1
|
Woods JJ, Wacker JN, Peterson A, Abergel RJ, Ung G. Improved Energy Transfer in the Sensitization of Americium Enables Observation of Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202412535. [PMID: 39212324 DOI: 10.1002/anie.202412535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The first example of circularly polarized luminescence (CPL) from a molecular americium (Am) complex is reported. Coordination of Am(III) by a combination of thenoyltrifluoroacetonate and a chiral diphosphine oxide ligand yielded a complex with strong sensitized metal-centered luminescence. The energy transfer process for sensitization appears to occur via a unique resonant pathway, which results in the removal of the overlap between ligand phosphorescence and sensitized Am luminescence that has often been observed. Owing to this feature, and despite the limited amount of material that could be used due to the radioactivity of 241Am, CPL could be measured. The collected luminescence and CPL spectra provide insight into the crystal field splitting of the 5D1→7F1 transition. These results pave the way for future studies of Am(III) luminescence to investigate electronic structure effects in this and other 5 f elements.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Nuclear Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Gaël Ung
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| |
Collapse
|
2
|
Man Y, Shi X, He Y, Duan C, Han C, Zhang D, Xu H. Phosphine Oxide-Nd 3+ Coordination Chains with Cumulated Output Enable Efficient LED-Pumping Optical Amplification. J Am Chem Soc 2024; 146:17114-17121. [PMID: 38870413 DOI: 10.1021/jacs.4c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Near-infrared luminescent rare-earth organic complexes have attracted intensive attention in the field of optical waveguide amplification. However, their optical gains were commonly less than 4 dB/cm due to limited doping concentrations. Herein, two one-dimensional (1D) Nd3+ coordination chains, namely, [Nd(TTA)3(DBTDPO)]n (Nd1) and [Nd(TTA)3(DPEPO)]n (Nd2), bridged by phosphine oxide ligands were developed for the neodymium-doped waveguide amplifier. Despite its P-P distance being similar to DBTDPO, the different P═O orientation of DPEPO renders markedly shorter intra- and interchain Nd-Nd distances for Nd2 in comparison to Nd1. Furthermore, the weaker intermolecular interactions alleviate the quenching effect for Nd2. Therefore, Nd2 can provide more locally concentrated and radiative Nd3+ ions, leading to a larger Nd3+-characteristic 1.06 μm emission intensity and duration than Nd1. Based on embedded and evanescent-field waveguide structures, Nd2 achieves state-of-the-art gain maxima of 5.7 and 4.9 dB/cm as well as outstanding gain stability. These results indicate that controllable coordination assembly of lanthanide ions in multidimension provides a flexible approach to combine local high-density outputs and effective suppression of quenching.
Collapse
Affiliation(s)
- Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xiaowu Shi
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 3361005, China
| | - Yan He
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 3361005, China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Dan Zhang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 3361005, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Gomez Martinez D, Sperling JM, Beck NB, Wineinger HB, Brannon JP, Whitefoot MA, Horne GP, Albrecht-Schönzart TE. Comparison of Americium(III) and Neodymium(III) Monothiophosphate Complexes. Inorg Chem 2024; 63:9237-9244. [PMID: 38722713 DOI: 10.1021/acs.inorgchem.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Mixed-donor ligands, such as those containing a combination of O/N or O/S, have been studied extensively for the selective extraction of trivalent actinides, especially Am3+ and Cm3+, from lanthanides during the recycling of used nuclear fuel. Oxygen/sulfur donor ligand combinations also result from the hydrolytic and/or radiolytic degradation of dithiophosphates, such as the Cyanex class of extractants, which are initially converted to monothiophosphates. To understand potential differences between the binding of such degraded ligands to Nd3+ and Am3+, the monothiophosphate complexes [M(OPS(OEt)2)5(H2O)2]2- (M3+ = Nd3+, Am3+) were prepared and characterized by single-crystal X-ray diffraction and optical spectroscopy and studied as a function of pressure up to ca. 14 GPa using diamond-anvil techniques. Although Nd3+ and Am3+ have nearly identical eight-coordinated ionic radii, these structures reveal that while the M-O bond distances in these complexes are almost equal, the M-S distances are statistically different. Moreover, for [Nd(OPS(OEt)2)5(H2O)2]2-, the hypersensitive 4I9/2 → 4G5/2 transition shifts as a function of pressure by -11 cm-1/GPa. Whereas for [Am(OPS(OEt)2)5(H2O)2]2-, the 7F0 → 7F6 transition shows a slightly stronger pressure dependence with a shift of -13 cm-1/GPa and also exhibits broadening of the 5f → 5f transitions at high pressures. These data likely indicate an increased involvement of the 5f orbitals in bonding with Am3+ relative to that of Nd3+ in these complexes.
Collapse
Affiliation(s)
- Daniela Gomez Martinez
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Joseph M Sperling
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nicholas B Beck
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hannah B Wineinger
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jacob P Brannon
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Megan A Whitefoot
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Gregory P Horne
- Center for Radiation Chemistry Research, Idaho National Laboratory, Idaho Falls, P.O. Box 1625, Idaho 83415, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
- Center for Radiation Chemistry Research, Idaho National Laboratory, Idaho Falls, P.O. Box 1625, Idaho 83415, United States
| |
Collapse
|
4
|
Arteaga A, Nicholas AD, Sinnwell MA, McNamara BK, Buck EC, Surbella RG. Expanding the Transuranic Metal-Organic Framework Portfolio: The Optical Properties of Americium(III) MOF-76. Inorg Chem 2023; 62:21036-21043. [PMID: 38038352 DOI: 10.1021/acs.inorgchem.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Reported is the synthesis, crystal structure, and solid-state characterization of a new americium containing metal-organic framework (MOF), [Am(C9H3O6)(H2O)], MOF-76(Am). This material is constructed from Am3+ metal centers and 1,3,5-tricarboxylic acid (BTC) ligands, forming a porous three-dimensional framework that is isostructural with several known trivalent lanthanide (Ln) analogs (e.g., Ce, Nd, and Sm-Lu). The Am3+ ions have seven coordinates and assume a distorted, capped trigonal prismatic geometry with C1 symmetry. The Am3+-O bonds were studied via infrared spectroscopy and compared to several MOF-76(Ln) analogs, where Ln = Nd3+, Eu3+, Tb3+, and Ho3+. The results show that the strength of the ligand carboxylate stretching and bending modes increase with Nd3+ < Eu3+ < Am3+ < Tb3+ < Ho3+, suggesting the metal-oxygen bonds are predominantly ionic. Optical absorbance spectroscopy measurements reveal strong f-f transitions; some exhibit pronounced crystal field splitting. The photoluminescence spectrum contains weak Am3+-based emission that is achieved through direct and indirect metal center excitation. The weak emissive behavior is somewhat surprising given that ligand-to-metal resonance energy transfer is efficient in the isoelectronic Eu3+ (4f6) and related Tb3+ (4f8) analogs. The optical properties were explored further within a series of heterometallic MOF-76(Tb1-xAmx) (x = 0.8, 0.2, and 0.1) samples, and the results reveal enhanced Am3+ photoluminescence.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Michael A Sinnwell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Bruce K McNamara
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
5
|
Windorff CJ, Goodwin CAP, Sperling JM, Albrecht-Schönzart TE, Bai Z, Evans WJ, Huffman ZK, Jeannin R, Long BN, Mills DP, Poe TN, Ziller JW. Stabilization of Pu(IV) in PuBr 4(OPCy 3) 2 and Comparisons with Structurally Similar ThX 4(OPR 3) 2 (R = Cy, Ph) Molecules. Inorg Chem 2023; 62:18136-18149. [PMID: 37875401 DOI: 10.1021/acs.inorgchem.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The pursuit of a trivalent plutonium halide phosphine oxide compound, e.g., "PuBr3(OPR)3," instead led to the isolation of the tetravalent trans-PuIVBr4(OPCy3)2, PuBr/Cy, compound by spontaneous oxidation of PuIII. The donating nature of phosphine oxides has allowed the isolation and characterization of PuBr/Cy by crystallographic, multinuclear NMR, solid state, and solution phase UV-vis-NIR spectroscopic techniques. The presence of a putative plutonyl(VI) complex formulated as "trans-PuVIO2Br2(OPCy3)2" was also observed spectroscopically and tentatively by single-crystal X-ray diffraction as a cocrystal of PuBr/Cy. A series of trans-ThX4(OPCy3)2 (X = Cl, ThCl/Cy; Br, ThBr/Cy; I, ThI/Cy) complexes were synthesized for comparison to PuBr/Cy. The triphenylphosphine oxide, OPPh3, complexes, trans-AnI4(OPPh3)2 (An = Th, ThI/Ph; U, UI/Ph), were also synthesized for comparison, completing the series trans-UX4(OPPh3)2 (X = Cl, Br, I), UX/Ph. To enable the synthesis of ThI/Cy and ThI/Ph, a new nonaqueous thorium iodide starting material, ThI4(Et2O)2, was synthesized. The syntheses of organic solvent soluble ThI4L2 (L = Et2O, OPCy3, and OPPh3) are the first examples of crystallographically characterized neutral thorium tetraiodide materials beyond binary ThI4. To show the viability of ThI4(Et2O)2 as a starting material for organothorium chemistry, (C5Me4H)3ThI was synthesized and crystallographically characterized.
Collapse
Affiliation(s)
- Cory J Windorff
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Zhuanling Bai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - William J Evans
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Zachary K Huffman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Renaud Jeannin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Brian N Long
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - David P Mills
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Nicholas AD, Arteaga A, Ducati LC, Buck EC, Autschbach J, Surbella RG. Insight into the Structural and Emissive Behavior of a Three-Dimensional Americium(III) Formate Coordination Polymer. Chemistry 2023; 29:e202300077. [PMID: 36973189 DOI: 10.1002/chem.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
We report the structural, vibrational, and optical properties of americium formate (Am(CHO2 )3 ) crystals synthesized via the in situ hydrolysis of dimethylformamide (DMF). The coordination polymer features Am3+ ions linked by formate ligands into a three-dimensional network that is isomorphous to several lanthanide analogs, (e. g., Eu3+ , Nd3+ , Tb3+ ). Structure determination revealed a nine-coordinate Am3+ metal center that features a unique local C3v symmetry. The metal-ligand bonding interactions were investigated by vibrational spectroscopy, natural localized molecular orbital calculations, and the quantum theory of atoms in molecules. The results paint a predominantly ionic bond picture and suggest the metal-oxygen bonds increase in strength from Nd-O
Collapse
Affiliation(s)
- Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, NY, 14260-3000, USA
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
7
|
Arteaga A, Nicholas AD, Ducati LC, Autschbach J, Surbella RG. Americium Oxalate: An Experimental and Computational Investigation of Metal-Ligand Bonding. Inorg Chem 2023; 62:4814-4822. [PMID: 36920249 DOI: 10.1021/acs.inorgchem.2c03976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A novel actinide-containing coordination polymer, [Am(C2O4)(H2O)3Cl] (Am-1), has been synthesized and structurally characterized. The crystallographic analysis reveals that the structure is two-dimensional and comprised of pseudo-dimeric Am3+ nodes that are bridged by oxalate ligands to form sheets. Each metal center is nine-coordinate, forming a distorted capped square antiprism geometry with a C1 symmetry, and features bound oxalate, aqua, and chloro ligands. The Am3+-ligand bonds were probed computationally using the quantum theory of atoms in molecules nd natural localized molecular orbital approaches to investigate the underlying mechanisms and hybrid atomic orbital contributions therein. The analyses indicate that the bonds within Am-1 are predominantly ionic and the 5f shell of the Am3+ metal centers does not add a significant covalent contribution to the bonds. Our bonding assessment is supported by measurements on the optical properties of Am-1 using diffuse reflectance and photoluminescence spectroscopies. The position of the principal absorption band at 507 nm (5L6' ← 7F0') is notable because it is consistent with previously reported americium oxalate complexes in solution, indicating similarities in the electronic structure and ionic bonding. Compound Am-1 is an active phosphor, featuring strong bright-blue oxalate-based luminescence with no evidence of metal-centered emission.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, 312 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Zhang Y, Li K, Zhang S, Wang X, Zhang H, Wang Y, Wang Y, Chai Z, Wang S. A Trivalent Americium Organic Framework with Decent Structural Stability against
Self‐Irradiation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| | - Sida Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| | - Xia Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Soochow Jiangsu 215123 China
| |
Collapse
|
9
|
Synthesis, structure and catalytic activity of rare-earth metal complexes derived from chiral phosphoryl-sulfonylamides. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Goodwin CAP, Schlimgen AW, Albrecht‐Schönzart TE, Batista ER, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL, Stevens LM, White FD, Yang P. Structural and Spectroscopic Comparison of Soft‐Se vs. Hard‐O Donor Bonding in Trivalent Americium/Neodymium Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Enrique R. Batista
- Theoretical Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Andrew J. Gaunt
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Michael T. Janicke
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Stosh A. Kozimor
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Brian L. Scott
- Materials Physics and Applications Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Lauren M. Stevens
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Frankie D. White
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Ping Yang
- Theoretical Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
11
|
Goodwin CAP, Schlimgen AW, Albrecht-Schönzart TE, Batista ER, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL, Stevens LM, White FD, Yang P. Structural and Spectroscopic Comparison of Soft-Se vs. Hard-O Donor Bonding in Trivalent Americium/Neodymium Molecules. Angew Chem Int Ed Engl 2021; 60:9459-9466. [PMID: 33529478 DOI: 10.1002/anie.202017186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 11/06/2022]
Abstract
Covalency is often considered to be an influential factor in driving An3+ vs. Ln3+ selectivity invoked by soft donor ligands. This is intensely debated, particularly the extent to which An3+ /Ln3+ covalency differences prevail and manifest as the f-block is traversed, and the effects of periodic breaks beyond Pu. Herein, two Am complexes, [Am{N(E=PPh2 )2 }3 ] (1-Am, E=Se; 2-Am, E=O) are compared to isoradial [Nd{N(E=PPh2 )2 }3 ] (1-Nd, 2-Nd) complexes. Covalent contributions are assessed and compared to U/La and Pu/Ce analogues. Through ab initio calculations grounded in UV-vis-NIR spectroscopy and single-crystal X-ray structures, we observe differences in f orbital involvement between Am-Se and Nd-Se bonds, which are not present in O-donor congeners.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Anthony W Schlimgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Michael T Janicke
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Brian L Scott
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Lauren M Stevens
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Frankie D White
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
12
|
Putkov AE, Vasiliev AN, Zubavichus YV, Teterin YA, Ivanov KE, Trigub AL, Kovalev VV, Vatsouro IM. XAS study of americium complexes with calixarene bearing carbamoylmethylphosphine oxide moieties. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Windorff CJ, Celis-Barros C, Sperling JM, McKinnon NC, Albrecht-Schmitt TE. Probing a variation of the inverse-trans-influence in americium and lanthanide tribromide tris(tricyclohexylphosphine oxide) complexes. Chem Sci 2020; 11:2770-2782. [PMID: 34084337 PMCID: PMC8157511 DOI: 10.1039/c9sc05268b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis, characterization, and theoretical analysis of meridional americium tribromide tris(tricyclohexylphosphine oxide), mer-AmBr3(OPcy3)3, has been achieved and is compared with its early lanthanide (La to Nd) analogs. The data show that homo trans ligands display significantly shorter bonds than the cis or hetero trans ligands. This is particularly pronounced in the americium compound. DFT along with multiconfigurational CASSCF calculations show that the contraction of the bonds relates qualitatively with overall covalency, i.e. americium shows the most covalent interactions compared to lanthanides. However, the involvement of the 5p and 6p shells in bonding follows a different order, namely cerium > neodymium ∼ americium. This study provides further insight into the mechanisms by which ITI operates in low-valent f-block complexes.
Collapse
Affiliation(s)
- Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way, RM. 118 DLC Tallahassee Florida 32306 USA
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way, RM. 118 DLC Tallahassee Florida 32306 USA
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way, RM. 118 DLC Tallahassee Florida 32306 USA
| | - Noah C McKinnon
- Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way, RM. 118 DLC Tallahassee Florida 32306 USA
| | - Thomas E Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way, RM. 118 DLC Tallahassee Florida 32306 USA
| |
Collapse
|
14
|
Ridenour JA, Surbella RG, Gelis AV, Koury D, Poineau F, Czerwinski KR, Cahill CL. An Americium‐Containing Metal–Organic Framework: A Platform for Studying Transplutonium Elements. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. August Ridenour
- Department of Chemistry The George Washington University 800 22nd St NW Washington D.C. 20052 USA
| | - Robert G. Surbella
- Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99354 USA
| | - Artem V. Gelis
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Daniel Koury
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Frederic Poineau
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Kenneth R. Czerwinski
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Christopher L. Cahill
- Department of Chemistry The George Washington University 800 22nd St NW Washington D.C. 20052 USA
| |
Collapse
|
15
|
Corbey JF, Reilly DD, Sweet LE, Lach TG. Extraction of plutonium-containing microcrystals from Hanford soil using a focused ion beam for single-crystal X-ray diffraction analysis. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719012299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Herein, the successful use of a focused ion beam/scanning electron microscope to prepare microsamples of radioactive single crystals for X-ray diffraction analysis is reported. This technique was used to extract and analyze crystalline Pu-containing particles as small as 28 µm3 from Hanford soil taken from the 216-Z-9 waste crib, which were then crystallographically characterized using single-crystal X-ray diffraction to confirm the cubic structure of PuO2. As a systematic proof of concept, the technique was first tested using UO2 crystals milled into cubic shapes with approximate volumes of 4620, 1331, 125, 8 and 1 µm3, in order to empirically determine the crystal size limits for characterization by a laboratory-based diffractometer with a sealed tube Mo or Ag anode X-ray source and a charge-coupled device detector.
Collapse
|
16
|
Ridenour JA, Surbella RG, Gelis AV, Koury D, Poineau F, Czerwinski KR, Cahill CL. An Americium‐Containing Metal–Organic Framework: A Platform for Studying Transplutonium Elements. Angew Chem Int Ed Engl 2019; 58:16508-16511. [DOI: 10.1002/anie.201909988] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- J. August Ridenour
- Department of Chemistry The George Washington University 800 22nd St NW Washington D.C. 20052 USA
| | - Robert G. Surbella
- Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99354 USA
| | - Artem V. Gelis
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Daniel Koury
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Frederic Poineau
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Kenneth R. Czerwinski
- Radiochemistry Department of Chemistry and Biochemistry University of Nevada Las Vegas 4505 S. Maryland Pkwy Las Vegas NV 89154 USA
| | - Christopher L. Cahill
- Department of Chemistry The George Washington University 800 22nd St NW Washington D.C. 20052 USA
| |
Collapse
|
17
|
Peterson C, Penchoff DA, Auxier JD, Hall HL. Establishing Cost-Effective Computational Models for the Prediction of Lanthanoid Binding in [Ln(NO 3)] 2+ (with Ln = La to Lu). ACS OMEGA 2019; 4:1375-1385. [PMID: 31459405 PMCID: PMC6649180 DOI: 10.1021/acsomega.8b02403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/12/2018] [Indexed: 05/05/2023]
Abstract
Evaluating the efficiency of predictive methods is critical to the processes of upscaling laboratory processes to full-scale operations on an industrial scale. With regard to separation of lanthanoids, there is a considerable motivation to optimize these processes because of immediate use in nuclear fuel cycle operations, nuclear forensics applications, and rare-earth metal recovery. Efficient predictive capabilities in Gibbs free energies of reaction are essential to optimize separations and ligand design for selective binding needed for various radiochemical applications such as nuclear fuel disposition and recycling of lanthanoid fission products into useful radioisotope products. Ligand design is essential for selective binding of lanthanoids, as separating contiguous lanthanoids is challenging because of the similar behavior these elements exhibit. Modeling including electronic structure calculations of lanthanoid-containing compounds is particularly challenging because of the associated computational cost encountered with the number of electrons correlated in these systems and relativistic considerations. This study evaluates the predictive capabilities of various ab initio methods in the calculation of Gibbs free energies of reaction for [Ln(NO3)]2+ compounds (with Ln = La to Lu), as nitrates are critical in traditional separation processes utilizing nitric acid. The composite methodologies evaluated predict Gibbs free energies of reaction for [Ln(NO3)]2+ compounds within 5 kcal mol-1 in most cases from the target method [CCSD(T)-FSII/cc-pwCV∞Z-DK3+SO] at a fraction of the computational cost.
Collapse
Affiliation(s)
- Charles
C. Peterson
- Research
Information Technology Services, University
of North Texas, 225 S. Avenue B, Denton, Texas 76201, United
States
- Institute
for Nuclear Security, University of Tennessee, 1640 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Deborah A. Penchoff
- Institute
for Nuclear Security, University of Tennessee, 1640 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - John D. Auxier
- Department
of Nuclear Engineering, University of Tennessee, 301 Middle Dr., Pasqua Nuclear Engineering
Bldg., Knoxville, Tennessee 37996, United States
| | - Howard L. Hall
- Institute
for Nuclear Security, University of Tennessee, 1640 Cumberland Avenue, Knoxville, Tennessee 37996, United States
- Department
of Nuclear Engineering, University of Tennessee, 301 Middle Dr., Pasqua Nuclear Engineering
Bldg., Knoxville, Tennessee 37996, United States
- Radiochemistry
Center of Excellence (RCOE), University
of Tennessee, 1508 Middle Dr., Ferris Hall, Knoxville, Tennessee 37996, United States
- Y-12
National Security Complex, Oak
Ridge, Tennessee 37830, United States
| |
Collapse
|
18
|
Ferrier MG, Stein BW, Bone SE, Cary SK, Ditter AS, Kozimor SA, Lezama Pacheco JS, Mocko V, Seidler GT. The coordination chemistry of Cm III, Am III, and Ac III in nitrate solutions: an actinide L 3-edge EXAFS study. Chem Sci 2018; 9:7078-7090. [PMID: 30310628 PMCID: PMC6137438 DOI: 10.1039/c8sc02270d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023] Open
Abstract
Understanding actinide(iii) (AnIII = CmIII, AmIII, AcIII) solution-phase speciation is critical for controlling many actinide processing schemes, ranging from medical applications to reprocessing of spent nuclear fuel. Unfortunately, in comparison to most elements in the periodic table, AnIII speciation is often poorly defined in complexing aqueous solutions and in organic media. This neglect - in large part - is a direct result of the radioactive properties of these elements, which make them difficult to handle and acquire. Herein, we surmounted some of the handling challenges associated with these exotic 5f-elements and characterized CmIII, AmIII, and AcIII using AnIII L3-edge X-ray absorption spectroscopy (XAS) as a function of increasing nitric acid (HNO3) concentration. Our results revealed that actinide aquo ions, An(H2O) x 3+ (x = 9.6 ± 0.7, 8.9 ± 0.8, and 10.0 ± 0.9 for CmIII, AmIII, and AcIII), were the dominant species in dilute HNO3 (0.05 M). In concentrated HNO3 (16 M), shell-by-shell fitting of the extended X-ray fine structure (EXAFS) data showed the nitrate complexation increased, such that the average stoichiometries of Cm(NO3)4.1±0.7(H2O)5.7±1.3 (1.1±0.2)-, Am(NO3)3.4±0.7(H2O)5.4±0.5 (0.4±0.1)-, and Ac(NO3)2.3±1.7(H2O)8.3±5.2 (0.7±0.5)+ were observed. Data obtained at the intermediate HNO3 concentration (4 M) were modeled as a linear combination of the 0.05 and 16 M spectra. For all three metals, the intermediate models showed larger contributions from the 0.05 M HNO3 spectra than from the 16 M HNO3 spectra. Additionally, these efforts enabled the Cm-NO3 and Ac-NO3 distances to be measured for the first time. Moreover, the AnIII L3-edge EXAFS results, contribute to the growing body of knowledge associated with CmIII, AmIII, and AcIII coordination chemistry, in particular toward advancing understanding of AnIII solution phase speciation.
Collapse
Affiliation(s)
| | - Benjamin W Stein
- Los Alamos National Laboratory, , Los Alamos , New Mexico 87545 , USA .
| | - Sharon E Bone
- Los Alamos National Laboratory, , Los Alamos , New Mexico 87545 , USA .
| | - Samantha K Cary
- Los Alamos National Laboratory, , Los Alamos , New Mexico 87545 , USA .
| | - Alexander S Ditter
- Los Alamos National Laboratory, , Los Alamos , New Mexico 87545 , USA .
- Department of Physics , University of Washington , Seattle , Washington 98195-1560 , USA
| | - Stosh A Kozimor
- Los Alamos National Laboratory, , Los Alamos , New Mexico 87545 , USA .
| | | | - Veronika Mocko
- Los Alamos National Laboratory, , Los Alamos , New Mexico 87545 , USA .
| | - Gerald T Seidler
- Department of Physics , University of Washington , Seattle , Washington 98195-1560 , USA
| |
Collapse
|