1
|
Nakanishi K, Lugo-Fuentes LI, Manabe J, Guo R, Kikkawa S, Yamazoe S, Komaguchi K, Kume S, Szczepanik DW, Solà M, Jimenez-Halla JOC, Nishihara S, Kubo K, Nakamoto M, Yamamoto Y, Mizuta T, Shang R. Redox Activity of Ir III Complexes with Multidentate Ligands Based on Dipyrido-Annulated N-Heterocyclic Carbenes: Access to High Valent and High Spin State with Carbon Donors. Chemistry 2023; 29:e202302303. [PMID: 37553318 DOI: 10.1002/chem.202302303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Synthetic strategies to access high-valent iridium complexes usually require use of π donating ligands bearing electronegative atoms (e. g. amide or oxide) or σ donating electropositive atoms (e. g. boryl or hydride). Besides the η5 -(methyl)cyclopentadienyl derivatives, high-valent η1 carbon-ligated iridium complexes are challenging to synthesize. To meet this challenge, this work reports the oxidation behavior of an all-carbon-ligated anionic bis(CCC-pincer) IrIII complex. Being both σ and π donating, the diaryl dipyrido-annulated N-heterocyclic carbene (dpa-NHC) IrIII complex allowed a stepwise 4e- oxidation sequence. The first 2e- oxidation led to an oxidative coupling of two adjacent aryl groups, resulting in formation of a cationic chiral IrIII complex bearing a CCCC-tetradentate ligand. A further 2e- oxidation allowed isolation of a high-valent tricationic complex with a triplet ground state. These results close a synthetic gap for carbon-ligated iridium complexes and demonstrate the electronic tuning potential of organic π ligands for unusual electronic properties.
Collapse
Affiliation(s)
- Kazuki Nakanishi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Leonardo I Lugo-Fuentes
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Campus Gto, Noria Alta s/n, 36050, Guanajuato, Mexico
| | - Jun Manabe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Ronghao Guo
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Kenji Komaguchi
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Shoko Kume
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Dariusz W Szczepanik
- K. Guminski Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa, 2, 30-387, Kraków, Poland
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany, 69, 17003, Girona, Catalonia, Spain
| | - J Oscar C Jimenez-Halla
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Campus Gto, Noria Alta s/n, 36050, Guanajuato, Mexico
| | - Sadafumi Nishihara
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Kazuyuki Kubo
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Masaaki Nakamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Tsutomu Mizuta
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
2
|
Hamdaoui M, Liu F, Cornaton Y, Lu X, Shi X, Zhang H, Liu J, Spingler B, Djukic JP, Duttwyler S. An Iridium-Stabilized Borenium Intermediate. J Am Chem Soc 2022; 144:18359-18374. [PMID: 36173688 DOI: 10.1021/jacs.2c06298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploration of new organometallic systems based on polyhedral boron clusters has the potential to solve challenging chemical problems such as the stabilization of reactive intermediates and transition-state-like species postulated for E-H (E = H, B, C, Si) bond activation reactions. We report on facile and clean B-H activation of a hydroborane by a new iridium boron cluster complex. The product of this reaction is an unprecedented and fully characterized transition metal-stabilized boron cation or borenium. Moreover, this intermediate bears an unusual intramolecular B···H interaction between the hydrogen originating from the activated hydroborane and the cyclometallated metal-bonded boron atom of the boron cluster. This B···H interaction is proposed to be an arrested insertion of hydrogen into the Bcage-metal bond and the initiation step for iridium "cage-walking" around the upper surface of the boron cluster. The "cage-walking" process is supported by the hydrogen-deuterium exchange observed at the boron cluster, and a mechanism is proposed on the basis of theoretical methods with a special focus on the role of noncovalent interactions. All new compounds were isolated and fully characterized by NMR spectroscopy and elemental analysis. Key compounds were studied by single crystal X-ray diffraction and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Mustapha Hamdaoui
- Department of Chemistry, Zheijang University, Hangzhou 310027, China
| | - Fan Liu
- Department of Chemistry, Zheijang University, Hangzhou 310027, China
| | - Yann Cornaton
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Xingyu Lu
- Instrumentation Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Xiaohuo Shi
- Instrumentation Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Huan Zhang
- Instrumentation Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Jiyong Liu
- Department of Chemistry, Zheijang University, Hangzhou 310027, China
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Simon Duttwyler
- Department of Chemistry, Zheijang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Ng R, Chong MC, Cheung WM, Sung HHY, Williams ID, Leung WH. Heterometallic Iridium, Rhodium and Ruthenium Nitrido Complexes Supported by Oxygen and Sulfur Donor Ligands. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rain Ng
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Man-Chun Chong
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Wai-Man Cheung
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Herman H.-Y. Sung
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Ian D. Williams
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Wa-Hung Leung
- Hong Kong Univ.of Sci.& Techn. Department of Chemistry Clear Water Bay Hong Kong Hong Kong CHINA
| |
Collapse
|
4
|
Hu G, Troiano JL, Tayvah UT, Sharninghausen LS, Sinha SB, Shopov DY, Mercado BQ, Crabtree RH, Brudvig GW. Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorg Chem 2021; 60:14349-14356. [PMID: 34478282 DOI: 10.1021/acs.inorgchem.1c02025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One ongoing challenge in the field of iridium-based water oxidation catalysts is to develop a molecular precatalyst affording well-defined homogeneous active species for catalysis. Our previous work by using organometallic precatalysts Cp*Ir(pyalk)OH and Ir(pyalk)(CO)2 (pyalk = (2-pyridyl)-2-propanolate) suggested a μ-oxo-bridged Ir dimer as the probable resting state, although the structure of the active species remained elusive. During the activation, the ligands Cp* and CO were found to oxidatively degrade into acetic acid or other products, which coordinate to Ir centers and affect the catalytic reaction. Two related dimers bearing two pyalk ligands on each iridium were crystallized for structural analysis. However, preliminary results indicated that these crystallographically characterized dimers are not active catalysts. In this work, we accessed a mixture of dinuclear iridium species from a coordination precursor, Na[Ir(pyalk)Cl4], and assayed their catalytic activity for oxygen evolution by using NaIO4 as the oxidant. This catalyst showed comparable oxygen-evolution activity to the ones previously reported from organometallic precursors without demanding oxidative activation to remove sacrificial ligands. Future research along this direction is expected to provide insights and design principles toward a well-defined active species.
Collapse
Affiliation(s)
- Gongfang Hu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Jennifer L Troiano
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Uriel T Tayvah
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Liam S Sharninghausen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Shashi Bhushan Sinha
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Dimitar Y Shopov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| |
Collapse
|
5
|
Nakanishi K, Jimenez-Halla JOC, Yamazoe S, Nakamoto M, Shang R, Yamamoto Y. Synthesis and Isolation of an Anionic Bis(dipyrido-annulated) N-Heterocyclic Carbene CCC-Pincer Iridium(III) Complex by Facile C-H Bond Activation. Inorg Chem 2021; 60:9970-9976. [PMID: 34156239 DOI: 10.1021/acs.inorgchem.1c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meridional tridentate N-heterocyclic carbene (NHC)-based pincer ligands contribute to a substantial growth in modern organometallic chemistry in both homogeneous catalysis and luminescence materials. Among all NHC-based pincer ligands, the dianionic LX2-type CCC-pincer ones constitute the smallest subcategory owing to their limited ligand frameworks suitable for complexation. This work reports a one-pot, high-yield synthesis of a homoleptic anionic all-carbon bis-pincer iridium(III) complex (4) directly from a bis(aryl)-substituted dipyrido-annulated (dpaAr2) imidazolium salt and [Ir(COD)Cl]2 via a cascade of deprotonation/C-H activation processes. Both experimental complexation chemistry and computational mechanistic investigation suggest that the large bite angle and π-rich character of the dpaAr2 NHC are responsible for its facile complexation as a dianionic LX2-type CCC-pincer ligand precursor. The all-carbon ligated iridium(III) complex (4) bearing a π-conjugated ligand scaffold showed remarkably low oxidation potentials, which allows future investigations in its redox chemistry and photophysical properties.
Collapse
Affiliation(s)
- Kazuki Nakanishi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - J Oscar C Jimenez-Halla
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Campus Gto, Noria Alta s/n, 36050 Guanajuato, Mexico
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masaaki Nakamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Dobereiner GE, Hazari N, Schley ND. Pioneers and Influencers in Organometallic Chemistry: Professor Robert Crabtree’s Storied Career via an Unusual Journey to the Ivy League. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Graham E. Dobereiner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, Unites States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
7
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
8
|
Tiede DM, Kwon G, He X, Mulfort KL, Martinson ABF. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. NANOSCALE 2020; 12:13276-13296. [PMID: 32567636 DOI: 10.1039/d0nr02350g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amorphous thin film materials and heterogenized molecular catalysts supported on electrode and other functional interfaces are widely investigated as promising catalyst formats for applications in solar and electrochemical fuels catalysis. However the amorphous character of these catalysts and the complexity of the interfacial architectures that merge charge transport properties of electrode and semiconductor supports with discrete sites for multi-step catalysis poses challenges for probing mechanisms that activate and tune sites for catalysis. This minireview discusses advances in soft X-ray spectroscopy and high-energy X-ray scattering that provide opportunities to resolve interfacial electronic and atomic structures, respectively, that are linked to catalysis. This review discusses how these techniques can be partnered with advances in nanostructured interface synthesis for combined soft X-ray spectroscopy and high-energy X-ray scattering analyses of thin film and heterogenized molecular catalysts. These combined approaches enable opportunities for the characterization of both electronic and atomic structures underlying fundamental catalytic function, and that can be applied under conditions relevant to device applications.
Collapse
Affiliation(s)
- David M Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA.
| | | | | | | | | |
Collapse
|
9
|
Fisher KJ, Feuer ML, Lant HMC, Mercado BQ, Crabtree RH, Brudvig GW. Concerted proton-electron transfer oxidation of phenols and hydrocarbons by a high-valent nickel complex. Chem Sci 2020; 11:1683-1690. [PMID: 32206289 PMCID: PMC7069233 DOI: 10.1039/c9sc05565g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
The high-valent nickel(iii) complex Ni(pyalk)2 + (2) was prepared by oxidation of a nickel(ii) complex, Ni(pyalk)2 (1) (pyalk = 2-pyridyl-2-propanoate). 2 and derivatives were fully characterized by mass spectrometry and X-ray crystallography. Electron paramagnetic resonance spectroscopy and X-ray photoelectron spectroscopy confirm that the oxidation is metal-centered. 2 was found to react with a variety of phenolic and hydrocarbon substrates. A linear correlation between the measured rate constant and the substrate bond dissociation enthalpy (BDE) was found for both phenolic and hydrocarbon substrates. Large H/D kinetic isotope effects were also observed for both sets of substrates. These results suggest that 2 reacts through concerted proton-electron transfer (CPET). Analysis of measured thermodynamic parameters allows us to calculate a bond dissociation free energy (BDFE) of ∼91 kcal mol-1 for the O-H bond of the bound pyalk ligand. These findings may shed light onto CPET steps in oxidative catalysis and have implications for ligand design in catalytic systems.
Collapse
Affiliation(s)
- Katherine J Fisher
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA . ;
| | - Margalit L Feuer
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA . ;
| | - Hannah M C Lant
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA . ;
| | - Brandon Q Mercado
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA . ;
| | - Robert H Crabtree
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA . ;
| | - Gary W Brudvig
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA . ;
| |
Collapse
|
10
|
Sánchez-Sordo I, Díez J, Lastra E, Gamasa MP. Synthesis of Pentamethylcyclopentadienyl Dialkynyl Phosphane Iridium(III) complexes. Reactivity of the Complex [Ir(η5-C5Me5)(C≡CPh)2(PPh3)] toward Electrophiles. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irene Sánchez-Sordo
- Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain
| | - Josefina Díez
- Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain
| | - Elena Lastra
- Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain
| | - M. Pilar Gamasa
- Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain
| |
Collapse
|
11
|
Shopov DY, Sharninghausen LS, Sinha SB, Mercado BQ, Brudvig GW, Crabtree RH. Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Sackville EV, Marken F, Hintermair U. Electrochemical and Kinetic Insights into Molecular Water Oxidation Catalysts Derived from Cp*Ir(pyridine-alkoxide) Complexes. ChemCatChem 2018; 10:4280-4291. [PMID: 31007774 PMCID: PMC6470865 DOI: 10.1002/cctc.201800916] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 01/04/2023]
Abstract
We report the solution-phase electrochemistry of seven half-sandwich iridium(III) complexes with varying pyridine-alkoxide ligands to quantify electronic ligand effects that translate to their activity in catalytic water oxidation. Our results unify some previously reported electrochemical data of Cp*Ir complexes by showing how the solution speciation determines the electrochemical response: cationic complexes show over 1 V higher redox potentials that their neutral forms in a distinct demonstration of charge accumulation effects relevant to water oxidation. Building on previous work that analysed the activation behaviour of our pyalk-ligated Cp*Ir complexes 1-7, we assess their catalytic oxygen evolution activity with sodium periodate (NaIO4) and ceric ammonium nitrate (CAN) in water and aqueous tBuOH solution. Mechanistic studies including H/D kinetic isotope effects and reaction progress kinetic analysis (RPKA) of oxygen evolution point to a dimer-monomer equilibrium of the IrIV resting state preceding a proton-coupled electron transfer (PCET) in the turnover-limiting step (TLS). Finally, true electrochemically driven water oxidation is demonstrated for all catalysts, revealing surprising trends in activity that do not correlate with those obtained using chemical oxidants.
Collapse
Affiliation(s)
- Emma V. Sackville
- Centre for Sustainable Chemical TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Frank Marken
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Ulrich Hintermair
- Centre for Sustainable Chemical TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| |
Collapse
|
13
|
Sharninghausen LS, Sinha SB, Shopov DY, Brudvig GW, Crabtree RH. Some crystal growth strategies for diffraction structure studies of iridium complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|