1
|
Ghaffari-Bohlouli P, Jafari H, Okoro OV, Alimoradi H, Nie L, Jiang G, Kakkar A, Shavandi A. Gas Therapy: Generating, Delivery, and Biomedical Applications. SMALL METHODS 2024; 8:e2301349. [PMID: 38193272 DOI: 10.1002/smtd.202301349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Oxygen (O2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and hydrogen (H2) with direct effects, and carbon dioxide (CO2) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Houman Alimoradi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
2
|
Ning X, Zhu X, Wang Y, Yang J. Recent advances in carbon monoxide-releasing nanomaterials. Bioact Mater 2024; 37:30-50. [PMID: 38515608 PMCID: PMC10955104 DOI: 10.1016/j.bioactmat.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
As an endogenous signaling molecule, carbon monoxide (CO) has emerged as an increasingly promising option regarding as gas therapy due to its positive pharmacological effects in various diseases. Owing to the gaseous nature and potential toxicity, it is particularly important to modulate the CO release dosages and targeted locations to elucidate the biological mechanisms of CO and facilitate its clinical applications. Based on these, diverse CO-releasing molecules (CORMs) have been developed for controlled release of CO in biological systems. However, practical applications of these CORMs are limited by several disadvantages including low stability, poor solubility, weak releasing controllability, random diffusion, and potential toxicity. In light of rapid developments and diverse advantages of nanomedicine, abundant nanomaterials releasing CO in controlled ways have been developed for therapeutic purposes across various diseases. Due to their nanoscale sizes, diversified compositions and modified surfaces, vast CO-releasing nanomaterials (CORNMs) have been constructed and exhibited controlled CO release in specific locations under various stimuli with better pharmacokinetics and pharmacodynamics. In this review, we present the recent progress in CORNMs according to their compositions. Following a concise introduction to CO therapy, CORMs and CORNMs, the representative research progress of CORNMs constructed from organic nanostructures, hybrid nanomaterials, inorganic nanomaterials, and nanocomposites is elaborated. The basic properties of these CORNMs, such as active components, CO releasing mechanisms, detection methods, and therapeutic applications, are discussed in detail and listed in a table. Finally, we explore and discuss the prospects and challenges associated with utilizing nanomaterials for biological CO release.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghui Yang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
3
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. Tricarbonyl-Pyrazine-Molybdenum(0) Metal-Organic Frameworks for the Storage and Delivery of Biologically Active Carbon Monoxide. ACS Biomater Sci Eng 2023; 9:1909-1918. [PMID: 36996427 PMCID: PMC10091354 DOI: 10.1021/acsbiomaterials.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Metal-organic frameworks (MOFs) have high potential as nanoplatforms for the storage and delivery of therapeutic gasotransmitters or gas-releasing molecules. The aim of the present study was to open an investigation into the viability of tricarbonyl-pyrazine-molybdenum(0) MOFs as carbon monoxide-releasing materials (CORMAs). A previous investigation found that the reaction of Mo(CO)6 with excess pyrazine (pyz) in a sealed ampoule gave a mixture comprising a major triclinic phase with pyz-occupied hexagonal channels, formulated as fac-Mo(CO)3(pyz)3/2·1/2pyz (Mo-hex), and a minor dense cubic phase, formulated as fac-Mo(CO)3(pyz)3/2 (Mo-cub). In the present work, an open reflux method in toluene has been optimized for the large-scale synthesis of the pure Mo-cub phase. The crystalline solids Mo-hex and Mo-cub were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy. The release of CO from the MOFs was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mo-hex and Mo-cub release CO upon contact with a physiological buffer in the dark, delivering 0.35 and 0.22 equiv (based on Mo), respectively, after 24 h, with half-lives of 3-4 h. Both materials display high photostability such that the CO-releasing kinetics is not affected by irradiation of the materials with UV light. These materials are attractive as potential CORMAs due to the slow release of a high CO payload. In the solid-state and under open air, Mo-cub underwent almost complete decarbonylation over a period of 4 days, corresponding to a theoretical CO release of 10 mmol per gram of material.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
5
|
Cisplatin-loaded nanoformulations for cancer therapy: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Carné-Sánchez A, Ikemura S, Sakaguchi R, Craig GA, Furukawa S. Photoactive carbon monoxide-releasing coordination polymer particles. Chem Commun (Camb) 2022; 58:9894-9897. [PMID: 35975475 DOI: 10.1039/d2cc03907a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of photoactive carbon monoxide-releasing coordination polymer particles through the assembly of Mn(I) carbonyl complexes with bis(imidazole) ligands. The use of Mn(I) carbonyl complexes as metallic nodes in the coordination network avoids the potential for aggregation-induced self-quenching, favouring their use in the solid state.
Collapse
Affiliation(s)
- Arnau Carné-Sánchez
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Shuya Ikemura
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Reiko Sakaguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Gavin A Craig
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL Glasgow, Scotland, UK
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Bharathi M, Indira S, Vinoth G, Shanmuga Bharathi K. Implanted mixed ligand Ni complex of phenolic Schiff base and 2, 2’ bipyridine on MCM-41 as an efficient catalyst for Suzuki–Miyaura cross-coupling reactions: a greener approach. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Chu LM, Shaefi S, Byrne JD, Alves de Souza RW, Otterbein LE. Carbon monoxide and a change of heart. Redox Biol 2021; 48:102183. [PMID: 34764047 PMCID: PMC8710986 DOI: 10.1016/j.redox.2021.102183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
The relationship between carbon monoxide and the heart has been extensively studied in both clinical and preclinical settings. The Food and Drug Administration (FDA) is keenly focused on the ill effects of carbon monoxide on the heart when presented with proposals for clinical trials to evaluate efficacy of this gasotransmitter in a various disease settings. This review provides an overview of the rationale that examines the actions of the FDA when considering clinical testing of CO, and contrast that with the continued accumulation of data that clearly show not only that CO can be used safely, but is potently cardioprotective in clinically relevant small and large animal models. Data emerging from Phase I and Phase II clinical trials argues against CO being dangerous to the heart and thus it needs to be redefined and evaluated as any other substance being proposed for use in humans. More than twenty years ago, the belief that CO could be used as a salutary molecule was ridiculed by experts in physiology and medicine. Like all agents designed for use in humans, careful pharmacology and safety are paramount, but continuing to hinder progress based on long-standing dogma in the absence of data is improper. Now, CO is being tested in multiple clinical trials using innovative delivery methods and has proven to be safe. The hope, based on compelling preclinical data, is that it will continue to be evaluated and ultimately approved as an effective therapeutic.
Collapse
Affiliation(s)
- Louis M Chu
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Shazhad Shaefi
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | | | - Rodrigo W Alves de Souza
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Leo E Otterbein
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Gong W, Xia C, He Q. Therapeutic gas delivery strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1744. [PMID: 34355863 DOI: 10.1002/wnan.1744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
Gas molecules with pharmaceutical effects offer emerging solutions to diseases. In addition to traditional medical gases including O2 and NO, more gases such as H2 , H2 S, SO2 , and CO have recently been discovered to play important roles in various diseases. Though some issues need to be addressed before clinical application, the increasing attention to gas therapy clearly indicates the potentials of these gases for disease treatment. The most important and difficult part of developing gas therapy systems is to transport gas molecules of high diffusibility and penetrability to interesting targets. Given the particular importance of gas molecule delivery for gas therapy, distinguished strategies have been explored to improve gas delivery efficiency and controllable gas release. Here, we summarize the strategies of therapeutic gas delivery for gas therapy, including direct gas molecule delivery by chemical and physical absorption, inorganic/organic/hybrid gas prodrugs, and natural/artificial/hybrid catalyst delivery for gas generation. The advantages and shortcomings of these gas delivery strategies are analyzed. On this basis, intelligent gas delivery strategies and catalysts use in future gas therapy are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Wanjun Gong
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chao Xia
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials 2020; 255:120193. [DOI: 10.1016/j.biomaterials.2020.120193] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
|
11
|
Calhau IB, Gomes AC, Bruno SM, Coelho AC, Magalhães CIR, Romão CC, Valente AA, Gonçalves IS, Pillinger M. One‐Pot Intercalation Strategy for the Encapsulation of a CO‐Releasing Organometallic Molecule in a Layered Double Hydroxide. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Isabel B. Calhau
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Ana C. Gomes
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Sofia M. Bruno
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Ana C. Coelho
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República, EAN 2780‐157 Oeiras Portugal
| | - Clara I. R. Magalhães
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Carlos C. Romão
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República, EAN 2780‐157 Oeiras Portugal
| | - Anabela A. Valente
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Isabel S. Gonçalves
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Martyn Pillinger
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| |
Collapse
|
12
|
Pinto MN, Mascharak PK. Light-assisted and remote delivery of carbon monoxide to malignant cells and tissues: Photochemotherapy in the spotlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Henke WC, Otolski CJ, Moore WNG, Elles CG, Blakemore JD. Ultrafast Spectroscopy of [Mn(CO) 3] Complexes: Tuning the Kinetics of Light-Driven CO Release and Solvent Binding. Inorg Chem 2020; 59:2178-2187. [PMID: 31990533 DOI: 10.1021/acs.inorgchem.9b02758] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Manganese tricarbonyl complexes are promising catalysts for CO2 reduction, but complexes in this family are often photosensitive and decompose rapidly upon exposure to visible light. In this report, synthetic and photochemical studies probe the initial steps of light-driven speciation for Mn(CO)3(Rbpy)Br complexes bearing a range of 4,4'-disubstituted 2,2'-bipyridyl ligands (Rbpy, where R = tBu, H, CF3, NO2). Transient absorption spectroscopy measurements for Mn(CO)3(Rbpy)Br coordination compounds with R = tBu, H, and CF3 in acetonitrile reveal ultrafast loss of a CO ligand on the femtosecond time scale, followed by solvent coordination on the picosecond time scale. The Mn(CO)3(NO2bpy)Br complex is unique among the four compounds in having a longer-lived excited state that does not undergo CO release or subsequent solvent coordination. The kinetics of photolysis and solvent coordination for light-sensitive complexes depend on the electronic properties of the disubstituted bipyridyl ligand. The results indicate that both metal-to-ligand charge-transfer (MLCT) and dissociative ligand-field (d-d) excited states play a role in the ultrafast photochemistry. Taken together, the findings suggest that more robust catalysts could be prepared with appropriately designed complexes that avoid crossing between the excited states that drive photochemical CO loss.
Collapse
Affiliation(s)
- Wade C Henke
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| | - Christopher J Otolski
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| | - William N G Moore
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| | - Christopher G Elles
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| | - James D Blakemore
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| |
Collapse
|
14
|
Carné-Sánchez A, Carmona FJ, Kim C, Furukawa S. Porous materials as carriers of gasotransmitters towards gas biology and therapeutic applications. Chem Commun (Camb) 2020; 56:9750-9766. [DOI: 10.1039/d0cc03740k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review highlights the strategies employed to load and release gasotransmitters such as NO, CO and H2S from different kinds of porous materials, including zeolites, mesoporous silica, metal–organic frameworks and protein assemblies.
Collapse
Affiliation(s)
- Arnau Carné-Sánchez
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
| | - Francisco J. Carmona
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
| | - Chiwon Kim
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Department of Synthetic Chemistry and Biological Chemistry
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Department of Synthetic Chemistry and Biological Chemistry
| |
Collapse
|
15
|
Yan H, Du J, Zhu S, Nie G, Zhang H, Gu Z, Zhao Y. Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904382. [PMID: 31663244 DOI: 10.1002/smll.201904382] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Carbon monoxide (CO) therapy has emerged as a hot topic under exploration in the field of gas therapy as it shows the promise of treating various diseases. Due to the gaseous property and the high affinity for human hemoglobin, the main challenges of administrating medicinal CO are the lack of target selectivity as well as the toxic profile at relatively high concentrations. Although abundant CO releasing molecules (CORMs) with the capacity to deliver CO in biological systems have been developed, several disadvantages related to CORMs, including random diffusion, poor solubility, potential toxicity, and lack of on-demand CO release in deep tissue, still confine their practical use. Recently, the advent of versatile nanomedicine has provided a promising chance for improving the properties of naked CORMs and simultaneously realizing the therapeutic applications of CO. This review presents a brief summarization of the emerging delivery strategies of CO based on nanomaterials for therapeutic application. First, an introduction covering the therapeutic roles of CO and several frequently used CORMs is provided. Then, recent advancements in the synthesis and application of versatile CO releasing nanomaterials are elaborated. Finally, the current challenges and future directions of these important delivery strategies are proposed.
Collapse
Affiliation(s)
- Haili Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Jiangfeng Du
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangjun Nie
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
16
|
Farooq MA, Aquib M, Farooq A, Haleem Khan D, Joelle Maviah MB, Sied Filli M, Kesse S, Boakye-Yiadom KO, Mavlyanova R, Parveen A, Wang B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1674-1692. [PMID: 31066300 DOI: 10.1080/21691401.2019.1604535] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin cis-(diammine)dichloridoplatinum(II) (CDDP) is the first platinum-based complex approved by the food and drug administration (FDA) of the United States (US). Cisplatin is the first line chemotherapeutic agent used alone or combined with radiations or other anti-cancer agents for a broad range of cancers such as lung, head and neck. Aroplatin™, Lipoplatin™ and SPI-077 are PEGylated liposome-based nano-formulations that are still under clinical trials. They have many limitations, for example, poor aqueous solubility, drug resistance and toxicities, which can be overcome by encapsulating the cisplatin in Nemours nanocarriers. The extensive literature from different electronic databases covers the different nano-delivery systems that are developed for cisplatin. This review critically emphasizes on the recent advancement, development, innovations and updated literature reported for different carrier systems for CDDP.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Md Aquib
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Anum Farooq
- b Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Daulat Haleem Khan
- c Department of Pharmacy , Lahore College of Pharmaceutical Sciences , Lahore , Pakistan
| | - Mily Bazezy Joelle Maviah
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Mensura Sied Filli
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Samuel Kesse
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Kofi Oti Boakye-Yiadom
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Rukhshona Mavlyanova
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Amna Parveen
- d College of Pharmacy , Gachon University, Hambakmoero , Yeonsu-gu, Incheon , Korea.,e Department of Pharmacogonsy , Faculty of Pharmaceutical Science, Government College University , Faisalabad , Pakistan
| | - Bo Wang
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
17
|
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1643. [PMID: 31137526 PMCID: PMC6566563 DOI: 10.3390/ma12101643] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The CO-releasing materials (CORMats) are used as substances for producing CO molecules for therapeutic purposes. Carbon monoxide (CO) imparts toxic effects to biological organisms at higher concentration. If this characteristic is utilized in a controlled manner, it can act as a cell-signaling agent for important pathological and pharmacokinetic functions; hence offering many new applications and treatments. Recently, research on therapeutic applications using the CO treatment has gained much attention due to its nontoxic nature, and its injection into the human body using several conjugate systems. Mainly, there are two types of CO insertion techniques into the human body, i.e., direct and indirect CO insertion. Indirect CO insertion offers an advantage of avoiding toxicity as compared to direct CO insertion. For the indirect CO inhalation method, developers are facing certain problems, such as its inability to achieve the specific cellular targets and how to control the dosage of CO. To address these issues, researchers have adopted alternative strategies regarded as CO-releasing molecules (CORMs). CO is covalently attached with metal carbonyl complexes (MCCs), which generate various CORMs such as CORM-1, CORM-2, CORM-3, ALF492, CORM-A1 and ALF186. When these molecules are inserted into the human body, CO is released from these compounds at a controlled rate under certain conditions or/and triggers. Such reactions are helpful in achieving cellular level targets with a controlled release of the CO amount. However on the other hand, CORMs also produce a metal residue (termed as i-CORMs) upon degradation that can initiate harmful toxic activity inside the body. To improve the performance of the CO precursor with the restricted development of i-CORMs, several new CORMats have been developed such as micellization, peptide, vitamins, MOFs, polymerization, nanoparticles, protein, metallodendrimer, nanosheet and nanodiamond, etc. In this review article, we shall describe modern ways of CO administration; focusing primarily on exclusive features of CORM's tissue accumulations and their toxicities. This report also elaborates on the kinetic profile of the CO gas. The comprehension of developmental phases of CORMats shall be useful for exploring the ideal CO therapeutic drugs in the future of medical sciences.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ruixia Liu
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China.
| | - Wensheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
18
|
Fazaeli Y, Hosseini MA, Afrasyabi M, Ashtari P. 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Silica nanoparticles (SNPs) are known as intrinsic radiolabeling agents and offer a fast and reliable approach to deliver theranostic agents into targeted organs. Radiolabeled amorphous silica nanoparticles are of great interest to radiation oncology communities. In order to improve the performance of these nano materials in cancer diagnosis and treatment, their inherent properties, such as surface area and the ability to accumulate in cancer cells, should be enhanced. Pyridine functionalized mesoporous silica MCM-41 is known as a potential anticancer-drug delivery system with high suface area. In thiswork, in order to produce an image-guided drug delivery system for diagnostic applications, [68Ga] radionuclide was grafted on pyridine functionalized MCM-41. The nanoparticles were assessed with atomic force microscopy (AFM), paper chromatography, X-ray diffraction, FTIR spectroscopy, CHN and TGA/DTA analyses. The pharmacokinetic profile evaluation of the radiolabeled nano silica, [68Ga]-Py-Butyl@MCM-41, was done in Fibrosarcoma tumor-bearing mice. This labeled nanocomposite with appropriate blood circulation in body, high structural stability, high tumor/blood ID/g% ratio and fast excretion from the body can be proposed as an efficient nano engineered composite for upcoming tumor targeting/imaging nanotechnology-based applications.
Collapse
Affiliation(s)
- Yousef Fazaeli
- Radiation Application Research School, Nuclear science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 Karaj , Iran
| | - Mohammad Amin Hosseini
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammadreza Afrasyabi
- Radiation Application Research School, Nuclear science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 Karaj , Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences , Shiraz , Iran
| | - Parviz Ashtari
- Radiation Application Research School, Nuclear science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 Karaj , Iran
| |
Collapse
|
19
|
Carmona FJ, Maldonado CR, Ikemura S, Romão CC, Huang Z, Xu H, Zou X, Kitagawa S, Furukawa S, Barea E. Coordination Modulation Method To Prepare New Metal-Organic Framework-Based CO-Releasing Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31158-31167. [PMID: 30152684 DOI: 10.1021/acsami.8b11758] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aluminum-based metal-organic frameworks (MOFs), [Al(OH)(SDC)] n, (H2SDC: 4,4'-stilbenedicarboxylic acid), also known as CYCU-3, were prepared by means of the coordination modulation method to produce materials with different crystal size and morphology. In particular, we screened several reagent concentrations (20-60 mM) and modulator/ligand ratios (0-50), leading to 20 CYCU x_ y materials ( x: reagent concentration, y = modulator/ligand ratio) with different particle size and morphology. Noteworthy, the use of high modulator/ligand ratio gives rise to a new phase of CYCU-3 (CYCU-3' x_50 series), which was structurally analyzed. Afterward, to test the potential of these materials as CO-prodrug carriers, we selected three of them to adsorb the photo- and bioactive CO-releasing molecule (CORM) ALF794 [Mo(CNCMe2CO2H)3(CO)3] (CNCMe2CO2H = 2-isocyano-2-methyl propionic acid): (i) CYCU-3 20_0, particles in the nanometric range; (ii) CYCU-3 50_5, bar-type particles with heterogeneous size, and (iii) CYCU-3' 50_50, a new phase analogous to pristine CYCU-3. The corresponding hybrid materials were fully characterized, revealing that CYCU-3 20_0 with the smallest particle size was not stable under the drug loading conditions. Regarding the other two materials, similar ALF794 loadings were found (0.20 and 0.19 CORM/MOF molar ratios for ALF794@CYCU-3 50_5 and ALF794@CYCU-3' 50_50, respectively). In addition, these hybrid systems behave as CO-releasing materials (CORMAs), retaining the photoactive properties of the pristine CORM in both phosphate saline solution and solid state. Finally, the metal leaching studies in solution confirmed that ALF794@CYCU-3' 50_50 shows a good retention capacity toward the potentially toxic molybdenum fragments (75% of retention after 72 h), which is the lowest value reported for a MOF-based CORMA to date.
Collapse
Affiliation(s)
- Francisco J Carmona
- Department of Inorganic Chemistry , University of Granada , Av. Fuentenueva S/N , 18071 Granada , Spain
| | - Carmen R Maldonado
- Department of Inorganic Chemistry , University of Granada , Av. Fuentenueva S/N , 18071 Granada , Spain
| | - Shuya Ikemura
- Institute for Integrated Cell-Material Sciences (WPI-iCEMs) , Kyoto University , Yoshida , Sakyo-ku, Kyoto 606-8501 , Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Av. da República , EAN, 2780-157 Oeiras , Portugal
- Proterris (Portugal), Instituto de Biologia Experimental e Tecnológica , Av. da República , EAN, 2780-157 Oeiras , Portugal
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, and Inorganic and Structural Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, and Inorganic and Structural Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, and Inorganic and Structural Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCEMs) , Kyoto University , Yoshida , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCEMs) , Kyoto University , Yoshida , Sakyo-ku, Kyoto 606-8501 , Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Elisa Barea
- Department of Inorganic Chemistry , University of Granada , Av. Fuentenueva S/N , 18071 Granada , Spain
| |
Collapse
|
20
|
Jiménez-Amezcua I, Carmona FJ, Romero-García I, Quirós M, Cenis JL, Lozano-Pérez AA, Maldonado CR, Barea E. Silk fibroin nanoparticles as biocompatible nanocarriers of a novel light-responsive CO-prodrug. Dalton Trans 2018; 47:10434-10438. [PMID: 29999505 DOI: 10.1039/c8dt02125b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
[Mn(CO)3(2,2'-bipyridine)(PPh3)](ClO4) (1), a novel photoactive CO-releasing molecule, has been prepared and fully characterized. Besides, silk fibroin nanoparticles (SFNs) have been used, for the first time, as vehicles of 1 leading to the hybrid material 1@SFNs that shows an enhanced CO-delivery.
Collapse
Affiliation(s)
- Ignacio Jiménez-Amezcua
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Francisco J Carmona
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Ignacio Romero-García
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Miguel Quirós
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - José L Cenis
- Departamento de Biotecnología, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca (Murcia), 30150, Spain
| | - A Abel Lozano-Pérez
- Departamento de Biotecnología, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca (Murcia), 30150, Spain
| | - Carmen R Maldonado
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Elisa Barea
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| |
Collapse
|
21
|
Sakla R, Jose DA. Vesicles Functionalized with a CO-Releasing Molecule for Light-Induced CO Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14214-14220. [PMID: 29600840 DOI: 10.1021/acsami.8b03310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a new type of methodology to deliver carbon monoxide (CO) for biological applications has been introduced. An amphiphilic manganese carbonyl complex (1.Mn) incorporated into the 1,2-distearoyl-sn-glycero-3-phosphocholine lipid vesicles has been reported first time for the photoinduced release of CO. The liposomes (Ves-1.Mn) gradually released CO under light at 365 nm over a period of 50 min with a half-time of 26.5 min. The CO-releasing ability of vesicles appended with 1.Mn complexes has been confirmed by myoglobin assay and infrared study. The vesicles appended with 1.Mn have the advantages of biocompatibility, water solubility, and steady and slow CO release. This approach could be a rational approach for applying various water-insoluble photoinduced CO donors in aqueous media by using vesicles as a nanocarrier for CO release.
Collapse
Affiliation(s)
- Rahul Sakla
- Department of Chemistry , National Institute of Technology (NIT) Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - D Amilan Jose
- Department of Chemistry , National Institute of Technology (NIT) Kurukshetra , Kurukshetra 136119 , Haryana , India
| |
Collapse
|