibit S1 energy equilibrium [Zn2]* ↔ [Fb]* at 298 K, an extremely rare situation, which depends on the degree of MO coupling between the units. At 77 K, 2 becomes bi-directional due to the two large C6H4-[Zn2] and C6H4-[Fb] dihedral angles.
Collapse
Affiliation(s)
- Di Gao
- Departement de chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | | | | | | |
Collapse
|
17
|
Kuramochi Y, Hashimoto S, Kawakami Y, Asano MS, Satake A. Visualization of nonemissive triplet species of Zn(ii) porphyrins through Cu(ii) porphyrin emission via the reservoir mechanism in a porphyrin macroring. Photochem Photobiol Sci 2018; 17:883-888. [DOI: 10.1039/c8pp00210j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A macroring shows long-lived near-IR emission from Cu(ii) porphyrin via the reservoir mechanism. The significant emission quenching by O2 suggests that the T1 state of Zn(ii) porphyrin can be monitored by the near-IR emission.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Graduate School of Chemical Sciences and Technology
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Sho Hashimoto
- Division of Molecular Science
- School of Science and Technology
- Gunma University
- Kiryu
- Japan
| | - Yuki Kawakami
- Graduate School of Chemical Sciences and Technology
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Motoko S. Asano
- Division of Molecular Science
- School of Science and Technology
- Gunma University
- Kiryu
- Japan
| | - Akiharu Satake
- Graduate School of Chemical Sciences and Technology
- Tokyo University of Science
- Shinjuku-ku
- Japan
| |
Collapse
|