1
|
Lu Y, Li W, Fan Y, Cheng L, Tang Y, Sun H. Recent Advances in Bonding Regulation of Metalloporphyrin-Modified Carbon-Based Catalysts for Accelerating Energy Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406180. [PMID: 39385633 DOI: 10.1002/smll.202406180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Metalloporphyrins modified carbon-based materials, owing to the excellent acid-base resistance, optimal electron transfer rates, and superior catalytic performance, have shown great potential in energy electrocatalysis. Recently, numerous efforts have concentrated on employing carbon-based substrates as platforms to anchor metalloporphyrins, thereby fabricating a diverse array of composite catalysts tailored for assorted electrocatalytic processes. However, the interplay through bonding regulation of metalloporphyrins with carbon materials and the resultant enhancement in catalyst performance remains inadequately elucidated. Gaining an in-depth comprehension of the synergistic interactions between metalloporphyrins and carbon-based materials within the realm of electrocatalysis is imperative for advancing the development of innovative composite catalysts. Herein, the review systematically classifies the binding modes (i.e., covalent grafting and non-covalent interactions) between carbon-based materials and metalloporphyrins, followed by a discussion on the structural characteristics and applications of metalloporphyrins supported on various carbon-based substrates, categorized according to their binding modes. Additionally, this review underscores the principal challenges and emerging opportunities for carbon-supported metalloporphyrin composite catalysts, offering both inspiration and methodological insights for researchers involved in the design and application of these advanced catalytic systems.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yiyi Fan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Yang J, Zhang C, He R, Yao J, Wang J. Insight into Impacts of π-π Assembly on Phthalocyanine Based Heterogeneous Molecular Electrocatalysis. J Phys Chem Lett 2024; 15:4705-4710. [PMID: 38656800 DOI: 10.1021/acs.jpclett.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrochemical CO2 reduction (CO2R) to feedstocks competes with the hydrogen evolution reaction (HER). Cobalt phthalocyanine (CoPc) immobilized onto carbon driven by π-π interaction represents a classical type of heterogeneous molecular catalyst for CO2R. However, the impacts of π conjugation on the electrocatalysis have not been clarified. Herein, the electrochemical properties of CoPc were investigated by comparison of its analogue to 2,3-naphthalocyanine cobalt (NapCo) having extended π conjugation. It is found that CoPc is redox-active on carbon to provide low oxidized Co sites for improving the CO2R activity and selectivity, while NapCo on carbon turned out to be redox-inert leading to lower performance. In addition, the redox-mediated mechanism for CO2R on CoPc tends to operate with increasing electrolyte alkalinity, which further enhances the reaction selectivity. We speculated that moderate π conjugation allows the redox-mediated mechanism on CoPc, which is critical to promote CO2R performance while depressing the competing HER.
Collapse
Affiliation(s)
- Jiahui Yang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chenjie Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Runze He
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jianlin Yao
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jiong Wang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Chen YJ, Liu M, Chen J, Huang X, Li QH, Ye XL, Wang GE, Xu G. Dangling bond formation on COF nanosheets for enhancing sensing performances. Chem Sci 2023; 14:4824-4831. [PMID: 37181787 PMCID: PMC10171198 DOI: 10.1039/d3sc00562c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Dangling bond formation for COF materials in a rational manner is an enormous challenge, especially through post-treatment which is a facile strategy while has not been reported yet. In this work, a "chemical scissor" strategy is proposed for the first time to rationally design dangling bonds in COF materials. It is found that Zn2+ coordination in post-metallization of TDCOF can act as an "inducer" which elongates the target bond and facilitates its fracture in hydrolyzation reactions to create dangling bonds. The number of dangling bonds is well-modulated by controlling the post-metallization time. Zn-TDCOF-12 shows one of the highest sensitivities to NO2 in all reported chemiresistive gas sensing materials operating under visible light and room temperature. This work opens an avenue to rationally design a dangling bond in COF materials, which could increase the active sites and improve the mass transport in COFs to remarkably promote their various chemical applications.
Collapse
Affiliation(s)
- Yong-Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Ming Liu
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Xin Huang
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Xiao-Liang Ye
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
4
|
Arya RK, Thapliyal D, Pandit A, Gora S, Banerjee C, Verros GD, Sen P. Polymer Coated Functional Catalysts for Industrial Applications. Polymers (Basel) 2023; 15:polym15092009. [PMID: 37177157 PMCID: PMC10180757 DOI: 10.3390/polym15092009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Surface engineering of conventional catalysts using polymeric coating has been extensively explored for producing hybrid catalytic material with enhanced activity, high mechanical and thermal stability, enhanced productivity, and selectivity of the desired product. The present review discusses in detail the state-of-the-art knowledge on surface modification of catalysts, namely photocatalysts, electrocatalysts, catalysts for photoelectrochemical reactions, and catalysts for other types of reactions, such as hydrodesulfurization, carbon dioxide cycloaddition, and noble metal-catalyzed oxidation/reduction reactions. The various techniques employed for the polymer coating of catalysts are discussed and the role of polymers in enhancing the catalytic activity is critically analyzed. The review further discusses the applications of biodegradable and biocompatible natural polysaccharide-based polymers, namely, chitosan and polydopamine as prospective coating material.
Collapse
Affiliation(s)
- Raj Kumar Arya
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India
| | - Devyani Thapliyal
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India
| | - Anwesha Pandit
- Department of Chemical Engineering, Heritage Institute of Technology, Kolkata 700107, India
| | - Suchita Gora
- Department of Chemical Engineering, Heritage Institute of Technology, Kolkata 700107, India
| | - Chitrita Banerjee
- Department of Chemical Engineering, Heritage Institute of Technology, Kolkata 700107, India
| | - George D Verros
- Laboratory of Polymer and Colour Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Plagiari, Epanomi, P.O. Box 454, 57500 Thessaloniki, Greece
| | - Pramita Sen
- Department of Chemical Engineering, Heritage Institute of Technology, Kolkata 700107, India
| |
Collapse
|
5
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
6
|
O'Neill JS, Kearney L, Brandon MP, Pryce MT. Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Thangamuthu M, Ruan Q, Ohemeng PO, Luo B, Jing D, Godin R, Tang J. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chem Rev 2022; 122:11778-11829. [PMID: 35699661 PMCID: PMC9284560 DOI: 10.1021/acs.chemrev.1c00971] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Qiushi Ruan
- School
of Materials Science and Engineering, Southeast
University, Nanjing 211189, China
| | - Peter Osei Ohemeng
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Bing Luo
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Dengwei Jing
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
8
|
Nikoloudakis E, López-Duarte I, Charalambidis G, Ladomenou K, Ince M, Coutsolelos AG. Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H 2 production and CO 2 reduction. Chem Soc Rev 2022; 51:6965-7045. [PMID: 35686606 DOI: 10.1039/d2cs00183g] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The increasing energy demand and environmental issues caused by the over-exploitation of fossil fuels render the need for renewable, clean, and environmentally benign energy sources unquestionably urgent. The zero-emission energy carrier, H2 is an ideal alternative to carbon-based fuels especially when it is generated photocatalytically from water. Additionally, the photocatalytic conversion of CO2 into chemical fuels can reduce the CO2 emissions and have a positive environmental and economic impact. Inspired by natural photosynthesis, plenty of artificial photocatalytic schemes based on porphyrinoids have been investigated. This review covers the recent advances in photocatalytic H2 production and CO2 reduction systems containing porphyrin or phthalocyanine derivatives. The unique properties of porphyrinoids enable their utilization both as chromophores and as catalysts. The homogeneous photocatalytic systems are initially described, presenting the various approaches for the improvement of photosensitizing activity and the enhancement of catalytic performance at the molecular level. On the other hand, for the development of the heterogeneous systems, numerous methods were employed such as self-assembled supramolecular porphyrinoid nanostructures, construction of organic frameworks, combination with 2D materials and adsorption onto semiconductors. The dye sensitization on semiconductors opened the way for molecular-based dye-sensitized photoelectrochemical cells (DSPECs) devices based on porphyrins and phthalocyanines. The research in photocatalytic systems as discussed herein remains challenging since there are still many limitations making them unfeasible to be used at a large scale application before finding a large-scale application.
Collapse
Affiliation(s)
- Emmanouil Nikoloudakis
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, Heraklion, Crete, Greece.
| | - Ismael López-Duarte
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Georgios Charalambidis
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, Heraklion, Crete, Greece.
| | - Kalliopi Ladomenou
- International Hellenic University, Department of Chemistry, Laboratory of Inorganic Chemistry, Agios Loucas, 65404, Kavala Campus, Greece.
| | - Mine Ince
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin, Turkey.
| | - Athanassios G Coutsolelos
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, Heraklion, Crete, Greece. .,Institute of Electronic Structure and Laser (IESL) Foundation for Research and Technology - Hellas (FORTH), Vassilika Vouton, Heraklion, Crete, Greece
| |
Collapse
|
9
|
|
10
|
Liu M, Chen YJ, Huang X, Dong LZ, Lu M, Guo C, Yuan D, Chen Y, Xu G, Li SL, Lan YQ. Porphyrin-Based COF 2D Materials: Variable Modification of Sensing Performances by Post-Metallization. Angew Chem Int Ed Engl 2022; 61:e202115308. [PMID: 35018705 DOI: 10.1002/anie.202115308] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/14/2022]
Abstract
2D nanomaterials with flexibly modifiable surfaces are highly sought after for various applications, especially in room-temperature chemiresistive gas sensing. Here, we have prepared a series of COF 2D nanomaterials (porphyrin-based COF nanosheets (NS)) that enabled highly sensitive and specific-sensing of NO2 at room temperature. Different from the traditional 2D sensing materials, H2 -TPCOF was designed with a largely reduced interlayer interaction and predesigned porphyrin rings as modifiable sites on its surfaces for post-metallization. After post-metallization, the metallized M-TPCOF (M=Co and Cu) showed remarkably improved sensing performances. Among them, Co-TPCOF exhibited highly specific sensing toward NO2 with one of the highest sensitivities of all reported 2D materials and COF materials, with an ultra-low limit-of-detection of 6.8 ppb and fast response/recovery. This work might shed light on designing and preparing a new type of surface-highly-modifiable 2D material for various chemistry applications.
Collapse
Affiliation(s)
- Ming Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yong-Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), P. R. China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100039, P. R. China
| | - Xin Huang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Long-Zhang Dong
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Meng Lu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Can Guo
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), P. R. China
| | - Yifa Chen
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China.,Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,Changzhou Institute of Innovation &, Development Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), P. R. China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100039, P. R. China
| | - Shun-Li Li
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China.,Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China.,Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Nishiori D, Wadsworth BL, Reyes Cruz EA, Nguyen NP, Hensleigh LK, Karcher T, Moore GF. Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors. PHOTOSYNTHESIS RESEARCH 2022; 151:1-10. [PMID: 34021849 DOI: 10.1007/s11120-021-00834-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current-voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces.
Collapse
Affiliation(s)
- Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Timothy Karcher
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85287-8301, USA
| | - Gary F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ, 85287-1604, USA.
| |
Collapse
|
12
|
Lan YQ, Liu M, Chen YJ, Huang X, Dong LZ, Lu M, Guo C, Yuan D, Chen Y, Xu G, Li SL. Porphyrin‐Based COF 2D Materials: Variable Modification of Sensing Performances by Post‐Metallization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ya-Qian Lan
- South China Normal University school of chemistry Nanjing wenyuan road No. 1 51006 Guangzhou CHINA
| | - Ming Liu
- Nanjing Normal University School of Chemistry and Materials Science CHINA
| | - Yong-Jun Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Xin Huang
- Nanjing Normal University School of Chemistry and Materials Science CHINA
| | - Long-Zhang Dong
- Nanjing Normal University School of Chemistry and Materials Science CHINA
| | - Meng Lu
- Nanjing Normal University School of Chemistry and Materials Science CHINA
| | - Can Guo
- Nanjing Normal University School of Chemistry and Materials science CHINA
| | - Daqiang Yuan
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Yifa Chen
- Nanjing Normal University School of Chemistry and Materials Science CHINA
| | - Gang Xu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Stuctural Chemistry CHINA
| | - Shun-Li Li
- Nanjing Normal University School of Chemistry and Materials Science CHINA
| |
Collapse
|
13
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Khusnutdinova D, Karcher T, Landrot G, Lassalle‐Kaiser B, Moore GF. Six‐Electron Chemistry of a Binuclear Fe(III) Fused Porphyrin. ChemElectroChem 2021. [DOI: 10.1002/celc.202100550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Edgar A. Reyes Cruz
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| | - Daiki Nishiori
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| | - Brian L. Wadsworth
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| | - Diana Khusnutdinova
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| | - Timothy Karcher
- Eyring Materials Center Arizona State University Tempe AZ 85287–8301 USA
| | - Gautier Landrot
- Synchrotron SOLEIL L'Orme des Merisiers Saint-Aubin BP 48 91192 Gif-sur-Yvette Cedex France
| | | | - Gary F. Moore
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| |
Collapse
|
14
|
Rybicka-Jasińska K, Derr JB, Vullev VI. What defines biomimetic and bioinspired science and engineering? PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Biomimicry, biomimesis and bioinspiration define distinctly different approaches for deepening the understanding of how living systems work and employing this knowledge to meet pressing demands in engineering. Biomimicry involves shear imitation of biological structures that most often do not reproduce the functionality that they have while in the living organisms. Biomimesis aims at reproduction of biological structure-function relationships and advances our knowledge of how different components of complex living systems work. Bioinspiration employs this knowledge in abiotic manners that are optimal for targeted applications. This article introduces and reviews these concepts in a global historic perspective. Representative examples from charge-transfer science and solar-energy engineering illustrate the evolution from biomimetic to bioinspired approaches and show their importance. Bioinspired molecular electrets, aiming at exploration of dipole effects on charge transfer, demonstrate the pintail impacts of biological inspiration that reach beyond its high utilitarian values. The abiotic character of bioinspiration opens doors for the emergence of unprecedented properties and phenomena, beyond what nature can offer.
Collapse
Affiliation(s)
| | - James B. Derr
- Department of Biochemistry , University of California , Riverside , CA , 92521 , USA
| | - Valentine I. Vullev
- Department of Biochemistry , University of California , Riverside , CA , 92521 , USA
- Department of Bioengineering , University of California , Riverside , CA , 92521 , USA
- Department of Chemistry , University of California , Riverside , CA , 92521 , USA
- Materials Science and Engineering Program , University of California , Riverside , CA , 92521 , USA
| |
Collapse
|
15
|
Smith PT, Benke BP, An L, Kim Y, Kim K, Chang CJ. A Supramolecular Porous Organic Cage Platform Promotes Electrochemical Hydrogen Evolution from Water Catalyzed by Cobalt Porphyrins. ChemElectroChem 2021. [DOI: 10.1002/celc.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Lun An
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
16
|
Mukhopadhyay A, Paulino V, Liu K, Donley CL, Bernard B, Shomar A, Liu C, Olivier JH. Leveraging the Assembly of a Rylene Dye to Tune the Semiconducting Properties of Functionalized n-Type, Hybrid Si Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4665-4675. [PMID: 33443396 DOI: 10.1021/acsami.0c18222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The functionalization of silicon electrodes with π-conjugated chromophores opens new avenues to engineer hybrid semiconducting interfaces relevant to information storage and processing. Notably, molecularly dissolved π-conjugated units, such as ferrocene derivatives, are traditionally exploited as building blocks to construct well-defined interfaces that establish electrochemically addressable platforms with which to investigate electron transfer properties and charge storage capabilities. In contrast, planar π-conjugated building blocks such as naphthalene diimide (NDI) cores enable the formation of solvated aggregates equipped with emergent electronic structures not manifested by the parent, molecularly dissolved building blocks. To interrogate the extent to which the aggregated states of π-conjugated chromophores can be leveraged to regulate the n-type semiconducting properties of functionalized electrodes, we have devised an amphiphilic rylene core (NDI) that demonstrates a non-negligible degree of aggregation in an aqueous medium. Characterization of the electronic structures of the NDI-derived aggregates using a combination of electrochemistry, reductive titration experiments, and spectroelectrochemistry unveils the existence of π-anion stacks, the formation of which is contingent on the initial concentration of NDI building blocks. We show that grafting n-doped NDI aggregates on silicon electrode precursors equipped with a high density of anchoring groups by means of "click" reaction enables the formation of the hybrid Si-NDI electrode (Si-NDI-15@1) that facilitates electron injection by more than 400 mV when compared to Si interfaces constructed from molecularly dissolved NDI units. Furthermore, the engineering of a Si precursor surface characterized by a low density of anchoring groups provides additional proof to highlight that the potentiometric properties recorded for Si-NDI-15@1 originate from NDI units, evidencing a non-negligible degree of aggregation. The present work delivers tools to manipulate the potentiometric properties of functionalized electrodes by leveraging on the electronic structures of aggregated, π-conjugated precursors.
Collapse
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Carrie L Donley
- Chapel Hill Analytical and Nanofabrication Laboratory, Department of Applied Physical Sciences, University of North Carolina, 243 Chapman Hall, Chapel Hill, North Carolina 27599, United States
| | - Brianna Bernard
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Alfred Shomar
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Chuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
17
|
Nguyen NP, Wadsworth BL, Nishiori D, Reyes Cruz EA, Moore GF. Understanding and Controlling the Performance-Limiting Steps of Catalyst-Modified Semiconductors. J Phys Chem Lett 2021; 12:199-203. [PMID: 33325709 DOI: 10.1021/acs.jpclett.0c02386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding and controlling factors that restrict the rates of fuel-forming reactions are essential to designing effective catalyst-modified semiconductors for applications in solar-to-fuel technologies. Herein, we describe GaAs semiconductors featuring a polymeric coating that contains cobaloxime-type catalysts for photoelectrochemically powering hydrogen production. The activities of these electrodes (limiting current densities >20 mA cm-2 under 1-sun illumination) enable identification of fundamental performance-limiting bottlenecks encountered at relatively high rates of fuel formation. Experiments conducted under varying bias potential, pH, illumination intensity, and scan rate reveal two distinct mechanisms of photoelectrochemical hydrogen production. At relatively low polarization and pH, the limiting photoactivity is independent of illumination conditions and is attributed to a mechanism involving reduction of substrate protons. At relatively high polarization or pH, the limiting photoactivity shows a linear response to increasing photon flux and is attributed to a mechanism involving reduction of substrate water. This work illustrates the complex interplay between transport of photons, electrons, and chemical substrates in photoelectrosynthetic reactions and highlights diagnostic tools for better understanding these processes.
Collapse
Affiliation(s)
- Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
18
|
Beiler AM, McCarthy BD, Johnson BA, Ott S. Enhancing photovoltages at p-type semiconductors through a redox-active metal-organic framework surface coating. Nat Commun 2020; 11:5819. [PMID: 33199706 PMCID: PMC7669860 DOI: 10.1038/s41467-020-19483-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2020] [Indexed: 01/16/2023] Open
Abstract
Surface modification of semiconductors can improve photoelectrochemical performance by promoting efficient interfacial charge transfer. We show that metal-organic frameworks (MOFs) are viable surface coatings for enhancing cathodic photovoltages. Under 1-sun illumination, no photovoltage is observed for p-type Si(111) functionalized with a naphthalene diimide derivative until the monolayer is expanded in three dimensions in a MOF. The surface-grown MOF thin film at Si promotes reduction of the molecular linkers at formal potentials >300 mV positive of their thermodynamic potentials. The photocurrent is governed by charge diffusion through the film, and the MOF film is sufficiently conductive to power reductive transformations. When grown on GaP(100), the reductions of the MOF linkers are shifted anodically by >700 mV compared to those of the same MOF on conductive substrates. This photovoltage, among the highest reported for GaP in photoelectrochemical applications, illustrates the power of MOF films to enhance photocathodic operation. Photoelectrochemical performance is often hindered by sluggish charge transfer at the semiconductor interface. Here, the authors illustrate that a thin film coating made of a conductive metal-organic framework can improve the photovoltage of the underpinning semiconductors.
Collapse
Affiliation(s)
- Anna M Beiler
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| |
Collapse
|
19
|
Beyene BB, Hung CH. Recent progress on metalloporphyrin-based hydrogen evolution catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213234] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Gurrentz JM, Rose MJ. Non-Catalytic Benefits of Ni(II) Binding to an Si(111)-PNP Construct for Photoelectrochemical Hydrogen Evolution Reaction: Metal Ion Induced Flat Band Potential Modulation. J Am Chem Soc 2020; 142:5657-5667. [PMID: 32163273 DOI: 10.1021/jacs.9b12824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report here the remarkable and non-catalytic beneficial effects of a Ni(II) ion binding to a Si|PNP type surface as a result of significant thermodynamic band bending induced by ligand attachment and Ni(II) binding. We unambiguously deconvolute the thermodynamic flat band potentials (VFB) from the kinetic onset potentials (Von) by synthesizing a specialized bis-PNP macrochelate that enables one-step Ni(II) binding to a p-Si(111) substrate. XPS analysis and rigorous control experiments confirm covalent attachment of the designed ligand and its resulting Ni(II) complex. Illuminated J-V measurements under catalytic conditions show that the Si|BisPNP-Ni substrate exhibits the most positive onset potential for the hydrogen evolution reaction (HER) (-0.55 V vs Fc/Fc+) compared to other substrates herein. Thermodynamic flat band potential measurements in the dark reveal that Si|BisPNP-Ni also exhibits the most positive VFB value (-0.02 V vs Fc/Fc+) by a wide margin. Electrochemical impedance spectroscopy data generated under illuminated, catalytic conditions demonstrate a surprising lack of correlation evident between Von and equivalent circuit element parameters commonly associated with HER. Overall, the resulting paradigm comprises a system wherein the extent of band bending induced by metal ion binding is the primary driver of photoelectrochemical (PEC)-HER benefits, while the kinetic (catalytic) effects of the PNP-Ni(II) are minimal. This suggests that dipole and band-edge engineering must be a primary design consideration (not secondary to catalyst) in semiconductor|catalyst hybrids for PEC-HER.
Collapse
Affiliation(s)
- Joseph M Gurrentz
- The University of Texas at Austin, Austin, Texas 78757, United States
| | - Michael J Rose
- The University of Texas at Austin, Austin, Texas 78757, United States
| |
Collapse
|
21
|
Reuillard B, Blanco M, Calvillo L, Coutard N, Ghedjatti A, Chenevier P, Agnoli S, Otyepka M, Granozzi G, Artero V. Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5805-5811. [PMID: 31912737 PMCID: PMC7009173 DOI: 10.1021/acsami.9b18922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Efficient heterogeneous catalysis of hydrogen oxidation reaction (HOR) by platinum group metal (PGM)-free catalysts in proton-exchange membrane (PEM) fuel cells represents a significant challenge toward the development of a sustainable hydrogen economy. Here, we show that graphene acid (GA) can be used as an electrode scaffold for the noncovalent immobilization of a bioinspired nickel bis-diphosphine HOR catalyst. The highly functionalized structure of this material and optimization of the electrode-catalyst assembly sets new benchmark electrocatalytic performances for heterogeneous molecular HOR, with current densities above 30 mA cm-2 at 0.4 V versus reversible hydrogen electrode in acidic aqueous conditions and at room temperature. This study also shows the great potential of GA for catalyst loading improvement and porosity management within nanostructured electrodes toward achieving high current densities with a noble-metal free molecular catalyst.
Collapse
Affiliation(s)
- Bertrand Reuillard
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Matías Blanco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Calvillo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Nathan Coutard
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Ahmed Ghedjatti
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Pascale Chenevier
- Univ. Grenoble Alpes, CEA,
CNRS, IRIG, SYMMES, F-38000 Grenoble, France
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Michal Otyepka
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Vincent Artero
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| |
Collapse
|
22
|
Wadsworth BL, Khusnutdinova D, Urbine JM, Reyes AS, Moore GF. Expanding the Redox Range of Surface-Immobilized Metallocomplexes Using Molecular Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3903-3911. [PMID: 31679340 DOI: 10.1021/acsami.9b15286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rationally designed material interfaces offer opportunities to control matter and energy across multiple length scales, yet remain challenging to synthetically prepare. Inspired by nature, where amino acid residues and soft-material coordination environments regulate the midpoint potentials of metals in proteins, thin-film polymeric coatings have been developed to assemble molecular components, including catalysts, onto solid-state (semi)conducting surfaces. In this report, we describe the immobilization of metalloporphyrins onto transparent conductive oxide supports using either direct grafting to the oxide surface or coordination to an initially applied thin-film polypyridyl coating. The composite materials enable direct measurements of electrochemical and optical properties associated with the surface-immobilized components. Despite the similarity of the core cobalt porphyrin units used in assembling these hybrid architectures, the redox potentials assigned to the CoIII/II relays span a 350 mV range across the distinct constructs. This range in redox potential is extended to 960 mV when including comparisons to constructs utilizing polymer-immobilized cobaloxime catalysts in place of cobalt porphyrins, where reduction of the cobaloximes requires significantly more-negative bias potentials. This work illustrates the use of soft-material interfaces for assembling molecular-modified electrodes where the nanoscale connectivity of the surface coatings determines the electrochemical properties of the macroscopic assemblies.
Collapse
Affiliation(s)
- Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Jennifer M Urbine
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Ahlea S Reyes
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Gary F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| |
Collapse
|
23
|
Edwardes Moore E, Andrei V, Zacarias S, Pereira IA, Reisner E. Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting. ACS ENERGY LETTERS 2020; 5:232-237. [PMID: 32010793 PMCID: PMC6986817 DOI: 10.1021/acsenergylett.9b02437] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
Lead halide perovskite solar cells are notoriously moisture-sensitive, but recent encapsulation strategies have demonstrated their potential application as photoelectrodes in aqueous solution. However, perovskite photoelectrodes rely on precious metal co-catalysts, and their combination with biological materials remains elusive in integrated devices. Here, we interface [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough, a highly active enzyme for H2 generation, with a triple cation mixed halide perovskite. The perovskite-hydrogenase photoelectrode produces a photocurrent of -5 mA cm-2 at 0 V vs RHE during AM1.5G irradiation, is stable for 12 h and the hydrogenase exhibits a turnover number of 1.9 × 106. The positive onset potential of +0.8 V vs RHE allows its combination with a BiVO4 water oxidation photoanode to give a self-sustaining, bias-free photoelectrochemical tandem system for overall water splitting (solar-to-hydrogen efficiency of 1.1%). This work demonstrates the compatibility of immersed perovskite elements with biological catalysts to produce hybrid photoelectrodes with benchmark performance, which establishes their utility in semiartificial photosynthesis.
Collapse
Affiliation(s)
- Esther Edwardes Moore
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Virgil Andrei
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Sónia Zacarias
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal
| | - Inês A.
C. Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- E-mail:
| |
Collapse
|
24
|
Mukhopadhyay A, Bernard B, Liu K, Paulino V, Liu C, Donley C, Olivier JH. Molecular Strategies to Modulate the Electrochemical Properties of P-Type Si(111) Surfaces Covalently Functionalized with Ferrocene and Naphthalene Diimide. J Phys Chem B 2019; 123:11026-11041. [DOI: 10.1021/acs.jpcb.9b09812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Brianna Bernard
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Chuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Carrie Donley
- Chapel Hill Analytical and Nanofabrication Laboratory, Department of Applied Physical Sciences, University of North Carolina, 243 Chapman Hall, Chapel Hill, North Carolina 27599, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
25
|
Wadsworth BL, Beiler AM, Khusnutdinova D, Reyes Cruz EA, Moore GF. Interplay between Light Flux, Quantum Efficiency, and Turnover Frequency in Molecular-Modified Photoelectrosynthetic Assemblies. J Am Chem Soc 2019; 141:15932-15941. [PMID: 31461276 DOI: 10.1021/jacs.9b07295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report on the interplay between light absorption, charge transfer, and catalytic activity at molecular-catalyst-modified semiconductor liquid junctions. Factors limiting the overall photoelectrosynthetic transformations are presented in terms of distinct regions of experimental polarization curves, where each region is related to the fraction of surface-immobilized catalysts present in their activated form under varying intensities of simulated solar illumination. The kinetics associated with these regions are described using steady-state or pre-equilibrium approximations yielding rate laws similar in form to those applied in studies involving classic enzymatic reactions and Michaelis-Menten-type kinetic analysis. However, in the case of photoelectrosynthetic constructs, both photons and electrons serve as reagents for producing activated catalysts. This work forges a link between kinetic models describing biological assemblies and emerging molecular-based technologies for solar energy conversion, providing a conceptual framework for extracting kinetic benchmarking parameters currently not possible to establish.
Collapse
Affiliation(s)
- Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Gary F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| |
Collapse
|
26
|
Calvary CA, Hietsoi O, Strain JM, Mashuta MS, Spurgeon JM, Buchanan RM, Grapperhaus CA. Synthesis, Characterization, and HER Activity of Pendant Diamine Derivatives of NiATSM. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Caleb A. Calvary
- Department of Chemistry University of Louisville 2320 South Brook Street 40292 Louisville KY USA
| | - Oleksandr Hietsoi
- Department of Chemistry University of Louisville 2320 South Brook Street 40292 Louisville KY USA
| | - Jacob M. Strain
- Department of Chemistry University of Louisville 2320 South Brook Street 40292 Louisville KY USA
| | - Mark S. Mashuta
- Department of Chemistry University of Louisville 2320 South Brook Street 40292 Louisville KY USA
| | - Joshua M. Spurgeon
- Conn Center for Renewable Energy Research University of Louisville 40292 Louisville KY USA
| | - Robert M. Buchanan
- Department of Chemistry University of Louisville 2320 South Brook Street 40292 Louisville KY USA
| | - Craig A. Grapperhaus
- Department of Chemistry University of Louisville 2320 South Brook Street 40292 Louisville KY USA
| |
Collapse
|
27
|
Kumar Y, Patil B, Khaligh A, Hadi SE, Uyar T, Tuncel D. Novel Supramolecular Photocatalyst Based on Conjugation of Cucurbit[7]uril to Non‐Metallated Porphyrin for Electrophotocatalytic Hydrogen Generation from Water Splitting. ChemCatChem 2019. [DOI: 10.1002/cctc.201900144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yogesh Kumar
- Department of ChemistryBilkent University Ankara 06800 Turkey
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and NanotechnologyBilkent University Ankara 06800 Turkey
| | - Bhushan Patil
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and NanotechnologyBilkent University Ankara 06800 Turkey
| | - Aisan Khaligh
- Department of ChemistryBilkent University Ankara 06800 Turkey
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and NanotechnologyBilkent University Ankara 06800 Turkey
| | - Seyed E. Hadi
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and NanotechnologyBilkent University Ankara 06800 Turkey
| | - Tamer Uyar
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and NanotechnologyBilkent University Ankara 06800 Turkey
| | - Dönüs Tuncel
- Department of ChemistryBilkent University Ankara 06800 Turkey
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and NanotechnologyBilkent University Ankara 06800 Turkey
| |
Collapse
|
28
|
Morikawa T, Sato S, Sekizawa K, Arai T, Suzuki TM. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting. CHEMSUSCHEM 2019; 12:1807-1824. [PMID: 30963707 DOI: 10.1002/cssc.201900441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Photocatalytic or photoelectrochemical hydrogen production by water splitting is one of the key reactions for the development of an energy supply that enables a clean energy system for a future sustainable society. Utilization of solar photon energy for the uphill water splitting reaction is a promising technology, and therefore many systems using semiconductor photocatalysts and semiconductor photoelectrodes for the reaction producing hydrogen and dioxygen in a 2:1 stoichiometric ratio have been reported. In these systems, molecular catalysts are also considered to be feasible; recently, systems based on molecular catalysts conjugated with semiconductor photosensitizers have been used for photoinduced hydrogen generation by proton reduction. Additionally, there are reports that the so-called Z-scheme (two-step photoexcitation) mechanism realizes the solar-driven uphill reaction by overall water splitting. Although the number of these reports is still small compared to those of all-inorganic systems, the advantages of molecular cocatalysts and its immobilization on a semiconductor are attractive. This Minireview provides a brief overview of approaches and recent research progress toward molecular catalysts immobilized on semiconductor photocatalysts and photoelectrodes for solar-driven hydrogen production with the stoichiometric uphill reaction of hydrogen and oxygen generation.
Collapse
Affiliation(s)
- Takeshi Morikawa
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Shunsuke Sato
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Keita Sekizawa
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Takeo Arai
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Tomiko M Suzuki
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| |
Collapse
|
29
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
30
|
Giussi JM, Cortez ML, Marmisollé WA, Azzaroni O. Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chem Soc Rev 2019; 48:814-849. [PMID: 30543263 DOI: 10.1039/c8cs00705e] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery and development of novel approaches, materials and manufacturing processes in the field of energy are compelling increasing recognition as a major challenge for contemporary societies. The performance and lifetime of energy devices are critically dependent on nanoscale interfacial phenomena. From the viewpoint of materials design, the improvement of current technologies inevitably relies on gaining control over the complex interface between dissimilar materials. In this sense, interfacial nanoarchitectonics with polymer brushes has seen growing interest due to its potential to overcome many of the limitations of energy storage and conversion devices. Polymer brushes offer a broad variety of resources to manipulate interfacial properties and gain molecular control over the synergistic combination of materials. Many recent examples show that the rational integration of polymer brushes in hybrid nanoarchitectures greatly improves the performance of energy devices in terms of power density, lifetime and stability. Seen in this light, polymer brushes provide a new perspective from which to consider the development of hybrid materials and devices with improved functionalities. The aim of this review is therefore to focus on what polymer brush-based solutions can offer and to show how the practical use of surface-grafted polymer layers can improve the performance and efficiency of fuel cells, lithium-ion batteries, organic radical batteries, supercapacitors, photoelectrochemical cells and photovoltaic devices.
Collapse
Affiliation(s)
- Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Diagonal 113 y 64 (1900), La Plata, Argentina.
| | | | | | | |
Collapse
|
31
|
Ikeyama S, Hizume S, Takahashi T, Ogasawara S, Amao Y, Tamiaki H. Visible-light driven hydrogen production using chlorophyll derivatives conjugated with a viologen moiety in the presence of platinum nanoparticles. Photochem Photobiol Sci 2019; 18:2673-2681. [DOI: 10.1039/c9pp00176j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Effective visible-light driven hydrogen production was accomplished using viologen bonded pyropheophorbide-a in the presence of platinum nanoparticles via the reduction of external methyl viologen.
Collapse
Affiliation(s)
- Shusaku Ikeyama
- The Advanced Research Institute for Natural Science and Technology
- Osaka City University
- Osaka 558-8585
- Japan
| | - Shota Hizume
- Graduate School of Life Sciences
- Ritsumeikan University
- Shiga 525-8577
- Japan
| | - Tatsuya Takahashi
- Graduate School of Life Sciences
- Ritsumeikan University
- Shiga 525-8577
- Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences
- Ritsumeikan University
- Shiga 525-8577
- Japan
| | - Yutaka Amao
- The Advanced Research Institute for Natural Science and Technology
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre for Artificial Photosynthesis (ReCAP)
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences
- Ritsumeikan University
- Shiga 525-8577
- Japan
| |
Collapse
|
32
|
Rosser TE, Hisatomi T, Sun S, Antón‐García D, Minegishi T, Reisner E, Domen K. La 5 Ti 2 Cu 0.9 Ag 0.1 S 5 O 7 Modified with a Molecular Ni Catalyst for Photoelectrochemical H 2 Generation. Chemistry 2018; 24:18393-18397. [PMID: 29752767 PMCID: PMC6348378 DOI: 10.1002/chem.201801169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 11/11/2022]
Abstract
The stable and efficient integration of molecular catalysts into p-type semiconductor materials is a contemporary challenge in photoelectrochemical fuel synthesis. Here, we report the combination of a phosphonated molecular Ni catalyst with a TiO2 -coated La5 Ti2 Cu0.9 Ag0.1 S5 O7 photocathode for visible light driven H2 production. This hybrid assembly provides a positive onset potential, large photocurrents, and high Faradaic yield for more than three hours. A decisive feature of the hybrid electrode is the TiO2 interlayer, which stabilizes the oxysulfide semiconductor and allows for robust attachment of the phosphonated molecular catalyst. This demonstration of an oxysulfide-molecular catalyst photocathode provides a novel platform for integrating molecular catalysts into photocathodes and the large photovoltage of the presented system makes it ideal for pairing with photoanodes.
Collapse
Affiliation(s)
- Timothy E. Rosser
- Department of Chemical System EngineeringFaculty of EngineeringUniversity of Tokyo7-3-1 HongoBunkyo-kuTokyo113-8656Japan
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Takashi Hisatomi
- Department of Chemical System EngineeringFaculty of EngineeringUniversity of Tokyo7-3-1 HongoBunkyo-kuTokyo113-8656Japan
- Current affiliation: Center for Energy & Environmental ScienceShinshu University4-17-1 Wakasato, Nagano-shiNagano380-8553Japan
| | - Song Sun
- Department of Chemical System EngineeringFaculty of EngineeringUniversity of Tokyo7-3-1 HongoBunkyo-kuTokyo113-8656Japan
- National Synchrotron Radiation LaboratoryCollaborative Innovation Center of Chemistry for Energy MaterialsUniversity of Science & Technology of ChinaHefeiAnhui230029P. R. China
| | - Daniel Antón‐García
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tsutomu Minegishi
- Department of Chemical System EngineeringFaculty of EngineeringUniversity of Tokyo7-3-1 HongoBunkyo-kuTokyo113-8656Japan
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Kazunari Domen
- Department of Chemical System EngineeringFaculty of EngineeringUniversity of Tokyo7-3-1 HongoBunkyo-kuTokyo113-8656Japan
- Center for Energy & Environmental ScienceShinshu University4-17-1 Wakasato, Nagano-shiNagano380-8553Japan
| |
Collapse
|
33
|
Johnson EM, Haiges R, Marinescu SC. Covalent-Organic Frameworks Composed of Rhenium Bipyridine and Metal Porphyrins: Designing Heterobimetallic Frameworks with Two Distinct Metal Sites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37919-37927. [PMID: 30360094 DOI: 10.1021/acsami.8b07795] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The incorporation of homogeneous catalysts for CO2 reduction into extended frameworks has been a successful strategy for increasing catalyst lifetime and activity, but the effects of the linkers on catalysis are underexplored. In this work, a novel rhenium bipyridine complex was synthesized for the purpose of designing a covalent-organic framework (COF) with both metalloporphyrin and metal bipyridine moieties. Investigation of the rhenium complex as a homogeneous catalyst shows a faradaic efficiency of 81(8)% for the electrocatalytic conversion of CO2 to CO upon the addition of methanol as the proton source. Treatment of the rhenium complex with tetra(4-aminophenyl)porphyrin under Schiff base conditions produces the desired COF, as indicated by powder X-ray diffraction (PXRD) studies. Metalation of the porphyrins was accomplished through postsynthetic modification with CoCl2 and FeCl3 metal precursors. The retention of the PXRD peaks and appearance of new Co and Fe peaks in the corresponding X-ray photoelectron spectroscopy spectra suggest the successful incorporation of a secondary metal site into the framework. Cyclic voltammetry measurements display increases in current densities when the atmosphere is changed from N2 to CO2. Controlled potential electrolyses show that the cobalt-postmetalated COF has the highest activity toward CO2 reduction, reaching a faradaic efficiency of 18(2)%.
Collapse
Affiliation(s)
- Eric M Johnson
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Ralf Haiges
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Smaranda C Marinescu
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
34
|
Khusnutdinova D, Wadsworth BL, Flores M, Beiler AM, Reyes Cruz EA, Zenkov Y, Moore GF. Electrocatalytic Properties of Binuclear Cu(II) Fused Porphyrins for Hydrogen Evolution. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01776] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L. Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Marco Flores
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M. Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Edgar A. Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Yegor Zenkov
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F. Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
35
|
Tesakova MV, Koifman OI, Parfenyuk VI. Electropolymerization of poly-5,10,15,20-tetrakis( p-aminophenyl)porphyrin in different deposition modes and solvents. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The influence of solvent, supporting electrolyte and electrolysis modes on poly-5,10,15,20-tetrakis([Formula: see text]-aminophenyl)porphyrin film growth were studied by the quartz crystal microbalance method. Electropolymerization was carried out in potentiostatic and potentiodynamic modes from dichloromethane and ethanol solutions. Tetrabutylammonium perchlorate (TBAP) and tetrabutylammonium hexafluorophosphate (TBAHFP) were used as supporting electrolytes. Surface micrographs of films electrodeposited over a different number of cycles of potential variation were obtained. The specific surface area, the pore size, and the thickness of the obtained polyporphyrin films were determined. The number of electrons participating in 5,10,15,20-tetrakis([Formula: see text]-aminophenyl)porphyrin electropolymerization was determined by the quartz crystal microbalance method. Based on the electronic absorption spectroscopy results, it was established that porphyrin macroheterocycles were preserved in an oxidized state in polyporphyrin.
Collapse
Affiliation(s)
- Mariya V. Tesakova
- G.A. Krestov Institute of Solution Chemistry of RAS, Akademicheskaya St., 1, Ivanovo, 153045, Russia
| | - Oskar I. Koifman
- G.A. Krestov Institute of Solution Chemistry of RAS, Akademicheskaya St., 1, Ivanovo, 153045, Russia
- Ivanovo State University of Chemistry and Technology, Sheremetevsky Avenue 7, Ivanovo, 153000, Russia
| | - Vladimir I. Parfenyuk
- G.A. Krestov Institute of Solution Chemistry of RAS, Akademicheskaya St., 1, Ivanovo, 153045, Russia
- Ivanovo State University of Chemistry and Technology, Sheremetevsky Avenue 7, Ivanovo, 153000, Russia
- Kostroma State University, Dzerzhinsky St., 17, Kostroma, 156005, Russia
| |
Collapse
|
36
|
Khusnutdinova D, Beiler AM, Wadsworth BL, Nanyangwe SK, Moore GF. Vibrational structure analysis of cobalt fluoro-porphyrin surface coatings on gallium phosphide. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Grazing angle attenuated total reflectance Fourier transform infrared (GATR–FTIR) spectroscopy is used to characterize chemically modified gallium phosphide (GaP) surfaces containing grafted cobalt(II) porphyrins with 3-fluorophenyl substituents installed at the meso-positions. In these hybrid constructs, porphyrin surface attachment is achieved using either a two-step method involving coordination of cobalt fluoro-porphyrin metal centers to nitrogen sites on an initially applied thin-film polypyridyl surface coating, or via a direct modification strategy using a cobalt fluoro-porphyrin precursor bearing a covalently bonded 4-vinylphenyl surface attachment group at a [Formula: see text]-position. Both surface-attachment chemistries leverage the UV-induced immobilization of alkenes but result in distinct structural connectivities of the grafted porphyrin units and their associated vibrational spectra. In particular, the in-plane deformation vibrational frequency of metalloporphyrin components in samples prepared via coordination to the polymeric interface is characterized by an eight wavenumber shift to higher frequencies compared to that measured on metalloporphyrin-modified surfaces prepared using the one-step attachment method. The more rigid ring structure in the polymeric architecture is consistent with coordination of porphyrin cobalt centers to pyridyl-nitrogen sites on the surface graft. These results demonstrate the use of GATR–FTIR spectroscopy as a sensitive tool for characterizing porphyrin-modified surfaces with absorption signals that are close to the detection limits of many common spectroscopic techniques.
Collapse
Affiliation(s)
- Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| | - Anna M. Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| | - Brian L. Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| | - Sylvia K. Nanyangwe
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| | - Gary F. Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| |
Collapse
|
37
|
Hennessey S, Farràs P. Production of solar chemicals: gaining selectivity with hybrid molecule/semiconductor assemblies. Chem Commun (Camb) 2018; 54:6662-6680. [PMID: 29808196 DOI: 10.1039/c8cc02487a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research on the production of solar fuels and chemicals has rocketed over the past decade, with a wide variety of systems proposed to harvest solar energy and drive chemical reactions. In this Feature Article we have focused on hybrid molecule/semiconductor assemblies in both powder and supported materials, summarising recent systems and highlighting the enormous possibilities offered by such assemblies to carry out highly demanding chemical reactions with industrial impact. Of relevance is the higher selectivity obtained in visible light-driven organic transformations when using molecular catalysts compared to photocatalytic materials.
Collapse
Affiliation(s)
- Seán Hennessey
- School of Chemistry, Energy Research Centre, Ryan Institute, National University of Ireland, Galway (NUI Galway), University Road, H91 CF50 Galway, Ireland.
| | | |
Collapse
|
38
|
Whittemore TJ, Millet A, Sayre HJ, Xue C, Dolinar BS, White EG, Dunbar KR, Turro C. Tunable Rh 2(II,II) Light Absorbers as Excited-State Electron Donors and Acceptors Accessible with Red/Near-Infrared Irradiation. J Am Chem Soc 2018; 140:5161-5170. [PMID: 29617115 DOI: 10.1021/jacs.8b00599] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of dirhodium(II,II) paddlewheeel complexes of the type cis-[Rh2(μ-DTolF)2(μ-L)2][BF4]2, where DTolF = N,N'-di( p-tolyl)formamidinate and L = 1,8-naphthyridine (np), 2-(pyridin-2-yl)-1,8-naphthyridine (pynp), 2-(quinolin-2-yl)-1,8-naphthyridine (qnnp), and 2-(1,8-naphthyridin-2-yl)quinoxaline (qxnp), were synthesized and characterized. These molecules feature new tridentate ligands that concomitantly bridge the dirhodium core and cap the axial positions. The complexes absorb light strongly throughout the ultraviolet/visible range and into the near-infrared region and exhibit relatively long-lived triplet excited-state lifetimes. Both the singlet and triplet excited states exhibit metal/ligand-to-ligand charge transfer (ML-LCT) in nature as determined by transient absorption spectroscopy and spectroelectrochemistry measurements. When irradiated with low-energy light, these black dyes are capable of undergoing reversible bimolecular electron transfer both to the electron acceptor methyl viologen and from the electron donor p-phenylenediamine. Photoinduced charge transfer in the latter was inaccessible with previous Rh2(II,II) complexes. These results underscore the fact that the excited state of this class of molecules can be readily tuned for electron-transfer reactions upon simple synthetic modification and highlight their potential as excellent candidates for p- and n-type semiconductor applications and for improved harvesting of low-energy light to drive useful photochemical reactions.
Collapse
Affiliation(s)
- Tyler J Whittemore
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Agustin Millet
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Hannah J Sayre
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Congcong Xue
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Brian S Dolinar
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Eryn G White
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Kim R Dunbar
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
39
|
Đokić M, Soo HS. Artificial photosynthesis by light absorption, charge separation, and multielectron catalysis. Chem Commun (Camb) 2018; 54:6554-6572. [DOI: 10.1039/c8cc02156b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight recent novel approaches in the field of artificial photosynthesis. We emphasize the potential of a highly modular plug-and-play concept that we hope will persuade the community to explore a more inclusive variety of multielectron redox catalysis to complement the proton reduction and water oxidation half-reactions in traditional solar water splitting systems.
Collapse
Affiliation(s)
- Miloš Đokić
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|