1
|
Zyoud AH. Photodegradation of aqueous tetracycline using CuS@TiO₂ composite under solar-simulated light: Complete mineralization, catalyst efficiency, and reusability. Heliyon 2025; 11:e41662. [PMID: 39877609 PMCID: PMC11773078 DOI: 10.1016/j.heliyon.2025.e41662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
While CuS/TiO₂ has been previously synthesized and employed in a limited number of photodegradation studies, the current study investigated its effectiveness for TC degradation under UV-visible light irradiation. CuS is known to be a nontoxic, environmentally friendly material; hence, it has great potential as an alternative to CdS and CdSe, which are used conventionally as sensitizers. In this work, the CuS/TiO₂ photocatalysts achieved a maximum 95 % removal of TC at an initial concentration of 20 ppm, confirming the good utilization of active sites. Even though the efficiency decreased for higher TC concentrations due to the saturation of the active sites, the values of the quantum yield showed that photon utilization was still effective. Consequently, the photocatalyst showed an optimum yield at 0.20 g, and its further addition increased the efficiency rather insignificantly. In addition to the near-complete mineralization of TC by the CuS/TiO₂ composite with few byproducts, its reusability was excellent because it showed almost consistent performance in successive cycles. These results further confirm the continuous relevance and potential of CuS/TiO₂ as a practical, sustainable solution for organic pollutant degradation, reinforcing its value in environmental remediation applications.
Collapse
Affiliation(s)
- Ahed H. Zyoud
- Department of Chemistry, An-Najah National University, Nablus, Palestine
- Center of Excellence in Materials Science and Nanotechnology (CEMSANT), An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Chen J, Xue F, Peng H, Pao CW, Huang WH, Hu Z, Xu Y, Huang X. Highly Efficient Photocatalytic H 2O 2 Production under Ambient Conditions via Defective In 2S 3 Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1149-1156. [PMID: 39744956 DOI: 10.1021/acs.langmuir.4c04500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Oxygen and water generating hydrogen peroxide (H2O2) by optical drive is an extremely promising pathway, and the large amount of oxygen in air and natural sunlight illumination are excellent catalytic conditions. However, the separation efficiency of photogenerated electron-hole pairs greatly limits the photocatalytic efficiency, especially in the absence of sacrificial agents. Here, we report an In2S3 nanosheet with an S vacancy (Sv-In2S3). The highest H2O2 yield of Sv-In2S3 is 2.585 mmol g-1 h-1 under pure water, air, and sunlight (P = 920 W/m2), largely outperforming other reported photocatalysts for H2O2 production. The experimental results show that the introduction of Sv accelerates the separation of photogenerated electron-hole pairs and achieves efficient H2O2 production through an oxygen reduction reaction. This efficient photosynthesis under ambient conditions allows solar-chemical conversion to take place in a truly cost-effective and sustainable way, opening up possibilities for practical production.
Collapse
Affiliation(s)
- Jianing Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Xue
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, China
| | - Huiping Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Yong Xu
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
3
|
Chaperman L, Chaguetmi S, Deng B, Gam-Derrouich S, Nowak S, Mammeri F, Ammar S. Novel Synthesis Route of Plasmonic CuS Quantum Dots as Efficient Co-Catalysts to TiO 2/Ti for Light-Assisted Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1581. [PMID: 39404308 PMCID: PMC11478289 DOI: 10.3390/nano14191581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Self-doped CuS nanoparticles (NPs) were successfully synthesized via microwave-assisted polyol process to act as co-catalysts to TiO2 nanofiber (NF)-based photoanodes to achieve higher photocurrents on visible light-assisted water electrolysis. The strategy adopted to perform the copper cation sulfidation in polyol allowed us to overcome the challenges associated with the copper cation reactivity and particle size control. The impregnation of the CuS NPs on TiO2 NFs synthesized via hydrothermal corrosion of a metallic Ti support resulted in composites with increased visible and near-infrared light absorption compared to the pristine support. This allows an improved overall efficiency of water oxidation (and consequently hydrogen generation at the Pt counter electrode) in passive electrolyte (pH = 7) even at 0 V bias. These low-cost and easy-to-achieve composite materials represent a promising alternative to those involving highly toxic co-catalysts.
Collapse
Affiliation(s)
- Larissa Chaperman
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Samiha Chaguetmi
- Faculté des Sciences, Université 20-Août-1955-Skikda, Skikda 21000, Algeria;
| | - Bingbing Deng
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Sarra Gam-Derrouich
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Sophie Nowak
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Fayna Mammeri
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Souad Ammar
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| |
Collapse
|
4
|
Hu Y, Zhu J, Wang X, Zheng X, Zhang X, Wu C, Zhang J, Fu C, Sheng T, Wu Z. Mo 4+-Doped CuS Nanosheet-Assembled Hollow Spheres for CO 2 Electroreduction to Ethanol in a Flow Cell. Inorg Chem 2024; 63:9983-9991. [PMID: 38757519 DOI: 10.1021/acs.inorgchem.4c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) to ethanol has been widely researched for potential commercial application. However, it still faces limited selectivity at a large current density. Herein, Mo4+-doped CuS nanosheet-assembled hollow spheres are constructed to address this issue. Mo4+ ion doping modifies the local electronic environments and diversifies the binding sites of CuS, which increases the coverage of linear *COL and produces bridge *COB for subsequent *COL-*COH coupling toward ethanol production. The optimal Mo9.0%-CuS can electrocatalyze CO2 to ethanol with a faradaic efficiency of 67.5% and a partial current density of 186.5 mA cm-2 at -0.6 V in a flow cell. This work clarifies that doping high valence transition metal ions into Cu-based sulfides can regulate the coverage and configuration of related intermediates for ethanol production during the CO2RR in a flow cell.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jiahui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiangyu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xinyue Zheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xingyue Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Chunhua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jingqi Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Cong Fu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Tian Sheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhengcui Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
5
|
Xu Y, Cheng C, Zhu J, Zhang B, Wang Y, Yu Y. Sulphur-Boosted Active Hydrogen on Copper for Enhanced Electrocatalytic Nitrate-to-Ammonia Selectivity. Angew Chem Int Ed Engl 2024; 63:e202400289. [PMID: 38372474 DOI: 10.1002/anie.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Electrocatalytic nitrate reduction to ammonia is a promising approach in term of pollutant appreciation. Cu-based catalysts performs a leading-edge advantage for nitrate reduction due to its favorable adsorption with *NO3. However, the formation of active hydrogen (*H) on Cu surface is difficult and insufficient, leading to the significant generation of by-product NO2 -. Herein, sulphur doped Cu (Cu-S) is prepared via an electrochemical conversion strategy and used for nitrate electroreduction. The high Faradaic efficiency (FE) of ammonia (~98.3 %) and an extremely low FE of nitrite (~1.4 %) are achieved on Cu-S, obviously superior to its counterpart of Cu (FENH3: 70.4 %, FENO2 -: 18.8 %). Electrochemical in situ characterizations and theoretical calculations indicate that a small amount of S doping on Cu surface can promote the kinetics of H2O dissociation to active hydrogen. The optimized hydrogen affinity validly decreases the hydrogenation kinetic energy barrier of *NO2, leading to an enhanced NH3 selectivity.
Collapse
Affiliation(s)
- Yue Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chuanqi Cheng
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300350, China
| | - Jiewei Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Bin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300350, China
| | - Yuting Wang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yifu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
6
|
Yang H, Li Y, Tu C, Zhuang Y, Li Q, Li Z, Zhao P, Zhang L, Zhang Y, Yu J. Double-enzyme active MnO 2@BSA mediated lab-on-paper dual-modality aptasensor for di(2-ethylhexyl)phthalate. Anal Chim Acta 2024; 1287:342135. [PMID: 38182398 DOI: 10.1016/j.aca.2023.342135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
Di(2-ethylhexyl)phthalate (DEHP), as an environmental endocrine disruptor, has adverse effects on eco-environments and health. Thus, it is crucial to highly sensitive on-site detect DEHP. Herein, a double-enzyme active MnO2@BSA mediated dual-modality photoelectrochemical (PEC)/colorimetric aptasensing platform with the cascaded sensitization structures of ZnIn2S4 and TiO2 as signal generators was engineered for rapid and ultrasensitive detection of DEHP using an all-in-one lab-on-paper analytical device. Benefitting from cascaded sensitization effect, the ZnIn2S4/TiO2 photosensitive structures-assembled polypyrrole paper electrode gave an enhanced photocurrent signal. The MnO2@BSA nanoparticles (NPs) with peroxidase-mimic and oxidase-mimic double-enzymatic activity induced multiple signal quenching effects and catalyzed color development. Specifically, the MnO2@BSA NPs acted as peroxidase mimetics to generate catalytic precipitates, which not only obstructed interfacial electron transfer but also served as electron acceptors to accept photogenerated electrons. Besides, the steric hindrance effect from MnO2@BSA NPs-loaded branchy polymeric DNA duplex structures further decreased photocurrent signal. The target recycling reaction caused the detachment of MnO2@BSA NPs to increase PEC signal, realizing the ultrasensitive detection of DEHP with a low detection limit of 27 fM. Ingeniously, the freed MnO2@BSA NPs flowed to colorimetric zone with the aid of fluid channels and acted as oxidase mimetics to induce color intensity enhancement, resulting in the rapid visual detection of DEHP. This work provided a prospective paradigm to develop field-based paper analytical tool for DEHP detection in aqueous environment.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chuanyi Tu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yilin Zhuang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qiuyi Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Zhenglin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
7
|
Peng H, Yang H, Han J, Liu X, Su D, Yang T, Liu S, Pao CW, Hu Z, Zhang Q, Xu Y, Geng H, Huang X. Defective ZnIn 2S 4 Nanosheets for Visible-Light and Sacrificial-Agent-Free H 2O 2 Photosynthesis via O 2/H 2O Redox. J Am Chem Soc 2023; 145:27757-27766. [PMID: 38059839 DOI: 10.1021/jacs.3c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
H2O2 photosynthesis has attracted great interest in harvesting and converting solar energy to chemical energy. Nevertheless, the high-efficiency process of H2O2 photosynthesis is driven by the low H2O2 productivity due to the recombination of photogenerated electron-hole pairs, especially in the absence of a sacrificial agent. In this work, we demonstrate that ultrathin ZnIn2S4 nanosheets with S vacancies (Sv-ZIS) can serve as highly efficient catalysts for H2O2 photosynthesis via O2/H2O redox. Mechanism studies confirm that Sv in ZIS can extend the lifetimes of photogenerated carriers and suppress their recombination, which triggers the O2 reduction and H2O oxidation to H2O2 through radical initiation. Theoretical calculations suggest that the formation of Sv can strongly change the coordination structure of ZIS, modulating the adsorption abilities to intermediates and avoiding the overoxidation of H2O to O2 during O2/H2O redox, synergistically promoting 2e- O2 reduction and 2e- H2O oxidation for ultrahigh H2O2 productivity. The optimal catalyst displays a H2O2 productivity of 1706.4 μmol g-1 h-1 under visible-light irradiation without a sacrificial agent, which is ∼29 times higher than that of pristine ZIS (59.4 μmol g-1 h-1) and even much higher than those of reported photocatalysts. Impressively, the apparent quantum efficiency is up to 9.9% at 420 nm, and the solar-to-chemical conversion efficiency reaches ∼0.81%, significantly higher than the value for natural synthetic plants (∼0.10%). This work provides a facile strategy to separate the photogenerated electron-hole pairs of ZIS for H2O2 photosynthesis, which may promote fundamental research on solar energy harvest and conversion.
Collapse
Affiliation(s)
- Huiping Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongcen Yang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Jiajia Han
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Qiaobao Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
8
|
Evrard CN, Thompson LM. Reactivity of Group 5 and 6 Single-Site Photocatalysts for Partial Oxidation of Methane: Comparison of Chromium, Niobium, and Tungsten-Doped Mesoporous Amorphous Silica. J Phys Chem A 2023; 127:6974-6988. [PMID: 37581579 DOI: 10.1021/acs.jpca.3c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Single-site transition-metal-doped photocatalysts can potentially be used for partial oxidation of methane (POM) at remote sites where natural gas is extracted and methane is often flared or released to the atmosphere. While there have been several investigations into the performance of vanadium, there has been no general survey of the performance of other metals. This work aims and examines Cr, Nb, and W metal oxide materials embedded in amorphous SiO2 to determine the viability of each metal in catalyzing the POM. Photoexcited states are examined to determine the nature of the photoactivated species, and then the subsequent POM reaction mechanisms are elucidated. Using the calculated energies of reaction intermediates and transition states, the rate of methanol formation is evaluated through the use of a microkinetic model. The findings indicate that all three metals are potentially more suitable for catalyzing POM than vanadium but that niobium shows the most favorable energy profile.
Collapse
Affiliation(s)
- Clint N Evrard
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, United States
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, United States
| |
Collapse
|
9
|
Das M, Das D, Sil S, Ray PP. Development of hierarchical copper sulfide-carbon nanotube (CuS-CNT) composites and utilization of their superior carrier mobility in efficient charge transport towards photodegradation of Rhodamine B under visible light. NANOSCALE ADVANCES 2023; 5:3655-3663. [PMID: 37441255 PMCID: PMC10334374 DOI: 10.1039/d3na00204g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
In this work, the synthesis of visible light sensitive copper sulfide (CuS) nanoparticles and their composites with carbon nanotubes (T-CuS) via a solvothermal technique is reported. The synthesized nanoparticles (NPs) and their composites were significantly characterized by powder X-ray diffraction (PXRD), scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, photoluminescence (PL) spectroscopy and thermogravimetric analysis (TGA). The effect of carbon nanotubes (CNTs) on the crystallinity, microstructures, photo-absorption, photo-excitation, thermal stability and surface area of CuS was investigated. The current-voltage (I vs. V) characteristics of both CuS and T-CuS based Schottky diodes were measured to determine the charge transport parameters like photosensitivity, conductivity, mobility of charge carriers, and transit time. The photocatalytic performance of bare CuS and T-CuS in the decomposition of Rhodamine B dye was studied using a solar simulator. The T-CuS composite showed higher photocatalytic activity (94%) compared to bare CuS (58%). The significance of charge carrier mobility in transferring photo-induced charges (holes and electrons) through complex networks of composites and facilitating the photodegradation process is explained. Finally, the reactive species responsible for the Rhodamine B degradation were also identified.
Collapse
Affiliation(s)
- Mainak Das
- Department of Physics, Jadavpur University Kolkata 700032 India
| | - Dhananjoy Das
- Department of Physics, Jadavpur University Kolkata 700032 India
| | - Sayantan Sil
- Department of Physics, University of Engineering and Management University Area, Action Area III, B/5, Newtown Kolkata 700160 India
| | | |
Collapse
|
10
|
Wang Y, Wang M, Liu J, Wang L, Pang H, Su Y, Pan J, Xue Z, Peng Y. BiOI/Bi 2MoO 6 p-n Junction to Enhance Visible Light Photocatalytic Activity toward Environmental Remediation. Inorg Chem 2023. [PMID: 37243623 DOI: 10.1021/acs.inorgchem.3c01012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Photocatalytic degradation of organic pollutants via semiconductors with high visible light response and effective carrier separation is an economical and green route to greatly achieve environmental remediation. Herein, an efficient BiOI/Bi2MoO6 p-n heterojunction was in situ fabricated through hydrothermal method by substituting Mo7O246- species for I ions. The characteristic p-n heterojunction exhibited a strongly enhanced visible light responsive absorption from 500 to 700 nm owing to the narrow band gap of BiOI and a greatly effective separation of photoexcited carriers because of the built-in electric field on the interface between BiOI and Bi2MoO6. Moreover, the flower-like microstructure also promoted the adsorption of organic pollutants owing to the large surface area (about 10.36 m2/g), good for further photocatalytic degradation. As a result, BiOI/Bi2MoO6 p-n heterojunction showed an excellent photocatalytic activity of RhB of almost 95% in a short time of 90 min under wavelength longer than 420 nm, 2.3 and 2.7 times higher compared with single BiOI and Bi2MoO6, respectively. This work offers a promising approach to purify the environment through the utilization of solar energy by constructing efficient p-n junction photocatalysts.
Collapse
Affiliation(s)
- Yu'ao Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Meijiao Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jiahui Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Hanxiao Pang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yanbin Su
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - ZhenZhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yanhua Peng
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
11
|
El-Gendy RA, El-Bery HM, Farrag M, Fouad DM. Metal chalcogenides (CuS or MoS 2)-modified TiO 2 as highly efficient bifunctional photocatalyst nanocomposites for green H 2 generation and dye degradation. Sci Rep 2023; 13:7994. [PMID: 37198395 DOI: 10.1038/s41598-023-34743-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023] Open
Abstract
Herein, we report the modification of TiO2 nanostructures with two different metal chalcogenides (CuS or MoS2). The effect of the preparation scheme (hydrothermal and coprecipitation methods) and the mass ratio of metal chalcogenides were investigated. The as-synthesized photocatalyst nanocomposites were fully characterized by various techniques. Moreover, the photo/electrochemical analysis were performed to investigate the photoelectric properties and photocatalytic mechanism. The photocatalytic performance was evaluated using two test reactions. In the case of H2 generation via water splitting, it was found that 0.5 wt% CuS-TiO2 synthesized via the coprecipitation method exhibited an initial hydrogen evolution rate (HER) of 2.95 mmol h-1 g-1. While, the optimized 3 wt% MoS2-TiO2 synthesized by the hydrothermal method, showed an HER of 1.7 mmol h-1 g-1. Moreover, the degradation efficiency of methylene blue dye was 98% under UV-Vis light irradiation within 2 h over 0.5 CT_PP and 3MT_HT. Under visible irradiation, the degradation efficiency was 100% and 96% for 3MT_PP and 0.5CT_HT in the presence of H2O2, respectively. This study has proven that metal chalcogenides can act as effective, stable, and low-cost bifunctional co-catalysts to enhance the overall photocatalytic performance.
Collapse
Affiliation(s)
- Reem A El-Gendy
- Advanced Multifunctional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt.
- Basics Science Department, School of Biotechnology, Badr University in Assiut, Assiut, 2014101, Egypt.
| | - Haitham M El-Bery
- Advanced Multifunctional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt.
- Basics Science Department, School of Biotechnology, Badr University in Assiut, Assiut, 2014101, Egypt.
| | - Mostafa Farrag
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Dina M Fouad
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
12
|
Eshete M, Li X, Yang L, Wang X, Zhang J, Xie L, Deng L, Zhang G, Jiang J. Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges. SMALL SCIENCE 2023; 3:2200041. [PMID: 40212059 PMCID: PMC11935971 DOI: 10.1002/smsc.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Steering charge kinetics is a key to optimizing quantum efficiency. Advancing the design of photocatalysts (ranging from single semiconductor to multicomponent semiconductor junctions) that promise improved photocatalytic performance for converting solar to chemical energy, entails mastery of increasingly more complicated processes. Indeed, charge kinetics become more complex as both charge generation and charge consumption may occur simultaneously on different components, generally with charges being transferred from one component to another. Capturing detailed charge dynamics information in each heterojunction would provide numerous significant benefits for applications and has been needed for a long time. Here, the steering of charge kinetics by modulating charge energy states in the design of semiconductor-metal-interface-based heterogeneous photocatalysts is focused. These phenomena can be delineated by separating heterojunctions into classes exhibiting either Schottky/ohmic or plasmonic effects. General principles for the design and construction of heterojunction photocatalysts, including recent advances in the interfacing of semiconductors with graphene, carbon quantum dots, and graphitic carbon nitride are presented. Their limitations and possible future outlook are brought forward to further instruct the field in designing highly efficient photocatalysts.
Collapse
Affiliation(s)
- Mesfin Eshete
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
- Department of Industrial ChemistryCollege of Applied SciencesNanotechnology Excellence CenterAddis Ababa Science and Technology UniversityP.O. Box 16417Addis AbabaEthiopia
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Li Yang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Xijun Wang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jinxiao Zhang
- College of Chemistry and BioengineeringGuilin University of Technology12 Jian'gan RoadGuilinGuangxi541004P. R. China
| | - Liyan Xie
- A Key Laboratory of the- Ministry of Education for Advanced- Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhuaZhejiang321004P. R. China
| | - Linjie Deng
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| |
Collapse
|
13
|
Ali SA, Sadiq I, Ahmad T. Oxide based Heterostructured Photocatalysts for CO
2
Reduction and Hydrogen Generation. ChemistrySelect 2023. [DOI: 10.1002/slct.202203176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Iqra Sadiq
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Tokeer Ahmad
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
14
|
Chen Z, Zhu X, Xiong J, Wen Z, Cheng G. A p-n Junction by Coupling Amine-Enriched Brookite-TiO 2 Nanorods with Cu xS Nanoparticles for Improved Photocatalytic CO 2 Reduction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:960. [PMID: 36769965 PMCID: PMC9918986 DOI: 10.3390/ma16030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic CO2 reduction is a promising technology for reaching the aim of "carbon peaking and carbon neutrality", and it is crucial to design efficient photocatalysts with a rational surface and interface tailoring. Considering that amine modification on the surface of the photocatalyst could offer a favorable impact on the adsorption and activation of CO2, in this work, amine-modified brookite TiO2 nanorods (NH2-B-TiO2) coupled with CuxS (NH2-B-TiO2-CuxS) were effectively fabricated via a facile refluxing method. The formation of a p-n junction at the interface between the NH2-B-TiO2 and the CuxS could facilitate the separation and transfer of photogenerated carriers. Consequently, under light irradiation for 4 h, when the CuxS content is 16%, the maximum performance for conversion of CO2 to CH4 reaches at a rate of 3.34 μmol g-1 h-1 in the NH2-B-TiO2-CuxS composite, which is approximately 4 times greater than that of pure NH2-B-TiO2. It is hoped that this work could deliver an approach to construct an amine-enriched p-n junction for efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Zhangjing Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Xueteng Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhipan Wen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| |
Collapse
|
15
|
Song Z, Liu Y, Zhang B, Song S, Zhou Z, Huang Y, Zhao Z. Magnetic grinding synthesis of copper sulfide-based photocatalytic composites for the degradation of organic dyes under visible light. NEW J CHEM 2023. [DOI: 10.1039/d2nj05397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CuS based composites prepared by magnetic grinding method with metal and sulfur powder as raw materials have photocatalytic activity.
Collapse
Affiliation(s)
- Zhangbin Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yaoguo Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|
16
|
Liu C, Zuo J, Su X, Guo H, Pei Y, Zhang J, Chen S. Nanoetching TiO 2 nanorod photoanodes to induce high-energy facet exposure for enhanced photoelectrochemical performance. NANOSCALE 2022; 14:15918-15927. [PMID: 36268828 DOI: 10.1039/d2nr04031j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Crystal facet engineering is considered as an effective way to improve photoelectrochemical (PEC) performance. Here, we have developed a nanoetching technology (TiO2 → TiO2/Bi4Ti3O12 → TiO2/BiVO4 → etching-TiO2) to treat rutile TiO2 nanorod films. Interestingly, the technology can induce the exposure of a large number of high energy (101) faces, and the etching-TiO2 film (E-TiO2) showed a significantly enhanced PEC performance. A dynamic study indicates that charge separation and transfer have been obviously improved by such a nanoetching technology. In particular, the charge transfer efficiency (ηtrans) of E-TiO2 reaches 93.4% at 1.23 V vs. RHE without any loaded cocatalyst. The mechanism of PEC performance enhanced by the strategy is experimentally and theoretically unraveled. The improvement of PEC performance is mainly attributed to the shorter distance between H and the neighboring O-b for the HO* intermediates of the rutile (101) facet, which can reduce the energy barrier for the OER. Besides, the driving force for spatial charge separation between the (110) and (101) facets can promote charge separation. This work offers a new and versatile nanotechnology to induce the exposure of the high energy crystal facets and improve the PEC performance.
Collapse
Affiliation(s)
- Canjun Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
- School of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Jian Zuo
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Xin Su
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Huili Guo
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Yong Pei
- School of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Jie Zhang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| |
Collapse
|
17
|
Chalcogenides and Chalcogenide-Based Heterostructures as Photocatalysts for Water Splitting. Catalysts 2022. [DOI: 10.3390/catal12111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chalcogenides are essential in the conversion of solar energy into hydrogen fuel due to their narrow band gap energy. Hydrogen fuel could resolve future energy crises by substituting carbon fuels owing to zero-emission carbon-free gas and its eco-friendliness. The fabrication of different metal chalcogenide-based photocatalysts with enhanced photocatalytic water splitting have been summarized in this review. Different modifications of these chalcogenides, including coupling with another semiconductor, metal loading, and doping, are fabricated with different synthetic routes that can remarkably improve the photo-exciton separation and have been extensively investigated for photocatalytic hydrogen generation. In this direction, this review is undertaken to provide an overview of the enhanced photocatalytic performance of the binary and ternary chalcogenide heterostructures and their mechanisms for hydrogen production under irradiation of light.
Collapse
|
18
|
Liu Z, Qiu L, Wen K, Cao B, Li P, Tang Y, Chen X, Kita H, Duo S. In situself-assembly fabrication of ultrathin sheet-like CuS modified g-C 3N 4heterojunction and its enhanced visible-light photocatalytic performance. NANOTECHNOLOGY 2022; 34:015713. [PMID: 36162239 DOI: 10.1088/1361-6528/ac94da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Photocatalysts with heterojunction structure have been widely used for organic degradation. In this study, CuS/g-C3N4heterojunction was formed byin situself-assembly via a simply hydrothermal method. A series of characterizations were applied to analyzing the morphology, structure, optical properties and photo-induced electron transfer of the samples. The effect of CuS mass ratio in the CuS/g-C3N4composite on methyl blue (10 mg l-1) degradation under visible-light illumination was discussed. When CuS mass ratio was 60%, CuS/g-C3N4behaved the highest photocatalytic efficiency which is 17 times higher than that of pure g-C3N4, and the optimal heterojunction exhibited promising photocatalytic stability as well. The synthesized CuS/g-C3N4with intimate contact and promising photocatalytic performance provides important implications on analogous researches on g-C3N4-based heterojunctions for photocatalytic applications.
Collapse
Affiliation(s)
- Zheyuan Liu
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Lingfang Qiu
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Ke Wen
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Banpeng Cao
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
- Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Ping Li
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Yi Tang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiangshu Chen
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Hidetoshi Kita
- Graduate School of Science and Technology for Innovation, Graduate School Science and Engineering, Yamaguchi University, Ube 755-8611, Japan
| | - Shuwang Duo
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| |
Collapse
|
19
|
Zhou Y, Ye Q, Shi X, Zhang Q, Song Q, Zhou C, Li D, Jiang D. Ni 3B as p-Block Element-Modulated Cocatalyst for Efficient Photocatalytic CO 2 Reduction. Inorg Chem 2022; 61:17268-17277. [PMID: 36259672 DOI: 10.1021/acs.inorgchem.2c02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the multiple electron and proton transfer processes involved, the photogenerated charges are easily recombined during the photocatalytic reduction of CO2, making the generation of the eight-electron product CH4 kinetically more difficult. Herein, Ni3B nanoparticles modulated by p-block element were combined with TiO2 nanosheets to construct a novel Schottky junction photocatalyst (Ni3B/TiO2) for the selective photocatalytic conversion of CO2 to CH4. The formed Ni3B/TiO2 photocatalyst with Schottky junction ensures a transfer pathway of photogenerated electrons from TiO2 to Ni3B, which facilitates the accumulation of electrons on the surface of Ni3B and subsequently improves the activity of photocatalytic CO2 reduction to CH4. The optimized Ni3B/TiO2 Schottky junction shows an improved CH4 yield of 30.03 μmol g-1 h-1, which was much higher than those of TiO2 (1.62 μmol g-1 h-1), NiO/TiO2 (2.44 μmol g-1 h-1), and Ni/TiO2 (4.3 μmol g-1 h-1). This work demonstrated that the introduction of p-block elements can alleviate the scaling relationship effect of pure metal cocatalysts to a certain extent, and the modified Ni3B can be used as a promising new cocatalyst to effectively improve the selective photocatalytic of CO2 to CH4.
Collapse
Affiliation(s)
- Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangli Shi
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qi Song
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changjian Zhou
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Han F, Ma S, Li D, Alam MM, Yang Z. A Simple Fabrication of Sb 2S 3/TiO 2 Photo-Anode with Long Wavelength Visible Light Absorption for Efficient Photoelectrochemical Water Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3444. [PMID: 36234571 PMCID: PMC9565654 DOI: 10.3390/nano12193444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
An Sb2S3-sensitized TiO2 (Sb2S3/TiO2) photo-anode (PA) exhibiting a high photo-electrochemical (PEC) performance in water oxidation has been successfully prepared by a simple chemical bath deposition (CBD) technique. Herein, the Raman spectra and XPS spectrum of Sb2S3/TiO2 confirmed the formation of Sb2S3 on the TiO2 coatings. The Sb2S3/TiO2 photo-anode significantly shifted the absorption edge from 395 nm (3.10 eV) to 650 nm (1.90 eV). Furthermore, the Sb2S3/TiO2 photo-anode generated a photo-anodic current under visible light irradiation below 650 nm due to the photo-electrochemical action compared with the TiO2 photo-anode at 390 nm. The incident photon-to-current conversion efficiency (IPCE = 7.7%) at 400 nm and -0.3 V vs. Ag/AgCl was 37 times higher than that (0.21%) of the TiO2 photo-anodes due to the low recombination rate and acceleration of the carriers of Sb2S3/TiO2. Moreover, the photo-anodic current and photostability of the Sb2S3/TiO2 photo-anodes improved via adding the Co2+ ions to the electrolyte solution during photo-electrocatalysis.
Collapse
Affiliation(s)
- Fei Han
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
- School of Material Science and Engineering, North Minzu University, Yinchuan 750021, China
- Key Laboratory of Polymer Materials and Manufacturing Technology, North Minzu University, Yinchuan 750021, China
| | - Sai Ma
- School of Material Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Dong Li
- School of Material Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Md Mofasserul Alam
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zeheng Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
21
|
Vijayan A, Sandhyarani N. Enhancing the catalytic activity of bulk MoS2 towards hydrogen evolution reaction by the formation of MoS2-MoO3-Re2O7 heterostructure. J Colloid Interface Sci 2022; 623:819-831. [DOI: 10.1016/j.jcis.2022.05.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
22
|
Accelerated Fe(III)/Fe(II) cycle couples with in-situ generated H2O2 boosting visible light-induced Fenton-like oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Gautam A, Sk S, Pal U. Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Phys Chem Chem Phys 2022; 24:20638-20673. [PMID: 36047908 DOI: 10.1039/d2cp02089k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen evolution from water splitting is considered to be an important renewable clean energy source and alternative to fossil fuels for future energy sustainability. Photocatalytic and electrocatalytic water splitting is considered to be an effective method for the sustainable production of clean energy, H2. This perspective especially emphasizes research advances in the solution-assisted synthesis of transition metal chalcogenides for both photo and electrocatalytic hydrogen evolution applications. Transition metal chalcogenides (CdS, MoS2, WS2, TiS2, TaS2, ReS2, MoSe2, and WSe2) have received intensified research interest over the past two decades on account of their unique properties and great potential across a wide range of applications. The photocatalytic activity of transition metal chalcogenides can further be improved by elemental doping, heterojunction formation with noble metals (Au, Pt, etc.), non-chalcogenides (MoS2, In2S3, NiS1-X), morphological tuning, through various solution-assisted synthesis processes, including liquid-phase exfoliation, heat-up, hot-injection methods, hydrothermal/solvothermal routes and template-mediated synthesis processes. In this review we will discuss recent developments in transition metal chalcogenides (TMCs), the role of TMCs for hydrogen production and various strategies for surface functionalization to increase their activity, different synthesis methods, and prospects of TMCs for hydrogen evolution. We have included a brief discussion on the effect of surface hydrogen binding energy and Gibbs free energy change for HER in electrocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Amit Gautam
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saddam Sk
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
24
|
Nguyen TL, Pham TH, Viet NM, Thang PQ, Rajagopal R, Sathya R, Jung SH, Kim T. Improved photodegradation of antibiotics pollutants in wastewaters by advanced oxidation process based on Ni-doped TiO 2. CHEMOSPHERE 2022; 302:134837. [PMID: 35525460 DOI: 10.1016/j.chemosphere.2022.134837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The number of antibiotic compounds in wastewaters has been growing globally due to the covid-19 problem. Using antibiotics to treat the patients would produce larger amounts of these compounds into the environment with negative impacts. Hence, finding out the method for the elimination of toxic organic pollutants as well as antibiotics in water is urgent (In this study, the treatment of antibiotic pollutants including cefalexin (CF) and tetracycline (TC) was investigated by applying the advanced oxidation process based on Ni-doped TiO2 (Ni-TiO2). The characterizations technologies such as XRD, XPS, UV-vis, PL, and PC indicated that Ni doping would improve the photocatalytic performance of TiO2. In the photodegradation experiments, the Ni-TiO2 possessed high photocatalytic degradation efficiencies with 93.6% for CF and 82.5% for TC. Besides, the removal rates of antibiotics after five cycles are higher than 75%, implying excellent stability of Ni-TiO2 photocatalyst. The result from the treatment of wastewater samples revealed that the Ni-TiO2 photocatalytic had good performance for removal of CF and TC at a high level of 88.6 and 80.2%, respectively.
Collapse
Affiliation(s)
- Thanh Luan Nguyen
- Department of Science and Technology and International Affairs, HUTECH University, 475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City, 700000, Viet Nam.
| | - Thi Huong Pham
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea.
| | - Nguyen Minh Viet
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Phan Quang Thang
- Institute of Environmental Technology (IET), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rengasamy Sathya
- Department of Microbiology, Centre for Research and Development, PRIST University, Tamil Nadu, 613 403, India
| | - Sung Hoon Jung
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea.
| |
Collapse
|
25
|
Song L, Hu J, Lu X, Lu Z, Xie J, Hao A, Cao Y. Boosting the Photocatalytic Activity and Resistance of Photostability of ZnS Nanoparticles. Inorg Chem 2022; 61:8217-8225. [PMID: 35584061 DOI: 10.1021/acs.inorgchem.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Defects play a vital role in improving photocatalytic performance. However, the specific influence mechanism of sulfur defects (DSS) on sulfide photocatalytic performance and stability is still unclear. In this work, an ingenious solvent-free self-overflow strategy is designed to introduce DSS into ZnS nanoparticles and explore the specific promotion mechanism of photocatalytic performance and photostability. The results indicate that the introduced DSS in ZnS nanoparticles can simultaneously boost the photocatalytic hydrogen production (PHE) performance and photostability of ZnS: the PHE rate of the defective ZnS can increase up to 21350.23 μmol·h-1·g-1, which is roughly 4.7 times higher than that of pristine ZnS. Both experiments and theoretical calculationsshow that the enhanced photocatalytic performance could be attributed to the change of energy band position after introducing DSS. Specifically, the introduction of DSS can raise the conduction band (CB) position of ZnS to enhance the reducing ability of photogenerated electrons. Besides, the valence band (VB) position can also be raised to boost the light absorption ability of ZnS and restrain the photocorrosion by weakening the oxidation capacity of the photogenerated holes. The ingenious strategy and interesting mechanism in this job provide a simple artful tactic to fabricate other defective sulfide photocatalysts and open up a particular path to promote the photostability of the photocatalysts.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Xiaoyan Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Aize Hao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| |
Collapse
|
26
|
Chandra M, Guharoy U, Pradhan D. Boosting the Photocatalytic H 2 Evolution and Benzylamine Oxidation using 2 D/1D g-C 3N 4/TiO 2 Nanoheterojunction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22122-22137. [PMID: 35506450 DOI: 10.1021/acsami.2c03230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present research aims at the elevation of solar-to-chemical energy conversion with extortionate performance and sustainability. The nanostructured materials are revolutionizing the water splitting technology into decoupled hydrogen with simultaneous value-added organic chemical production. Yet, the bottleneck in semiconductor photocatalysis is rapid charge recombination and sluggish reaction kinetics. Herein, we demonstrate an efficient and non-noble metal-based catalyst for successful redox reaction with a theoretical modeling through density functional theory (DFT) study. Implementing this robust approach on 2D/1D ultrathin g-C3N4 nanosheets and TiO2 nanowires heterojunction, we achieved H2 production of 5.1 mmol g-1 h-1 with apparent quantum efficiency of 7.8% under visible light illumination and 93% of benzylamine conversion to N-benzylidene benzylamine in situ. The interface of 2D g-C3N4 nanosheets and 1D nanowires provide ample active sites and extends the visible light absorption with requisite band edge position for the separation of photoinduced charge carriers with superior stability. The electronic properties, band structure, and stability of the heterojunction are further investigated via DFT calculations which corroborate the experimental results and in good agreement for the enhanced activity of the heterojunction.
Collapse
Affiliation(s)
- Moumita Chandra
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Utsab Guharoy
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Debabrata Pradhan
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
27
|
Behnam Nourmohammadi Khiarak, Imanparast S, Yengejeh MM, Zahraei AA, Yaghobi R, Golmohammad M. Efficient Water Oxidation Catalyzed by a Graphene Oxide/Copper Electrode, Supported on Carbon Cloth. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193521100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Huang S, Qin C, Niu L, Wang J, Sun J, Dai L. Strategies for preparing TiO 2/CuS nanocomposites with cauliflower-like protrusions for photocatalytic water purification. NEW J CHEM 2022. [DOI: 10.1039/d2nj00672c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and controllable method was developed to prepare TiO2/CuS nanocomposites with high photocatalytic efficiency.
Collapse
Affiliation(s)
- Sihui Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chuanxiang Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Linyan Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - JianJun Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lixing Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
29
|
Wu Z, Liu X, Yu C, Li F, Zhou W, Wei L. Construct interesting CuS/TiO 2 architectures for effective removal of Cr(VI) in simulated wastewater via the strong synergistic adsorption and photocatalytic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148941. [PMID: 34328876 DOI: 10.1016/j.scitotenv.2021.148941] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Most of the reduction processes for Cr (VI) removal tend to be available only at the acidic condition and the capable extent of pH is limited. Here, we developed a facile strategy for constructing CuS/TiO2 architectures via a facile precipitation process. The as-prepared urchin-like CuS microspheres possessed hierarchical/large porous structure and unique electrical structure, which provided a strong ability to capture the Cr(VI) ions in water. Once CuS microspheres were combined with TiO2 crystals (P25), a surprised high removal efficiency for Cr(VI) was obtained. With optimal molar ratio of CuS:TiO2 (0.72:1), 4.4 and 1.3 times in Cr(VI) removal rate were obtained with respect to pure TiO2 and CuS. The high removal efficiency was induced by the distinct synergistic role of strong adsorption and photocatalytic reduction originated from unique electrical structure in CuS/TiO2 hetero-structure. Moreover, these novel CuS/TiO2 architectures possess promising application for Cr6+ effluents remediation in a wide range of pH and with co-existing anions and cations.
Collapse
Affiliation(s)
- Zhen Wu
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xingqiang Liu
- School of Environmental Science and Engineering, Key Laboratory of Estuarine Ecological Security and Environmental Health, Xiamen University Tan Kah Kee College, Zhangzhou 363105, Fujian, China
| | - Changlin Yu
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Fang Li
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Wanqin Zhou
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Longfu Wei
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| |
Collapse
|
30
|
|
31
|
Wu Y, Liu C, Wang C, Yu Y, Shi Y, Zhang B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat Commun 2021; 12:3881. [PMID: 34162851 PMCID: PMC8222359 DOI: 10.1038/s41467-021-24059-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Electrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method. Highly selective electrocatalytic semi-hydrogenation of alkynes over a noble-metal-free catalyst is highly desirable. Here, authors synthesize sulfur-containing copper nanowire sponges for selective electrocatalytic alkyne semi-hydrogenation using water as the hydrogen source.
Collapse
Affiliation(s)
- Yongmeng Wu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Cuibo Liu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Changhong Wang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Yifu Yu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Yanmei Shi
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.
| |
Collapse
|
32
|
Hao N, Dai Z, Xiong M, Han X, Zuo Y, Qian J, Wang K. Rapid Potentiometric Detection of Chemical Oxygen Demand Using a Portable Self-Powered Sensor Chip. Anal Chem 2021; 93:8393-8398. [PMID: 34101434 DOI: 10.1021/acs.analchem.1c01863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chemical oxygen demand (COD) is an important indicator of organic pollutants in water bodies. Most of the present testing methods have the disadvantages of having complicated steps, being time-consuming, and using toxic and hazardous substances. In this work, rapid potentiometric detection of chemical oxygen demand (COD) using a portable self-powered sensor chip was successfully developed. The indium tin oxide (ITO) electrode was etched by laser, and the photocatalytic materials TiO2/CuS and Pt were modified onto the photoanode and the cathode to prepare the sensor chip. Based on the principle of photocatalytic degradation, organic pollutants can be oxidized by TiO2/CuS, and the concentration will affect the generated voltage. The quantitative detection of COD in the range of 0.05-50 mg/L can be rapidly achieved within 5 min by a miniature device. Besides good portability and sensitivity, the proposed sensor also has the advantages of environmental friendliness and ease of use, which is an ideal choice for the on-site detection of water pollution.
Collapse
Affiliation(s)
- Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhen Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Xu Han
- Science and Technology on Space Physics Laboratory, Beijing 10076, PR China
| | - Yanli Zuo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
33
|
Guo X, Liu S, Wang W, Zhu C, Li C, Yang Y, Tian Q, Liu Y. Enhanced photocatalytic hydrogen production activity of Janus Cu 1.94S-ZnS spherical nanoheterostructures. J Colloid Interface Sci 2021; 600:838-846. [PMID: 34051468 DOI: 10.1016/j.jcis.2021.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022]
Abstract
Photocatalytic hydrogen evolution is one of the most promising approaches for efficient solar energy conversion. The light-harvesting ability and interfacial structure of heterostructured catalysts regulate the processes of photon injection and transfer, which further determines their photocatalytic performances. Here, we report a Janus Cu1.94S-ZnS nano-heterostructured photocatalyst synthesized using a facile stoichiometrically limited cation exchange reaction. Djurleite Cu1.94S and wurtzite ZnS share the anion skeleton, and the lattice mismatch between immiscible domains is ∼1.7%. Attributing to the high-quality interfacial structure, Janus Cu1.94S-ZnS nanoheterostructures (NHs) show an enhanced photocatalytic hydrogen evolution rate of up to 0.918 mmol h-1 g-1 under full-spectrum irradiation, which is ∼38-fold and 17-fold more than those of sole Cu1.94S and ZnS nanocrystals (NCs), respectively. The results indicate that cation exchange reaction is an efficient approach to construct well-ordered interfaces in hybrid photocatalysts, and it also demonstrates that reducing lattice mismatch and interfacial defects in hybrid photocatalysts is essential for enhancing their solar energy conversion performance.
Collapse
Affiliation(s)
- Xueyi Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Sheng Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Weijia Wang
- State Key Laboratory for Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China.
| | - Congtan Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Chongyao Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Ying Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Yong Liu
- State Key Laboratory for Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| |
Collapse
|
34
|
Du X, Hu J, Liu A, Cao Y. Interfacial modification and band modulation for dramatically boosted photocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 588:670-679. [PMID: 33267952 DOI: 10.1016/j.jcis.2020.11.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Interfacial modification and band modulation to narrow the band gap and improve light-harvesting ability of TiO2 are promising strategies to dramatically promote photocatalytic activity. Herein, efficient Co(OH)2-TiO2 nanocomposites were reasonably designed and constructed by a facile room temperature solid-state synthetic strategy for interfacial modification and matched band gap to achieve the conversion of solar energy to hydrogen. Modifying transition metal hydroxide Co(OH)2 on commercial TiO2 can effectively narrow the band gap and accelerate the separation and migration of photo-induced carriers, which will extend light absorption range and facilitate more electrons transferring to the surface of photocatalyst, therefore the reducibility of photocatalysts is enhanced. The modified photocatalyst exhibits high photocatalytic hydrogen evolution activity and stability. Specifically, the obtained TCO-0.6 shows excellent photocatalytic hydrogen evolution rate of 21343.01 μmol g-1 and is 23 times superior to commercial TiO2. This work not only emphasizes a facile strategy for interfacial modification and band modulation under mild condition, but also provides a novel avenue for improving the performance of photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Xinjuan Du
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Jindou Hu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Anjie Liu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
| |
Collapse
|
35
|
Understanding the synergistic role of Pt-mediated MoO3 photoanode with self-photorechargeability during illuminated and non-illuminated conditions: A combined experimental and density functional theory study. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Plasmonic quaternary heteronanostructures (HNSs) for improved solar light utilization, spatial charge separation, and stability in photocatalytic hydrogen production. J Colloid Interface Sci 2021; 582:720-731. [PMID: 32911417 DOI: 10.1016/j.jcis.2020.08.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/07/2022]
Abstract
Recently, the frenetic development of stable quaternary material with a wide range of solar energy absorption and separation of charge carrier has emerged as a favorable material for the solar-to-hydrogen conversion. In this work, quaternary CuS-AgVO3/Ag-TNR heteronanostructures (HNSs) synthesized by an ultra-sonication method for stabilized solar light photocatalytic hydrogen production in glycerol-water mixture. Among the prepared photocatalysts, the 1 wt% CuS-AgVO3/Ag-TNR HNS produced the highest H2 activity (756 µmol/g), approximately 84 times greater than the TNR due to higher charge separation, excellent conductivity, plasmonic resonance effect, and electron-storing capacity. Interestingly, the accelerated charge transfer pathway through the Schottky junction between the AgVO3 and Ag to the conduction band of the TNR and thereafter to the electron acceptor of CuS for the reduction of H+ ions to H2. Additionally, a possible photocatalytic mechanism of CuS-AgVO3/Ag-TNR HNS for improved H2 production was proposed based on the results obtained by various characterization techniques. Therefore, present research work explores the new insights to design high-performance CuS-AgVO3/Ag-TNR HNS material for the conversion of clean renewable H2 energy for the futuristic transport applications.
Collapse
|
37
|
Niazi Z, Goharshadi EK, Mashreghi M, Jorabchi MN. Highly efficient solar photocatalytic degradation of a textile dye by TiO 2/graphene quantum dots nanocomposite. Photochem Photobiol Sci 2021; 20:87-99. [PMID: 33721238 DOI: 10.1007/s43630-020-00005-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Herein, two sunlight responsive photocatalysts including TiO2 nanoparticles (NPs) and TiO2/graphene quantum dots (GQDs) nanocomposite for degrading a textile dye, Reactive Black 5 (RB5), were prepared. The results showed that 100% of 50 ppm RB5 could be degraded by TiO2 NPs and TiO2/GQDs within 60 and 30 min sunlight irradiation, respectively. Hence, much better photocatalytic activity in degradation of RB5 was achieved by TiO2/GQDs under sunlight irradiation compared with pure TiO2 NPs due to its lower band gap (2.13 eV) and electron/hole recombination rate. The photocatalytic degradation mechanism of RB5 by TiO2 NPs was elucidated by adding some scavengers to the solution. The main reactive species contributing to RB5 degradation were surface hydroxyl radicals. The first-order solar degradation rate constant of RB5 for TiO2/GQDs is greater than that of TiO2 NPs under sunlight illumination.
Collapse
Affiliation(s)
- Zohreh Niazi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Elaheh K Goharshadi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran. .,Nano Research Center, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Majid Namayandeh Jorabchi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.,Institute of Chemistry, Physical and Theoretical Chemistry, University of Rostock, Albert-Einstein-Straße 21, 18059, Rostock, Germany
| |
Collapse
|
38
|
Zhou H, Wang L, Shi H, Zhang H, Wang Y, Bai S, Yang Y, Li Y, Zhang T, Zhang H. Highly efficient solar-driven photocatalytic hydrogen evolution by a ternary 3D ZnIn 2S 4–MoS 2 microsphere/1D TiO 2 nanobelt heterostructure. NEW J CHEM 2021. [DOI: 10.1039/d1nj00608h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein, a novel ternary three-dimensional (3D) ZnIn2S4–MoS2 microsphere/one-dimensional (1D) TiO2 nanobelt photocatalyst was created, achieving excellent photocatalytic H2 evolution performance under visible light irradiation.
Collapse
|
39
|
Gunasekaran S, Thangaraju D, Marnadu R, Chandrasekaran J, Shkir M, Durairajan A, Valente MA, Alshaharanig T, Elango M. Photosensitive activity of fabricated core-shell composite nanostructured p-CuO@CuS/n-Si diode for photodetection applications. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 317:112373. [PMID: 33071460 PMCID: PMC7556296 DOI: 10.1016/j.sna.2020.112373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Development of photo detectors based on different semiconducting materials with high performance has been in progress in recent past, however, there is a lot of difficulties in developing the more effective photo detectors-based devices with high responsivity, detectivity and quantum efficiency. Hence, we have synthesized pure CuS and CuO@CuS core-shell heterostructure based photo detectors with high performance by simple and cost-effective two-step chemical co-precipitation method. The phase purity of CuS and CuO@CuS composite was observed by XRD analysis and the result were verified with Raman spectroscopy studies. Sphere like morphology of pure CuS and core-shell structure formation of CuO@CuS are observed with scanning and transmission electron microscopes. The presence of expected elements has been confirmed with EDX elemental mapping. Light harvesting photodiodes were fabricated by using n-type silicon substrate through drop cost method. Photo sensitive parameters of fabricated diodes were analyzed by I-V characteristics. The p-CuO@CuS (1:1)/n-Si diode owned a maximum photosensitivity (Ps) ∼ 7.76 × 104 %, photoresponsivity (R) ∼ 798.61 mA/W, external quantum efficiency ( E Q E )∼309.66 % and specific detectivity (D*) ∼ 8.19 × 1011 Jones when compared to p-CuS/n-Si diode. The obtained results revealed that the core/shell heterostructure of CuO@CuS is the most appropriate for photo detection.
Collapse
Affiliation(s)
- S Gunasekaran
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India
| | - D Thangaraju
- Nano-Crystal Design and Application Lab (NCDAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641062, Tamil Nadu, India
| | - R Marnadu
- Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India
| | - J Chandrasekaran
- Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India
| | - Mohd Shkir
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - A Durairajan
- I3NAveiro, Department of Physics, University of Aveiro, 3810 193, Aveiro, Portugal
| | - M A Valente
- I3NAveiro, Department of Physics, University of Aveiro, 3810 193, Aveiro, Portugal
| | - T Alshaharanig
- Department of Physics College of Science Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - M Elango
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India
| |
Collapse
|
40
|
Chatterjee A, Jana AK, Basu JK. A binary MOF of iron and copper for treating ciprofloxacin-contaminated waste water by an integrated technique of adsorption and photocatalytic degradation. NEW J CHEM 2021. [DOI: 10.1039/d1nj02880d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel MIL 53(Fe–Cu) was synthesized by a solvothermal process. This binary metal organic framework removed ciprofloxacin from waste water.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-732302, India
| | - Amiya Kumar Jana
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-732302, India
| | - Jayanta Kumar Basu
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-732302, India
| |
Collapse
|
41
|
Kundu J, Mal DD, Pradhan D. Single-step solvothermal synthesis of highly uniform Cd xZn 1−xS nanospheres for improved visible light photocatalytic hydrogen generation. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00531b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single step synthesis of a solid solution of CdxZn1−xS is demonstrated with optimum Cd and Zn percentage for enhanced photocatalytic hydrogen generation under visible light.
Collapse
Affiliation(s)
- Joyjit Kundu
- Materials Science Centre
- Indian Institute of Technology
- Kharagpur
- India
| | | | - Debabrata Pradhan
- Materials Science Centre
- Indian Institute of Technology
- Kharagpur
- India
| |
Collapse
|
42
|
Chen L, Hu H, Chen Y, Li Y, Gao J, Li G. Sulfur Precursor Reactivity Affecting the Crystal Phase and Morphology of Cu
2−
x
S Nanoparticles. Chemistry 2020; 27:1057-1065. [DOI: 10.1002/chem.202003760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lihui Chen
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Haifeng Hu
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Yuzhou Chen
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Yuan Li
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Jing Gao
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
| | - Guohua Li
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou 310014 P.R. China
- State Key Breeding Base of Green Chemistry Synthesis Technology Zhejiang University of Technology 18, Chaowang Road Hangzhou 310032 P.R. China
| |
Collapse
|
43
|
Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63637-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Heat-treatment-induced development of the crystalline structure and chemical stoichiometry of a Cu xS counter electrode, and the influence on performance of quantum-dot-sensitized solar cells. J Colloid Interface Sci 2020; 579:805-814. [PMID: 32673857 DOI: 10.1016/j.jcis.2020.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022]
Abstract
Recently, various phases of CuxS (1 ≤ x ≤ 2) were extensively explored as superb counter electrode (CE) materials for quantum dot-sensitized solar cells (QDSSCs). Herein, hexagonal covellite CuS (HC-CuS) with hierarchical nanostructure was grown on porous Ti substrates by chemical bath deposition, and then heat treated in the temperature range of 150-450 °C under N2 atmosphere. The reaction process and the evolution of morphology, composition and crystalline structure of CuxS with the variation of heat treatment temperature were studied by XRD, SEM, EDX, TEM and XPS. The photovoltaic properties of TiO2/CdS/CdSe QDSSCs based on CuxS CEs showed an obvious dependence on the element stoichiometry and crystalline structure of the CuxS. With HC-Cu1.28S heat-treated at 230 °C as CEs, QDSSCs achieved a power conversion efficiency of 3.88% under one sun illumination (100 mW cm-2, AM 1.5 G), which was higher than the counterparts with other compositions. Electrochemical impedance spectroscopy, Tafel polarization and cyclic voltammetry measurement showed that the electrocatalytic activity of HC-Cu1.28S CE was much higher than that of other CuxS CEs, which supported the results of the enhanced short-circuit current density, open circuit voltage and filling factor.
Collapse
|
45
|
Muhyuddin M, Khan TF, Akram MA, Ali I, Park TJ, Basit MA. Significantly improved photo- and electro-chemical performance of CuS.PbS nanocomposites for dye degradation and paintable counter electrodes. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Poschmann M, Groß H, Amin R, Fritsch C, Dankwort T, Radinger H, Indris S, Kienle L, Bensch W. CuCo
2
S
4
Deposited on TiO
2
: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Poschmann
- Institute of Inorganic Chemistry Kiel University Max‐Eyth Straße 2 24118 Kiel Germany
| | - Hendrik Groß
- Institute of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany
| | - Reza Amin
- Department of Chemistry Faculty of Sciences University of Guilan Rasht Guilan Iran
| | - Charlotte Fritsch
- Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Torben Dankwort
- Institute of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany
| | - Hannes Radinger
- Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Sylvio Indris
- Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Lorenz Kienle
- Institute of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry Kiel University Max‐Eyth Straße 2 24118 Kiel Germany
| |
Collapse
|
47
|
Rafique M, Mubashar R, Irshad M, Gillani SSA, Tahir MB, Khalid NR, Yasmin A, Shehzad MA. A Comprehensive Study on Methods and Materials for Photocatalytic Water Splitting and Hydrogen Production as a Renewable Energy Resource. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01611-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Chandra M, Pradhan D. Engineering the Morphology and Crystal Phase of 3 D Hierarchical TiO 2 with Excellent Photochemical and Photoelectrochemical Solar Water Splitting. CHEMSUSCHEM 2020; 13:3005-3016. [PMID: 32175675 DOI: 10.1002/cssc.202000308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Owing to their unique characteristics, hierarchical TiO2 nanostructures have several advantages in solar-fuel production. In this work, a single-step approach has been developed to control both the crystal phase and morphology of TiO2 with 3 D urchin-like structure via a surfactant-free solvothermal route. The growth of 3 D hierarchical structure with phase-engineered band alignment, the role of the H2 O/HCl ratio, and fine-tuning of the reaction parameters are investigated systematically. An optimum ratio of anatase (41 %) to rutile (59 %) in the mixed-phase TiO2 (AR-2) results in excellent photocatalytic H2 generation activity of 5753 μmol g-1 after 5 h of irradiation with apparent quantum yields of 20.9 % at 366 nm and 4.5 % at 420 nm. The superior performance of AR-2, attributed to efficient separation of charge carriers through the phase junction, is apparent from the transient photocurrent response and photoluminescence studies. The 3 D urchin-like pure rutile TiO2 (R-1) composed of nanorods shows enhanced photocatalytic activity compared with pure anatase and pure rutile TiO2 nanoparticles, and this demonstrates the role of morphology. The best-performing mixed-phase 3 D TiO2 shows excellent durability up to 25 h and is shown to produce 3522 μmol g-1 of H2 under natural sunlight, which highlights its potential for long-term application.
Collapse
Affiliation(s)
- Moumita Chandra
- Materials Science Centre, Indian Institute of Technology, Kharagpur, W. B., 721302, India
| | - Debabrata Pradhan
- Materials Science Centre, Indian Institute of Technology, Kharagpur, W. B., 721302, India
| |
Collapse
|
49
|
Boosting the photocatalytic ability of hybrid biVO4-TiO2 heterostructure nanocomposites for H2 production by reduced graphene oxide (rGO). J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Fakharian‐Qomi MJ, Sadeghzadeh‐Attar A. Template Based Synthesis of Plasmonic Ag‐modified TiO
2
/SnO
2
Nanotubes with Enhanced Photostability for Efficient Visible‐Light Photocatalytic H
2
Evolution and RhB Degradation. ChemistrySelect 2020. [DOI: 10.1002/slct.202001119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mohammad Javad Fakharian‐Qomi
- Department of Metallurgy and Materials Engineering University of Kashan, P.O. Box. 87317-53153, Ghotb Ravandi Blvd. Kashan Iran
| | - Abbas Sadeghzadeh‐Attar
- Department of Metallurgy and Materials Engineering University of Kashan, P.O. Box. 87317-53153, Ghotb Ravandi Blvd. Kashan Iran
| |
Collapse
|