1
|
Yu X, Xu X, Gao L, Luo R, Liu YF, Gu YH, Yuan S. Imine bond-directed assembly of polyoxometalate-based metal-organic frameworks. Dalton Trans 2024. [PMID: 39431951 DOI: 10.1039/d4dt02609h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Polyoxometalate-based metal-organic frameworks (POMOFs) are highly effective heterogeneous catalysts that combine the catalytic activity of polyoxometalates (POMs) with the high surface area, tunable porosity, and structural diversity of MOFs. Nevertheless, there is still a lack of a general method to integrate POMs with various transition metal-based building units into POMOFs under mild conditions. In this work, we employed imine bonds to link amino-functionalized Anderson-type POMs with aldehyde-terminated divalent metal clusters, resulting in a series of isostructural POMOFs, M(II)-POMOFs (M = Zn, Co, Mg, or Mn). Furthermore, we used post-synthetic metal exchange and oxidation to transform Zn-POMOF into Fe(III)-POMOF with strong Lewis acidic Fe3+ sites. Notably, both the synthesis and post-synthetic modifications were performed under mild conditions (room temperature, acid-free), preventing the decomposition of the POMs. Compared to M(II)-POMOFs or MOFs without POMs, the combination of Lewis acidic Fe3+ and POMs enhanced its catalytic activity for CO2 cycloaddition with epoxides, enabling efficient synthesis of cyclic carbonates. This versatile synthetic method could broaden the scope of POMOFs, extending their applications in catalysis and beyond.
Collapse
Affiliation(s)
- Xiang Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Rengan Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Fan Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yu-Hao Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Pan Y, Tian H, Zheng Z. Modulating the Catalytic Properties of Polyoxovanadates with Transition-Metal-Complex Units for Selective Oxidation of Sulfides. Inorg Chem 2024; 63:5487-5496. [PMID: 38462723 DOI: 10.1021/acs.inorgchem.3c04362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Selective oxidation of sulfides to sulfoxides is of great significance in the synthesis of pharmaceuticals, desulfurization of fuels, and detoxification of sulfur mustard chemical warfare agents. Designing selective catalysts to achieve the efficient transformation of sulfides to sulfoxides is thus highly desired. Herein, we report three transition metal-complex-functionalized polyoxovanadates, [Zn2(BPB)2][V4O12]·0.5BPB·H2O (1), [Ni(BPB)(H2O)][V2O6]·2H2O (2), and [Co(HBPB)2][V4O12] (3) (BPB = 1,4-bis(pyrid-4-yl)benzene)), and explore their applications for selective oxidation of sulfides using H2O2 as an oxidant. All three compounds were catalytically effective for the oxidation of methyl phenyl sulfide to methyl phenyl sulfoxide, with 1 being best-performing with complete conversion and a selectivity of 96.7%. In the selective oxidation of a series of aromatic and aliphatic sulfides to corresponding sulfoxides, 1 also showed satisfactory performance; in particular, the chemical warfare agent stimulant 2-chloroethyl ethyl sulfide can be completely and selectively oxidized to the nontoxic 2-chloroethyl ethyl sulfoxide within 20 min at room temperature. Catalyst 1 can be recycled and reused at least six times with uncompromised performance. The perfect performance of 1 is attributed to the synergistic effect of coordinatively unsaturated V and Zn sites in bimetallic oxide, as revealed by comparative structural and catalytic studies.
Collapse
Affiliation(s)
- Yingying Pan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongrui Tian
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiping Zheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Yang S, Fu Y, Tian Y, Zhao L, Wang X, Li B. Design and oxidative desulfurization of Ag/Ti heterometallic clusters based on Hard-Soft Acid-Base principle. Dalton Trans 2023; 52:17792-17796. [PMID: 37969004 DOI: 10.1039/d3dt02387g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hard-Soft Acid-Base (HSAB) principle plays an important guiding role in the design and synthesis of novel clusters and coordination compounds, in which "soft acids prefer to react with soft bases, while hard acids have an affinity for hard bases". Based on HSAB principle, four Ag/Ti heterometallic clusters, including Ag2Ti10, Ag2Ti11 with "Ti-encapsulated Ag" configurations, and two "Ag-encapsulated Ti" structures Ag2Ti2 and Ag2Ti12, were synthesized under solvothermal conditions. In addition, Ag2Ti12 exhibited an efficient and stable catalytic activity for sulfide oxidation. This work provides not only a new structural model for the modulation of the catalytic oxidative desulfurization properties of Ag/Ti heterometallic clusters but also a new insight of the utilization of phosphine-containing ligands to regulate the structure of Ag/Ti heterometallic clusters.
Collapse
Affiliation(s)
- Shuyi Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Yiran Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Liang Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Changchun Baoli Science and Technology Co., Changchun, 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Baoli Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Changchun Baoli Science and Technology Co., Changchun, 130024, China
| |
Collapse
|
4
|
Li J, Wei C, Han Y, Hu C. Recent advances in oxidative catalytic applications of polyoxovanadate-based inorganic-organic hybrids. Dalton Trans 2023; 52:12582-12596. [PMID: 37646095 DOI: 10.1039/d3dt02249h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polyoxovanadates (POVs) have received widespread attention in catalytic applications due to their various structures and remarkable redox properties. By introducing a second transition metal, POV-based inorganic-organic hybrid (POVH) catalysts show increasing stability and more catalytic active sites compared with pure POVs. In this perspective article, POVH materials as oxidative catalysts have been classified into two main categories according to the interactions between transition metal-complex units and POV clusters: (i) hybrids with metal-organic units act as isolated cations and (ii) hybrids with an organic ligand coordinate to the second transition metal, which is further linked to a POV cluster via oxygen bridges directly or indirectly to give zero-, one-, two- or three-dimensional supramolecular structures. The oxidative conversion of organic compounds, including thiophene derivatives, thioethers, alkanes, alcohols, and alkenes, and oxidative detoxification of a sulfur mustard simulant or degradation of lignin, along with the oxidative photo/electrocatalytic transformation of organic compounds catalyzed by POVH materials, are discussed in detail. Furthermore, the challenges and prospects toward the development of POVH catalysts are explored briefly from our perspectives.
Collapse
Affiliation(s)
- Jikun Li
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Chuanping Wei
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| |
Collapse
|
5
|
Routh K, Pradeep CP. Multifunctional Aryl Sulfonium Decavanadates: Tuning the Photochromic and Heterogeneous Oxidative Desulfurization Catalytic Properties Using Salicylaldehyde-type Functional Moieties on Counterions. Inorg Chem 2023; 62:13775-13792. [PMID: 37575023 DOI: 10.1021/acs.inorgchem.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Multifunctional materials based on polyoxovanadates (POVs) have rarely been reported. Herein, we used aryl sulfonium counterions (ASCIs) bearing a salicylaldehyde-type functionality to tune the properties of decavanadate ([V10O28]6-)-based hybrids for their application in photochromism and heterogeneous oxidative desulfurization (ODS) catalysis. The counterions FHPDS ((3-formyl-4-hydroxyphenyl)dimethylsulfonium), DFHPDS ((3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium), and EFPDS ((4-ethoxy-3-formylphenyl)dimethylsulfonium) were clubbed with the decavanadate cluster to generate the hybrids (FHPDS)4[H2V10O28](H2O)4 (HY1), (DFHPDS)4[H2V10O28](H2O)3 (HY2), and (EFPDS)4[H2V10O28](H2O)6 (HY3). The photochromic properties of these hybrids were tested under 365 nm irradiation, which showed a color change from yellow to green. Different hybrids exhibited different photocoloration half-life (t1/2) values in the range of 0.77-28.38 min, suggesting the dependence of the photocoloration properties upon functional groups on the counterions. The hybrid HY2, having a 2,6-diformyl phenol moiety on the ASCI, exhibited an impressive t1/2 of 0.77 min. UP to 70% reversibility of photocoloration was achieved for the best photochromic hybrid HY2 in 48 h at 70 °C under an oxygen atmosphere. Theoretical and experimental data suggested that some of these aryl sulfonium POVs follow a different e--h+ stabilization mechanism than traditional sulfonium POM hybrids. Further, the salicylaldehyde-type ASCIs control the solubility of the decavanadate hybrids, which enables their application as heterogeneous catalysts for the selective oxidation of various sulfides. The nature of the substituents on the ASCIs also affected their catalytic activities; the counterion that facilitates the reversible V4+/V5+ switching enhances the catalytic ODS efficiency of the hybrids. Using HY2 as the catalyst, up to 99% conversion and 96% selectivity toward sulfones were achieved in dibenzothiophene (DBT) oxidation. The present study suggests a new promising approach for controlling POVs' photoresponsive and catalytic properties by using ASCIs bearing salicylaldehyde-type functional moieties.
Collapse
Affiliation(s)
- Kousik Routh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| |
Collapse
|
6
|
Organic macrocycle-polyoxometalate hybrids. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Hu Y, Huang D, Yan J, Miao Z, Yu L, Cai N, Fang Q, Zhang Q, Yan Y. Polyoxovanadate-Based Cyclomatrix Polyphosphazene Microspheres as Efficient Heterogeneous Catalysts for the Selective Oxidation and Desulfurization of Sulfides. Molecules 2022; 27:molecules27238560. [PMID: 36500654 PMCID: PMC9738953 DOI: 10.3390/molecules27238560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The [V6O13]2- cluster is successfully immobilized to the polymeric framework of cyclomatrix polyphosphazene via the facile precipitation polymerization between the phenol group symmetrically modified [V6O13]2- and hexachlorocyclotriphosphazene. The structure of the as-prepared polyoxometalate-containing polyphosphazene (HCCP-V) was characterized by FT-IR, XPS, TGA, BET, as well as SEM and zeta potential. The presence of a rigid polyoxometalate cluster not only supports the porous structure of the polymeric framework but also provides an improved catalytic oxidation property. By using H2O2 as an oxidant, the as-prepared HCCP-V exhibited improved catalytic oxidation activity toward MPS, DBT, and CEES, which can achieve as high as 99% conversion. More importantly, the immobilization of POMs in the network of cyclomatrix polyphosphazene also provides better recyclability and stability of the heterogeneous catalyst.
Collapse
Affiliation(s)
- Yinghui Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Diping Huang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jing Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| | - Zhiliang Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Lize Yu
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ningjing Cai
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Quanhai Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yi Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| |
Collapse
|
9
|
Izadkhah V, Ghorbani-Vaghei R, Alavinia S, Asadabadi S, Emami N, Jamehbozorgi S. Fabrication of Zirconium Metal-Organic-framework/Poly Triazine-phosphanimine Nanocomposite for Dye Adsorption from Contaminated Water: Isotherms and Kinetics Models. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Chen Y, An H, Chang S, Li Y, Xu T, Zhu Q, Luo H, Huang Y, Wei Y. Two pseudo-polymorphic porous POM-pillared MOFs for sulfide-sulfoxide transformation: Efficient synergistic effects of POM precursors, metal sites and microstructures. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Wu P, Liu P, Chen L, Ma W, Zhu L, Liu M, He J, Lu L, Chao Y, Zhu W. Synergistic Effect of Au–Cu Alloy Nanoparticles on TiO 2 for Efficient Aerobic Catalytic Oxidative Desulfurization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Peiwen Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Penghui Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linlin Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenhui Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingyang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linjie Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanhong Chao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Functional modification, self-assembly and application of calix[4]resorcinarenes. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Four novel Z-shaped hexanuclear vanadium oxide clusters as efficient heterogeneous catalysts for cycloaddition of CO2 and oxidative desulfurization reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101715] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Liu C, Sun ZC, Pei WY, Yang J, Xu HL, Zhang JP, Ma JF. A Porous Metal-Organic Framework as an Electrochemical Sensing Platform for Highly Selective Adsorption and Detection of Bisphenols. Inorg Chem 2021; 60:12049-12058. [PMID: 34313129 DOI: 10.1021/acs.inorgchem.1c01253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The design of artificial receptors with a specific recognition function and enhanced selectivity is highly desirable in the electrochemical sensing field, which can be used for detection of environmental pollutants. In this facet, metal-organic frameworks (MOFs) featured adjustable porosities and specific host-guest recognition properties. Especially, the large hydrophobic cavity formed in the porous MOFs may become a potential artificial receptor. We herein designed a new porous MOF [Zn2(L)(IPA)(H2O)]·2DMF·2MeOH·3H2O (Zn-L-IPA) by using a functionalized sulfonylcalix[4]arene (L1) and isophthalic acid (H2IPA) (DMF = N,N'-dimethylformamide). The specific pore size and pore shape of Zn-L-IPA made it efficiently selective for absorption of bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS). Therefore, a rapid, highly selective, and ultrasensitive electrochemical sensing platform Zn-L-IPA@GP/GCE was fabricated by using Zn-L-IPA as a host to recognize and absorb bisphenol guests (GP = graphite powder, GCE = glassy carbon electrode). Most strikingly, the extremely low detection limits were up to 3.46 and 0.17 nM for BPA and BPF, respectively, using the Zn-L-IPA@GP/GCE electrode. Furthermore, the "recognition and adsorption" mechanism was uncovered by density functional theory with the B3LYP function. This work offered a prospective strategy for selective absorption and detection of harmful bisphenols with the MOF-based porous material.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ze-Chen Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jin Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
16
|
Li J, Wei C, Han Y, Mei Y, Cheng X, Huang X, Hu C. Triazole-directed fabrication of polyoxovanadate-based metal-organic frameworks as efficient multifunctional heterogeneous catalysts for the Knoevenagel condensation and oxidation of alcohols. Dalton Trans 2021; 50:10082-10091. [PMID: 34213516 DOI: 10.1039/d1dt01413g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By introducing 4-amino-1,2,4-triazole (4-NH2-trz), three new polyoxovanadate-based metal-organic frameworks (PMOFs) [Ni3(4-NH2-trz)6][V6O18]·3H2O (1), [Co3(4-NH2-trz)6][V6O18]·3H2O (2) and [Cu3OH(4-NH2-trz)3H2O][VO3]5·H2O (3) have been synthesized and thoroughly characterized by single-crystal X-ray diffraction (SXRD), powder X-ray diffraction (PXRD), infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and elemental analysis (EA). Among them, PMOFs 1 and 2 had similar structures containing [V6O18]6- clusters; however, PMOF 3 was isolated as a structure containing a [VO3]55- cluster when the amount of the 4-NH2-trz ligand was reduced to half with the other synthesis conditions being the same as those of PMOFs 1 and 2 except for the transition-metal chlorides. Furthermore, the negative charges of polyoxovanadate [V6O18]6- and [VO3]55- anions were balanced by trinuclear complex cations [Ni3(4-NH2-trz)6]6- for 1, [Co3(4-NH2-trz)6]6- for 2 and [Cu3OH(4-NH2-trz)3H2O]5- for 3, respectively. PMOFs 1-3 were further used as heterogeneous catalysts in the Knoevenagel condensation under solvent-free conditions and showed high catalytic activity. PMOF 1 showed moderate catalytic activities in the oxidation of various aromatic alcohols using H2O2 as an oxidant. Moreover, PMOF 1 could be reused at least three times without losing its activity.
Collapse
Affiliation(s)
- Jikun Li
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Chuanping Wei
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Yu Mei
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Xueli Cheng
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, P. R. China.
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing, 100081 P. R. China.
| |
Collapse
|
17
|
Liu JH, Yu MY, Pei WY, Wang T, Ma JF. Self-Assembly of Polyoxometalate-Resorcin[4]arene-Based Inorganic-Organic Complexes: Metal Ion Effects on the Electrochemical Performance of Lithium Ion Batteries. Chemistry 2021; 27:10123-10133. [PMID: 34015862 DOI: 10.1002/chem.202100780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/10/2023]
Abstract
With their adjustable structures and diverse functions, polyoxometalate (POM)-resorcin[4]arene-based inorganic-organic complexes are a kind of potential multifunctional material. They have potential applications for lithium ion batteries (LIBs). However, the relationship between different coordinated metal ions and electrochemical performance has rarely been investigated. Here, three functionalized POM-resorcin[4]arene-based inorganic-organic materials, [Co2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅2 EtOH⋅4.5 H2 O (1), [Ni2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅4 EtOH⋅13 H2 O (2), and [Zn2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅2 EtOH⋅2 H2 O (3), have been synthesized. Furthermore, to enhance the conductivities of these compounds, 1-3 were doped with reduced graphene oxide (RGO) to give composites 1@RGO-3@RGO, respectively. As anode materials for LIBs, 1@RGO-3@RGO can deliver very high discharge capacities (1445.9, 1285.0 and 1095.3 mAh g-1 , respectively) in the initial run, and show discharge capacities of 898, 665 and 651 mAh g-1 , respectively, at a current density of 0.1 A g-1 over 100 runs. More importantly, the discharge capacities of 319, 283 and 329 mAh g-1 were maintained for 1@RGO-3@RGO even after 400 cycles at large current density (1 A g-1 ).
Collapse
Affiliation(s)
- Jin-Hua Liu
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ming-Yue Yu
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wen-Yuan Pei
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
18
|
Xue Y, Zhao G, Yang R, Chu F, Chen J, Wang L, Huang X. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. NANOSCALE 2021; 13:3911-3936. [PMID: 33595021 DOI: 10.1039/d0nr09064f] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ultrathin two-dimensional metal-organic frameworks (2D MOFs) have recently attracted extensive interest in various catalytic fields (e.g., electrocatalysis, photocatalysis, thermocatalysis) due to their ultrathin thickness, large surface area, abundant accessible unsaturated active sites and tunable surface properties. Besides tuning the intrinsic properties of pristine 2D MOFs by changing the metal nodes and organic ligands, one of the hot research trends is to develop 2D MOF hybrids and 2D MOF-derived materials with higher stability and conductivity in order to further increase their activity and durability. Here, the synthesis of 2D MOF nanosheets is briefly summarized and discussed. More attention is focused on summaries and discussions about the applications of these 2D MOFs, their hybrids and their derived materials as electrocatalysts, photocatalysts and thermocatalysts. The superior properties and catalytic performance of these 2D MOF-based catalysts compared to their 3D MOF counterparts in electrocatalysis, photocatalysis and thermocatalysis are highlighted. The enhanced activities of 2D MOFs, their hybrids and derivatives come from abundant accessible active sites, a high density of unsaturated metal nodes, ultrathin thickness, and tunable microenvironments around the MOFs. Views regarding current and future challenges in the field, and new advances in science and technology to meet these challenges, are also presented. Finally, conclusions and outlooks in this field are provided.
Collapse
Affiliation(s)
- Yanpeng Xue
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Gongchi Zhao
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Ruiying Yang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Feng Chu
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Juan Chen
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Lei Wang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Xiubing Huang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
19
|
Yang L, Zhang H, Tao P, Lu X, Li X, Wang C, Wang B, Yue F, Zhou D, Xia Q. Microwave-Assisted Air Epoxidation of Mixed Biolefins over a Spherical Bimetal ZnCo-MOF Catalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8474-8487. [PMID: 33570391 DOI: 10.1021/acsami.0c22317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we report the synthesis of spherical bimetal ZnCo-MOF materials by a hydrothermal rotacrystallization method and their catalytic activity on the air epoxidation of mixed biolefins enhanced by microwaves. The structural and chemical properties of the ZnCo-MOF materials were fully characterized by XRD, IR, SEM, TG, XPS, and NH3-TPD. The morphology of the material exhibited a three-dimensional spherical structure. From an NH3-TPD test of the ZnCo-MOF catalyst, it could be concluded that the Zn0.1Co1-MOF-H-150 rpm material had the highest acidic content and the strongest acidity among the catalysts synthesized by different methods, which gave the best performance in the epoxidation of mixed biolefins. The air epoxidation reaction was carried out under atmospheric pressure and microwave conditions, in the absence of any initiator or coreducing agent. Moreover, the Zn0.1Co1-MOF catalyst could be recycled six times without reducing the catalytic activity significantly, which showed the stability of spherical catalyst material under microwaves.
Collapse
Affiliation(s)
- Lu Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Haifu Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Peipei Tao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Xinhuan Lu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Xixi Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Chenlong Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Beibei Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Fanfan Yue
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Dan Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Qinghua Xia
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
20
|
Liu J, Deng Z, Xu Q, Wan R, Ma P, Niu J, Wang J. Synthesis, structure and catalytic study of a new sandwiched-type vanadoselenite. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Zhang S, Ou F, Ning S, Cheng P. Polyoxometalate-based metal–organic frameworks for heterogeneous catalysis. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01407a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
POM-based MOFs simultaneously possessing the virtues of POMs and MOFs exhibit excellent heterogeneous catalytic properties.
Collapse
Affiliation(s)
- Shaowei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Fuxia Ou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Shiggang Ning
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Peng Cheng
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
22
|
Dang TY, Li RH, Tian HR, Wang Q, Lu Y, Liu SX. Tandem-like vanadium cluster chains in a polyoxovanadate-based metal–organic framework for efficient catalytic oxidation of sulfides. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00799h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vanadium cluster chain in V-Ni-MOF can efficiently catalyze the oxidation of sulfides with hydrogen peroxide as the oxidant, achieving the complete conversion from sulfides to sulfones within 1 hour at 40 °C.
Collapse
Affiliation(s)
- Tian-Yi Dang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Run-Han Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Hong-Rui Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Qian Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shu-Xia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
23
|
Wang FF, Li JH, Liu HY, Deng SP, Liu YY, Ma JF. Functionalized resorcin[4]arene-based coordination polymers as heterogeneous catalysts for click reactions. NEW J CHEM 2021. [DOI: 10.1039/d0nj06051h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One Cu(i) and two Cd(ii) coordination polymers have been achieved using a 4-mercaptopyridine-functionalized resorcin[4]arene. 1 exhibits predominant efficiency and excellent recyclability for the synthesis of 1,2,3-triazoles and β-OH-1,2,3-triazoles.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Jia-Hui Li
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hai-Yan Liu
- Key Lab of Chemical Additive Synthesis and Separation
- Department of Chemical and Environmental Engineering, Yingkou Institute of Technology
- Yingkou 115014
- China
| | - Shu-Ping Deng
- Key Lab of Chemical Additive Synthesis and Separation
- Department of Chemical and Environmental Engineering, Yingkou Institute of Technology
- Yingkou 115014
- China
| | - Ying-Ying Liu
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
24
|
Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO 2 fixation into cyclic carbonates under mild conditions. Carbohydr Polym 2020; 256:117558. [PMID: 33483060 DOI: 10.1016/j.carbpol.2020.117558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
Searching for green, recyclable and highly efficient catalyst for the synthesis of cyclic carbonates from CO2 is of great importance because it is profitable for reducing the greenhouse effects and meets the principles of green chemistry. Herein, a series of cellulose nanocrystals, either the pristine or modified ones (TEMPO oxidized and Co(III)salen immobilized), were explored as catalysts for cycloaddition of epoxides and carbon dioxide. The impact of surface properties on the performance of the as-made catalysts was investigated. Co(III)-salen grafted cellulose nanocrystals was proven to be the most effective catalyst in this study, which could afford excellent yield up to 99 % after 24 h even under low CO2 pressures of 0.1 MPa. They can be easily recovered and reused for at least 4 times, demonstrating their excellent stability. We found that the surface functional groups such as enriched sulfate or carboxylic groups could also account for the enhanced catalytic activity. This work highlights the applications of green and sustainable nanoparticles in a cycloaddition reaction and offers a sustainable solution in industrial catalysis related to CO2 conversions.
Collapse
|
25
|
Wang X, Zhang T, Li Y, Lin J, Li H, Wang XL. In Situ Ligand-Transformation-Involved Synthesis of Inorganic–Organic Hybrid Polyoxovanadates as Efficient Heterogeneous Catalysts for the Selective Oxidation of Sulfides. Inorg Chem 2020; 59:17583-17590. [DOI: 10.1021/acs.inorgchem.0c02798] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiang Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Tong Zhang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Yunhui Li
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Jiafeng Lin
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Huan Li
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Xiu-Li Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| |
Collapse
|
26
|
Tran YBN, Nguyen PTK, Luong QT, Nguyen KD. Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal–Organic Frameworks for Catalysis Cycloaddition of CO2. Inorg Chem 2020; 59:16747-16759. [DOI: 10.1021/acs.inorgchem.0c02807] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Y. B. N. Tran
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Phuong T. K. Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Quang T. Luong
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Khoi D. Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
27
|
Xiong YL, Yu MY, Guo TT, Yang J, Ma JF. A Nanosized Propeller-like Polyoxometalate-linked Copper(I)-Resorcin[4]arene for Efficient Catalysis. Inorg Chem 2020; 59:15402-15409. [DOI: 10.1021/acs.inorgchem.0c02404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yan-Ling Xiong
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ming-Yue Yu
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ting-Ting Guo
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jin Yang
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
28
|
Li P, Liu Y, Mi L, Shi XL, Duan P, Cao J, Zhang W. Bifunctionalized polyacrylonitrile fibers as highly efficient and selective heterogeneous catalysts for cycloaddition of CO2 with epichlorohydrin under mild conditions. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Zou YH, Wu QJ, Yin Q, Huang YB, Cao R. Self-Assembly of Imidazolium-Functionalized Zr-Based Metal–Organic Polyhedra for Catalytic Conversion of CO2 into Cyclic Carbonates. Inorg Chem 2020; 60:2112-2116. [DOI: 10.1021/acs.inorgchem.0c01199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu-Huang Zou
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rong Cao
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
30
|
Gajjar JA, Vekariya RH, Parekh HM. Recent advances in upper rim functionalization of resorcin[4]arene derivatives: Synthesis and applications. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1766080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinal A. Gajjar
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rajesh H. Vekariya
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Hitesh M. Parekh
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
31
|
Wan R, He P, Liu Z, Ma X, Ma P, Singh V, Zhang C, Niu J, Wang J. A Lacunary Polyoxovanadate Precursor and Transition‐Metal‐Sandwiched Derivatives for Catalytic Oxidation of Sulfides. Chemistry 2020; 26:8760-8766. [DOI: 10.1002/chem.201905741] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Rong Wan
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| | - Peipei He
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| | - Zhen Liu
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| | - Xinyi Ma
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| | - Vikram Singh
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate ChemistryCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 P. R. China
| |
Collapse
|
32
|
Green Pathway in Utilizing CO2 via Cycloaddition Reaction with Epoxide—A Mini Review. Processes (Basel) 2020. [DOI: 10.3390/pr8050548] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carbon dioxide (CO2) has been anticipated as an ideal carbon building block for organic synthesis due to the noble properties of CO2, which are abundant renewable carbon feedstock, non-toxic nature, and contributing to a more sustainable use of resources. Several green and proficient routes have been established for chemical CO2 fixation. Among the prominent routes, this review epitomizes the reactions involving cycloaddition of epoxides with CO2 in producing cyclic carbonate. Cyclic carbonate has been widely used as a polar aprotic solvent, as an electrolyte in Li-ion batteries, and as precursors for various forms of chemical synthesis such as polycarbonates and polyurethanes. This review provides an overview in terms of the reaction mechanistic pathway and recent advances in the development of several classes of catalysts, including homogeneous organocatalysts (e.g., organic salt, ionic liquid, deep eutectic solvents), organometallic (e.g., mono-, bi-, and tri-metal salen complexes and non-salen complexes) and heterogeneous supported catalysts, and metal organic framework (MOF). Selection of effective catalysts for various epoxide substrates is very important in determining the cycloaddition operating condition. Under their catalytic systems, all classes of these catalysts, with regard to recent developments, can exhibit CO2 cycloaddition of terminal epoxide substrates at ambient temperatures and low CO2 pressure. Although highly desired conversion can be achieved for internal epoxide substrates, higher temperature and pressure are normally required. This includes fatty acid-derived terminal epoxides for oleochemical carbonate production. The production of fully renewable resources by employment of bio-based epoxy with biorefinery concept and potential enhancement of cycloaddition reactions are pointed out as well.
Collapse
|
33
|
Yu MY, Yang J, Guo TT, Ma JF. Efficient Catalytic Oxidative Desulfurization toward Thioether and Sulfur Mustard Stimulant by Polyoxomolybdate–Resorcin[4]arene-Based Metal–Organic Materials. Inorg Chem 2020; 59:4985-4994. [DOI: 10.1021/acs.inorgchem.0c00225] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming-Yue Yu
- Key Laboratory for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jin Yang
- Key Laboratory for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ting-Ting Guo
- Key Laboratory for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Laboratory for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
34
|
Yang F, Li Y, Zhang T, Zhao Z, Xing G, Chen L. Docking Site Modulation of Isostructural Covalent Organic Frameworks for CO
2
Fixation. Chemistry 2020; 26:4510-4514. [DOI: 10.1002/chem.202000552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/19/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Fan Yang
- Department of Chemistry, Institute of Molecular Plus, andTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin University Tianjin 300072 P. R. China
| | - Yusen Li
- Department of Chemistry, Institute of Molecular Plus, andTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin University Tianjin 300072 P. R. China
| | - Ting Zhang
- Department of Chemistry, Institute of Molecular Plus, andTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin University Tianjin 300072 P. R. China
| | - Ziqiang Zhao
- Department of Chemistry, Institute of Molecular Plus, andTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin University Tianjin 300072 P. R. China
| | - Guolong Xing
- Department of Chemistry, Institute of Molecular Plus, andTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin University Tianjin 300072 P. R. China
| | - Long Chen
- Department of Chemistry, Institute of Molecular Plus, andTianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
35
|
Grollier K, Vu ND, Onida K, Akhdar A, Norsic S, D'Agosto F, Boisson C, Duguet N. A Thermomorphic Polyethylene‐Supported Imidazolium Salt for the Fixation of CO
2
into Cyclic Carbonates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin Grollier
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Nam Duc Vu
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Killian Onida
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Ayman Akhdar
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Sébastien Norsic
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Franck D'Agosto
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Christophe Boisson
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Nicolas Duguet
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| |
Collapse
|
36
|
Jiang W, Yang J, Yan G, Zhou S, Liu B, Qiao Y, Zhou T, Wang J, Che G. A novel 3-fold interpenetrated dia metal-organic framework as a heterogeneous catalyst for CO2 cycloaddition. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
MOFs-Based Catalysts Supported Chemical Conversion of CO2. Top Curr Chem (Cham) 2020; 378:11. [DOI: 10.1007/s41061-019-0269-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022]
|
38
|
Li J, Wei C, Guo D, Wang C, Han Y, He G, Zhang J, Huang X, Hu C. Inorganic–organic hybrid polyoxovanadates based on [V4O12]4− or [VO3]22− clusters: controllable synthesis, crystal structures and catalytic properties in selective oxidation of sulfides. Dalton Trans 2020; 49:14148-14157. [DOI: 10.1039/d0dt03015e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three inorganic–organic hybrid polyoxovanadates have been synthesized. Among them, complex [Ni2(1-vIM)7H2O][V4O12]·H2O (1) exhibits extraordinary heterogeneous catalytic performance in the selective oxidation of sulfides using H2O2 as the oxidant.
Collapse
Affiliation(s)
- Jikun Li
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an
- P. R. China
- Key Laboratory of Cluster Science Ministry of Education
| | - Chuanping Wei
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an
- P. R. China
| | - Daigaojie Guo
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an
- P. R. China
| | - Congcong Wang
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an
- P. R. China
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an
- P. R. China
| | - Guofang He
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an
- P. R. China
| | - Jianping Zhang
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an
- P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry & Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic
- School of Chemistry
- Beijing Institute of Technology
- Beijing
| |
Collapse
|
39
|
Guo TT, Su XF, Xu X, Yang J, Yan LK, Ma JF. A Calix[4]resorcinarene-Based [Co12] Coordination Cage for Highly Efficient Cycloaddition of CO2 to Epoxides. Inorg Chem 2019; 58:16518-16523. [DOI: 10.1021/acs.inorgchem.9b02473] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ting-Ting Guo
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiao-Fang Su
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jin Yang
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Li-Kai Yan
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
40
|
Cao JP, Xue YS, Li NF, Gong JJ, Kang RK, Xu Y. Lewis Acid Dominant Windmill-Shaped V8 Clusters: A Bifunctional Heterogeneous Catalyst for CO2 Cycloaddition and Oxidation of Sulfides. J Am Chem Soc 2019; 141:19487-19497. [DOI: 10.1021/jacs.9b11146] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jia-Peng Cao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yun-Shan Xue
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ning-Fang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jun-Jie Gong
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Run-Kun Kang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
41
|
Xue YS, Cheng WW, Luo XM, Cao JP, Xu Y. Multifunctional Polymolybdate-Based Metal-Organic Framework as an Efficient Catalyst for the CO 2 Cycloaddition and as the Anode of a Lithium-Ion Battery. Inorg Chem 2019; 58:13058-13065. [PMID: 31532643 DOI: 10.1021/acs.inorgchem.9b01977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A three-dimensional polymolybdate-based metal-organic framework (POMOF) consisting of Zn-ε-Keggin unit and organic linker, {[PMo8VMo4VIO37(OH)3Zn4][BPE]2}·[BPE] (1), was successfully obtained by the hydrothermal method. Compound 1 is composed of Zn-ε-Keggin units and BPE ligands, featuring a fascinating 5-fold interpenetrating framework with dia topology. The catalytic performance of compound 1 was investigated, and experiments showed that 1 could effectively facilitate the cycloaddition reaction of CO2 with epoxides as Lewis acid heterogeneous catalyst. Moreover, compound 1 also was studied as LIBs anode material, and it showed reversible capacity of 546 mA h g-1 at 100th cycle.
Collapse
Affiliation(s)
- Yun-Shan Xue
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China.,School of Chemistry and Environmental Engineering , Yancheng Teachers University , Yancheng , Jiangsu 224002 , P. R. China
| | - Wei-Wei Cheng
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Xi-Ming Luo
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Jia-Peng Cao
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Yan Xu
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China
| |
Collapse
|
42
|
Two 4′-(4-carboxyphenyl)-3,2′:6′,3″-terpyridine-based luminescent Zn(II) coordination polymers for detection of 2,4,6-trinitrophenol. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Yu M, Yang J, Xu X, Ma J, Wang Z. Highly stable polyoxometalate‐resorcin[4]arene‐based inorganic‐organic complexes for catalytic oxidation desulfurization. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ming‐Yue Yu
- Key Lab for Polyoxometalate Science, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Jin Yang
- Key Lab for Polyoxometalate Science, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 China
| | - Jian‐Fang Ma
- Key Lab for Polyoxometalate Science, Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of PhysicsHuazhong University of Science and Technology Wuhan Hubei 430074 China
| |
Collapse
|
44
|
Yu MY, Guo TT, Shi XC, Yang J, Xu X, Ma JF, Yu ZT. Polyoxometalate-Bridged Cu(I)- and Ag(I)-Thiacalix[4]arene Dimers for Heterogeneous Catalytic Oxidative Desulfurization and Azide–Alkyne “Click” Reaction. Inorg Chem 2019; 58:11010-11019. [DOI: 10.1021/acs.inorgchem.9b01557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming-Yue Yu
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Ting-Ting Guo
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Xiao-Chuan Shi
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Jin Yang
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Jian-Fang Ma
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
45
|
Wang L, Guo T, Ma J, Liu Y, Xu G, Ma J. Three Coordination Polymers Based on Resorcin[4]arene as Effective Catalysts for the Knoevenagel Condensation Reaction and as Multifunctional Luminescent Sensors. ChemistrySelect 2019. [DOI: 10.1002/slct.201901135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li Wang
- Key Lab of Polyoxometalate ScienceDepartment of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Ting‐Ting Guo
- Key Lab of Polyoxometalate ScienceDepartment of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Ji‐Cheng Ma
- Key Lab of Polyoxometalate ScienceDepartment of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Ying‐Ying Liu
- Key Lab of Polyoxometalate ScienceDepartment of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Guo‐Hai Xu
- Key Laboratory of Jiangxi University for Functional Materials ChemistrySchool of Chemistry and Chemical EngineeringGannan Normal University, Ganzhou Jiangxi 341000 China
| | - Jian‐Fang Ma
- Key Lab of Polyoxometalate ScienceDepartment of ChemistryNortheast Normal University Changchun 130024 P. R. China
| |
Collapse
|
46
|
Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts 2019. [DOI: 10.3390/catal9060511] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon dioxide produced by human activities is one of the main contributions responsible for the greenhouse effect, which is modifying the Earth’s climate. Therefore, post-combustion CO2 capture and its conversion into high value-added chemicals are integral parts of today’s green industry. On the other hand, carbon dioxide is a ubiquitous, cheap, abundant, non-toxic, non-flammable and renewable C1 source. Among CO2 usages, this review aims to summarize and discuss the advances in the reaction of CO2, in the synthesis of cyclic carbonates, carbamates, and ureas appeared in the literature since 2017.
Collapse
|
47
|
Xu B, Luo F, Tang G, Zhang J. A 4'-(4-carboxyphenyl)-3,2':6',3''-terpyridine-based luminescent cadmium(II) coordination polymer for the detection of 2,4,6-trinitrophenol. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:508-513. [PMID: 31062706 DOI: 10.1107/s2053229619004248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/28/2019] [Indexed: 11/10/2022]
Abstract
The title coordination polymer, poly[bis[μ3-4-(3,2':6',3''-terpyridin-4'-yl)benzoato]cadmium(II)], [Cd(C22H14N3O2)2]n or [Cd(3-cptpy)2]n, (I), has been synthesized solvothermally and characterized by IR spectroscopy, thermogravimetric analysis, and single-crystal and powder X-ray diffraction. The structure is composed of 3-cptpy- ligands bridging Cd atoms, with each Cd atom coordinated by six ligands and each ligand coordinating to three Cd atoms. Each Cd atom is in a slightly distorted trans-N2O4 octahedral environment, forming a two-dimensional layer structure with a (3,6)-connected topology. Layers are linked to each other by π-π stacking, resulting in a three-dimensional supramolecular framework. The strong luminescence and good thermal stability of (I) indicate that it can potentially be used as a luminescence sensor. The compound also shows a highly selective and sensitive response to 2,4,6-trinitrophenol through the luminescence quenching effect.
Collapse
Affiliation(s)
- Bin Xu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Fuming Luo
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guodong Tang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, People's Republic of China
| | - Jinfang Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
48
|
Fang H, Li G, Jiang D, Zheng G. A channel rotaxane coordination polymer (RCP) based on the assembly of p-sulfonatocalix[8]arene and 4,4′-bipyridine-N,N′-dioxide ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Monfared A, Mohammadi R, Hosseinian A, Sarhandi S, Kheirollahi Nezhad PD. Cycloaddition of atmospheric CO 2 to epoxides under solvent-free conditions: a straightforward route to carbonates by green chemistry metrics. RSC Adv 2019; 9:3884-3899. [PMID: 35518075 PMCID: PMC9060502 DOI: 10.1039/c8ra10233c] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/13/2019] [Indexed: 01/09/2023] Open
Abstract
The conversion of carbon dioxide (CO2) into value-added organic compounds has received more and more attention over recent years, not only because this gas is one of the major anthropogenic greenhouse gases, but also because it has been regarded as an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon (C1) resource. Along these lines, the synthesis of five-membered cyclic carbonates employing CO2 as a safe alternative to toxic reagents such as phosgene or its derivatives is of great interest because of their wide range of applications in organic synthesis. However, most of CO2 incorporation reactions into carbonates are carried out in toxic and non-recyclable organic solvents. Furthermore, these transformations usually proceed at elevated pressures or supercritical CO2 conditions. Recently, several catalytic systems have been developed that allow the synthesis of functionalized carbonates from the reaction of atmospheric CO2 with corresponding epoxides under solvent-free conditions. This review is an attempt to summarize the most important advances and discoveries in this interesting research arena. The review is divided into three major sections. The first section will discuss ionic liquid catalyzed coupling reactions. The second will cover organocatalyzed reactions. The third focuses exclusively on metal-catalyzed fixations. Notably, the third section has been classified based on the metal element that carries out the catalysis (i.e. copper, palladium, zinc).
Collapse
Affiliation(s)
- Aazam Monfared
- Department of Chemistry, Payame Noor University 19395-4697 Tehran Iran
| | - Robab Mohammadi
- Department of Chemistry, Payame Noor University 19395-4697 Tehran Iran
| | - Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran P. O. Box 11365-4563 Tehran Iran
| | - Shahriar Sarhandi
- Department of Chemistry, Payame Noor University 19395-4697 Tehran Iran
| | | |
Collapse
|
50
|
Wei H, Guo Z, Liang X, Chen P, Liu H, Xing H. Selective Photooxidation of Amines and Sulfides Triggered by a Superoxide Radical Using a Novel Visible-Light-Responsive Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3016-3023. [PMID: 30629427 DOI: 10.1021/acsami.8b18206] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photocatalysis is an efficient and sustainable approach to convert solar energy into chemical energy, simultaneously supplying valuable chemicals. In this study, a novel metal-organic framework (MOF) compound is constructed from anthracene-based organic linkers, which shows visible-light absorption and efficient photoinduced charge generation property. It was applied for triggering photooxidation of benzylamines and sulfides in the presence of environmental benign oxidants of molecular oxygen or hydrogen peroxide. Results show that it is a highly selective photocatalyst for oxidation reactions to produce valuable imines or sulfoxides. We further investigate the underlying mechanism for these photocatalytic reactions by recognizing reactive oxygen species in the reactions. It has been demonstrated that the superoxide radical (O2•-), generated by electron transfer from a photoexcited MOF to oxidants, serves as the main active species for the oxidations. The work demonstrates the great potential of photoactive MOFs for the transformation of organic chemicals into valuable complexes.
Collapse
Affiliation(s)
- Hongxia Wei
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Zhifen Guo
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Xiao Liang
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Peiqi Chen
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Hui Liu
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| |
Collapse
|