1
|
Mishra SK, Zakaria A, Mihailovic J, Maritim S, Mercado B, Coman D, Hyder F. Complexes of Iron(II), Cobalt(II), and Nickel(II) with DOTA-Tetraglycinate for pH and Temperature Imaging Using Hyperfine Shifts of an Amide Moiety. Inorg Chem 2024; 63:22559-22571. [PMID: 39533962 DOI: 10.1021/acs.inorgchem.4c04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Paramagnetic complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4-) derivatives have shown potential for molecular imaging with magnetic resonance. DOTA-tetraglycinate (DOTA-4AmC4-) coordinated with lanthanide metal ions (Ln3+) demonstrates pH/temperature sensing with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) and Chemical Exchange Saturation Transfer (CEST), respectively, detecting nonexchangeable (e.g., -CHy, where 3 ≥ y ≥ 1) and exchangeable (e.g., -OH or -NHx, where 2 ≥ x ≥ 1) protons. Herein, we report paramagnetic complexes of divalent transition-metal ions (M2+ = Fe2+, Co2+, Ni2+) with DOTA-4AmC4- that endow a unique amide proton (-NH) moiety for pH/temperature sensing. Crystallographic data reveal that DOTA-4AmC4- coordinates with M2+ through oxygen and nitrogen donor atoms, ranging in coordination numbers from 8-coordinate in Fe(II)DOTA-4AmC2-, 7-coordinate in Co(II)DOTA-4AmC2-, and 6-coordinate in Ni(II)DOTA-4AmC2-. The -CHy protons in M(II)DOTA-4AmC2- displayed modest pH/temperature sensitivities, but -NH protons exhibited higher intensity, suggesting prominent BIRDS properties. The pH sensitivity was the highest for Ni(II)DOTA-4AmC2- (1.42 ppm/pH), followed by Co(II)DOTA-4AmC2- (0.21 ppm/pH) and Fe(II)DOTA-4AmC2- (0.16 ppm/pH), whereas temperature sensitivities were comparable (i.e., 0.22, 0.13, and 0.17 ppm/°C, respectively). The CEST image contrast for -NH in M(II)DOTA-4AmC2- was much weaker compared to that of Ln(III)DOTA-4AmC-. Given its high pH sensitivity and low cytotoxicity, Ni(II)DOTA-4AmC2- shows promise for use in preclinical BIRDS-based pH imaging.
Collapse
|
2
|
Liu L, Johnson SI, Appel AM, Bullock RM. Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202402635. [PMID: 38981858 DOI: 10.1002/anie.202402635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Ammonia is a promising candidate in the quest for sustainable, clean energy. With its capacity to serve as an energy carrier, the oxidation of ammonia opens avenues for carbon-neutral approaches to address worldwide growing energy needs. We report the catalytic chemical oxidation of ammonia by an Earth-abundant transition metal complex, trans-[LFeII(MeCN)2][PF6]2, where L is a macrocyclic ligand bearing four N-heterocyclic carbene (NHC) donors. Using triarylaminium radical cations in MeCN, up to 182 turnovers of N2 per Fe were obtained from chemical catalysis with an extremely low loading of the Fe catalyst (0.043 mM, 0.004 mol % catalyst). This chemical catalysis was successfully transitioned to mediated electrocatalysis for the oxidation of ammonia. Molecular electrocatalysis by the Fe catalyst and the mediator (p-MeOC6H4)3N exhibited a catalytic half-wave potential (Ecat/2) of 0.18 V vs [Cp2Fe]+/0 in MeCN, and achieved 9.3 turnovers of N2 at an applied potential of 0.20 V vs [Cp2Fe]+/0 at -20 °C in controlled-potential electrolysis, with a Faradaic efficiency of 75 %. Based on computational results, the catalyst undergoes sequential oxidation and deprotonation steps to form [LFeIV(NH2)2]2+, and thereafter bimetallic coupling to form an N-N bond.
Collapse
Affiliation(s)
- Liang Liu
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
- Current address: College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Aaron M Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| |
Collapse
|
3
|
Gao Y, Guo L, Liu X, Chen N, Yang X, Zhang Q. Advances in the synthesis and applications of macrocyclic polyamines. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231979. [PMID: 39092147 PMCID: PMC11293801 DOI: 10.1098/rsos.231979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/04/2024]
Abstract
Macrocyclic polyamines constitute a significant class of macrocyclic compounds that play a pivotal role in the realm of supramolecular chemistry. They find extensive applications across diverse domains including industrial and agricultural production, clinical diagnostics, environmental protection and other multidisciplinary fields. Macrocyclic polyamines possess a distinctive cavity structure with varying sizes, depths, electron-richness degrees and flexibilities. This unique feature enables them to form specific supramolecular structures through complexation with diverse objects, thereby attracting considerable attention from chemists, biologists and materials scientists alike. However, there is currently a lack of comprehensive summaries on the synthesis methods for macrocyclic polyamines. In this review article, we provide an in-depth introduction to the synthesis of macrocyclic polyamines while analysing their respective advantages and disadvantages. Furthermore, we also present an overview of the recent 5-year advancements in using macrocyclic polyamines as non-viral gene vectors, fluorescent probes, diagnostic and therapeutic reagents as well as catalysts. Looking ahead to future research directions on the synthesis and application of macrocyclic polyamines across various fields will hopefully inspire new ideas for their synthesis and use.
Collapse
Affiliation(s)
- Yongguang Gao
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Lina Guo
- Tangshan First Vocational Secondary Specialized School, Tangshan 063000, People’s Republic of China
| | - Xinhua Liu
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Na Chen
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Xiaochun Yang
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Qing Zhang
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| |
Collapse
|
4
|
Jeong AR, Park SR, Shin JW, Kim J, Tokunaga R, Hayami S, Min KS. Mononuclear Fe(III) complexes with 2,4-dichloro-6-((quinoline-8-ylimino)methyl)phenolate: synthesis, structure, and magnetic behavior. Dalton Trans 2024; 53:6809-6817. [PMID: 38545959 DOI: 10.1039/d3dt04385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Three Fe(III)-based coordination complexes [Fe(dqmp)2](NO3)·H2O (1), [Fe(dqmp)2](BF4)·2CH3COCH3 (2), and [Fe(dqmp)2](ClO4) (3) were synthesized from Fe(NO3)3·9H2O/Fe(ClO4)3·xH2O, NaBF4, and 2,4-dichloro-6-((quinoline-8-ylimino)methyl)phenol (Hdqmp) in methanol/acetone and characterized. The structures of complexes 1-3 were determined via single-crystal X-ray crystallography at 100 K and room temperature, and their magnetic properties in the solid and solution forms were investigated. All complexes showed meridional structures with two tridentate dqmp- ligands coordinated with Fe(III) cations. In the solid state, complex 1 showed an abrupt and complete spin crossover at 225 K, whereas complexes 2 and 3 exhibited an incomplete spin crossover at 135 and 150 K, respectively. In a dimethylformamide solution, the complexes showed counterion-dependent spin transitions. In contrast to the solid state, in solution, complex 1 did not exhibit complete spin crossover. However, complexes 2 and 3 showed more complete spin transitions in solutions than in the solid state. The relaxation times, T1 and T2, for 1 and 2 were determined and both increased with temperature from 220 to 380 K. The T1 of 1 was larger than that of 2 at 380 K, and the T1 values were larger than the T2 values.
Collapse
Affiliation(s)
- Ah Rim Jeong
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Si Ra Park
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jong Won Shin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jihyun Kim
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ryuya Tokunaga
- Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kil Sik Min
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Ekanger LA, Shah RK, Porowski ME, Ziolkowski Z, Calello A. Spectroscopic, electrochemical, and kinetic trends in Fe(III)-thiolate disproportionation near physiologic pH. J Biol Inorg Chem 2024; 29:291-301. [PMID: 38722396 PMCID: PMC11111527 DOI: 10.1007/s00775-024-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/01/2024] [Indexed: 05/24/2024]
Abstract
In addition to its primary oxygen-atom-transfer function, cysteamine dioxygenase (ADO) exhibits a relatively understudied anaerobic disproportionation reaction (ADO-Fe(III)-SR → ADO-Fe(II) + ½ RSSR) with its native substrates. Inspired by ADO disproportionation reactivity, we employ [Fe(tacn)Cl3] (tacn = 1,4,7-triazacyclononane) as a precursor for generating Fe(III)-thiolate model complexes in buffered aqueous media. A series of Fe(III)-thiolate model complexes are generated in situ using aqueous [Fe(tacn)Cl3] and thiol-containing ligands cysteamine, penicillamine, mercaptopropionate, cysteine, cysteine methyl ester, N-acetylcysteine, and N-acetylcysteine methyl ester. We observe trends in UV-Vis and electron paramagnetic resonance (EPR) spectra, disproportionation rate constants, and cathodic peak potentials as a function of thiol ligand. These trends will be useful in rationalizing substrate-dependent Fe(III)-thiolate disproportionation reactions in metalloenzymes.
Collapse
Affiliation(s)
- Levi A Ekanger
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA.
| | - Ruhi K Shah
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Matthew E Porowski
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Zach Ziolkowski
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Alana Calello
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| |
Collapse
|
6
|
Kras EA, Cineus R, Crawley MR, Morrow JR. Macrocyclic complexes of Fe(III) with mixed hydroxypropyl and phenolate or amide pendants as T 1 MRI probes. Dalton Trans 2024; 53:4154-4164. [PMID: 38318938 PMCID: PMC10897765 DOI: 10.1039/d3dt04013e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
High-spin Fe(III) complexes of 1,4,7-triazacyclononane (TACN) with mixed oxygen donor pendants including hydroxypropyl, phenolate or amide groups are prepared for study as T1 MRI probes. Complexes with two hydroxypropyl pendants and either amide (Fe(TOAB)) or phenolate (Fe(PTOB)) groups are compared to an analog with three hydroxypropyl groups (Fe(NOHP)), in order to study the effect of the third pendant on the coordination sphere as probed by solution chemistry, relaxivity and structural studies. Solution studies show that Fe(PTOB) has two ionizations with the phenol pendant deprotonating with a pKa of 1.7 and a hydroxypropyl pendent with pKa of 6.3. The X-ray crystal structure of [Fe(PTOB)]Br2 features a six-coordinate complex with two bound hydroxypropyl groups, and a phenolate in a distorted octahedral geometry. The Fe(TOAB) complex has a single deprotonation, assigned to a hydroxypropyl group with a pKa value of 7.0. Both complexes are stabilized as high-spin Fe(III) in solution as shown by their effective magnetic moments and Fe(III)/Fe(II) redox potentials of -390 mV and -780 mV versus NHE at pH 7 and 25 °C for Fe(TOAB) and Fe(PTOB) respectively. Both Fe(PTOB) and Fe(TOAB) are kinetically inert to dissociation under a variety of challenges including phosphate/carbonate buffer, one equivalent of ZnCl2, two equivalents of transferrin or 100 mM HCl, or at basic pH values over 24 h at 37 °C. The r1 relaxivity of Fe(TOAB) at 1.4 T, pH 7.4 and 33 °C is relatively low at 0.6 mM-1 s-1 whereas the r1 relaxivity of Fe(PTOB) is more substantial and shows an increase of 2.5 fold to 2.5 mM-1 s-1 at acidic pH. The increase in relaxivity at acidic pH is attributed to protonation of the phenolate group to provide an additional pathway for proton relaxation.
Collapse
Affiliation(s)
- Elizabeth A Kras
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Roy Cineus
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
7
|
Ossadnik D, Voss J, Godt A. Equipping 1,4,7-Triazacyclononane with Substituents via Solid-Phase Synthesis. J Org Chem 2023. [PMID: 38016917 DOI: 10.1021/acs.joc.3c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Metal ion complexes frequently show substituted 1,4,7-triazacyclononane (tacn) as the ligand. Besides providing donor atoms for complex formation, tacn serves as a scaffold for equipping the complex with further functional units that are needed for the complementation and electronic tuning of the metal ion coordination sphere and/or add other features, e.g., light-absorbing antennas and groups for bioconjugation. To exploit the full potential of substituted tacn, strategies for directed syntheses of NO(R1,R1,R2) and NO(R1,R2,R3), i.e., tacn with two and even three different substituents R, are needed. Herein, we report a strategy that takes advantage of solid-phase synthesis in the assembly of the precursors NO(R1,R1,H) and NO(R1,R2,H). The assembly of NO(R1,R2,H) is based on a highly selective formation of NO(Cbz,tfAc,H), with Cbz being the link between tacn and solid phase. For this, tacn was loaded onto (4-nitrophenyl carbonate)-resin, thereby forming resin-bound (rb)-tacn, which corresponds to NO(Cbz,H,H) bound to the solid phase. Treatment of rb-tacn with ethyl trifluoroacetate gave rb-NO(tfAc,H), which corresponds to NO(Cbz,tfAc,H). With rb-tacn and rb-NO(tfAc,H) in hand, a variety of NO(R1,R1,H) and NO(R1,R2,H) were prepared, showing the broad applicability of the strategy with respect to the type of substituents and of reactions (nucleophilic substitution, reductive amination, aza-Michael addition, addition to epoxides, acylation). The study also identified limitations and points for improvement.
Collapse
Affiliation(s)
- Daniel Ossadnik
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jona Voss
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Chowdhury MSI, Kras EA, Turowski SG, Spernyak JA, Morrow JR. Liposomal MRI probes containing encapsulated or amphiphilic Fe(III) coordination complexes. Biomater Sci 2023; 11:5942-5954. [PMID: 37470467 DOI: 10.1039/d3bm00029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Liposomes containing high-spin Fe(III) coordination complexes were prepared towards the production of T1 MRI probes with improved relaxivity. The amphiphilic Fe(III) complexes were anchored into the liposome with two alkyl chains to give a coordination sphere containing mixed amide and hydroxypropyl pendant groups. The encapsulated complex contains a macrocyclic ligand with three phosphonate pendants, [Fe(NOTP)]3-, which was chosen for its good aqueous solubility. Four types of MRI probes were prepared including those with intraliposomal Fe(III) complex (LipoA) alone, amphiphilic Fe(III) complex (LipoB), both intraliposomal and amphiphilic complex (LipoC) or micelles formed with amphiphilic complex. Water proton relaxivities r1 and r2 were measured and compared to a small molecule macrocyclic Fe(III) complex containing similar donor groups. Micelles of the amphiphilic Fe(III) complex had proton relaxivity values (r1 = 2.6 mM-1 s-1) that were four times higher than the small hydrophilic analog. Liposomes with amphiphilic Fe(III) complex (LipoB) have a per iron relaxivity of 2.6 mM-1 s-1 at pH 7.2, 34 °C at 1.4 T whereas liposomes containing both amphiphilic and intraliposomal Fe(III) complexes (lipoC) have r1 of 0.58 mM-1 s-1 on a per iron basis consistent with quenching of the interior Fe(III) complex relaxivity. Liposomes containing only encapsulated [Fe(NOTP)]3- have a lowered r1 of 0.65 mM-1 s-1 per iron complex. Studies show that the biodistribution and clearance of the different types liposomal nanoparticles differ greatly. LipoB is a blood pool agent with a long circulation time whereas lipoC is cleared more rapidly through both renal and hepatobiliary pathways. These clearance differences are consistent with lower stability of LipoC compared to LipoB.
Collapse
Affiliation(s)
- Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| | - Elizabeth A Kras
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| | - Steven G Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
9
|
Gaynor RB, McIntyre BN, Lindsey SL, Clavo KA, Shy WE, Mees DE, Mu G, Donnadieu B, Creutz SE. Steric Effects on the Chelation of Mn 2+ and Zn 2+ by Hexadentate Polyimidazole Ligands: Modeling Metal Binding by Calprotectin Site 2. Chemistry 2023; 29:e202300447. [PMID: 37067464 PMCID: PMC10640917 DOI: 10.1002/chem.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/18/2023]
Abstract
Recently, there has been increasing interest in the design of ligands that bind Mn2+ with high affinity and selectivity, but this remains a difficult challenge. It has been proposed that the cavity size of the binding pocket is a critical factor in most synthetic and biological examples of selective Mn2+ binding. Here, we use a bioinspired approach adapted from the hexahistidine binding site of the manganese-sequestering protein calprotectin to systematically study the effect of cavity size on Mn2+ and Zn2+ binding. We have designed a hexadentate, trisimidazole ligand whose cavity size can be tuned through peripheral modification of the steric bulk of the imidazole substituents. Conformational dynamics and redox potentials of the complexes are dependent on ligand steric bulk. Stability constants are consistent with the hypothesis that larger ligand cavities are relatively favorable for Mn2+ over Zn2+ , but this effect alone may not be sufficient to achieve Mn2+ selectivity.
Collapse
Affiliation(s)
- Ryan B Gaynor
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - Baylee N McIntyre
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - Shelby L Lindsey
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - Kaylee A Clavo
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - William E Shy
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - David E Mees
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - Ge Mu
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - Sidney E Creutz
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| |
Collapse
|
10
|
Duraiyarasu M, Kumaran SS, Mayilmurugan R. Alkyl Chain Appended Fe(III) Catecholate Complex as a Dual-Modal T1 MRI-NIR Fluorescence Imaging Agent via Second Sphere Water Interactions. ACS Biomater Sci Eng 2023. [PMID: 37141045 DOI: 10.1021/acsbiomaterials.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The C12-alkyl chain-conjugated Fe(III) catecholate complex [Fe(C12CAT)3]3-, Fe(C12CAT)3 [C12CAT = N-(3,4-dihydroxyphenethyl)dodecanamide], was synthesized and characterized, reported as a dual-modal T1-MRI and an optical imaging probe. The DFT-optimized structure of Fe(C12CAT)3 reveals a distorted octahedral coordination geometry around the high spin Fe(III) center. The formation constant (-log K) of Fe(C12CAT)3 was calculated as 45.4. The complex exhibited r1-relaxivity values of 2.31 ± 0.12 and 1.52 ± 0.06 mM-1 s-1 at 25 and 37 °C, respectively, on 1.41 T at pH 7.3 via second-sphere water interactions. The interaction of Fe(C12CAT)3 with human serum albumin showed concomitant enhancement of r1-relaxivity to 6.44 ± 0.15 mM-1 s-1. The MR phantom images are significantly brighter and directly correlate to the concentration of Fe(C12CAT)3. Adding an external fluorescent marker IR780 dye to Fe(C12CAT)3 leads to the formation of self-assembly by C12-alkyl chains. It resulted in the fluorescence quenching of the dye, and its critical aggregation concentration was calculated as 70 μM. The aggregated matrix of Fe(C12CAT)3 and IR780 dye is spherical, with an average hydrodynamic diameter of 189.5 nm. This self-assembled supramolecular system is found to be non-fluorescent and was "turn-on" under acidic pH via dissociation of aggregates. The r1-relaxivity is found to be unchanged during the matrix aggregation and disaggregation. The probe showed MRI ON and fluorescent OFF under physiological conditions and MRI ON and fluorescent ON under acidic pH. The cell viability experiments showed that the cells are 80% viable at 1 mM probe concentration. Fluorescence experiments and MR phantom images showed that Fe(C12CAT)3 is a potential dual model imaging probe to visualize the acidic pH environment of the cells.
Collapse
Affiliation(s)
- Maheshwaran Duraiyarasu
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| |
Collapse
|
11
|
Salaam J, Fogeron T, Pilet G, Bolbos R, Bucher C, Khrouz L, Hasserodt J. Unprecedented Relaxivity Gap in pH-Responsive Fe III -Based MRI Probes. Angew Chem Int Ed Engl 2023; 62:e202212782. [PMID: 36548129 PMCID: PMC10107872 DOI: 10.1002/anie.202212782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Two mononuclear ferric complexes are reported that respond to a pH change with a 27- and 71-fold jump, respectively, in their capacity to accelerate the longitudinal relaxation rate of water-hydrogen nuclei, and this starting from a negligible base value of only 0.06. This unprecedented performance bodes well for tackling the sensitivity issues hampering the development of Molecular MRI. The two chelates also excel in the fully reversible and fatigue-less nature of this phenomenon. The structural reasons for this performance reside in the macrocyclic nature of the hexa-dentate ligand, as well as the presence of a single pendant arm displaying a five-membered lactam or carbamate which show (perturbed) pKa values of 3.5 in the context of this N6 ⇔ ${ \Leftrightarrow }$ N5O1 coordination motif.
Collapse
Affiliation(s)
- Jeremy Salaam
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Thibault Fogeron
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Guillaume Pilet
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS/UCBL 5615, Université de Lyon-Université Claude Bernard Lyon 1, DOUA, Villeurbanne, France
| | - Radu Bolbos
- Dpt. Animage, CERMEP-Imagerie du Vivant, 59 Blvd Pinel, 69677, Bron, France
| | - Christophe Bucher
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Lhoussain Khrouz
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Jens Hasserodt
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| |
Collapse
|
12
|
Setifi Z, Cubillán N, Glidewell C, Gil DM, Torabi E, Morales-Toyo M, Dege N, Setifi F, Mirzaei M. A combined experimental, Hirshfeld surface analysis, and theoretical study on fac-[tri(azido)(tris(2-pyridyl)amine)iron(III)]. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Morrow JR, Raymond JJ, Chowdhury MSI, Sahoo PR. Redox-Responsive MRI Probes Based on First-Row Transition-Metal Complexes. Inorg Chem 2022; 61:14487-14499. [PMID: 36067522 DOI: 10.1021/acs.inorgchem.2c02197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of multiple oxidation and spin states of first-row transition-metal complexes facilitates the development of switchable MRI probes. Redox-responsive probes capitalize on a change in the magnetic properties of the different oxidation states of the paramagnetic metal ion center upon exposure to biological oxidants and reductants. Transition-metal complexes that are useful for MRI can be categorized according to whether they accelerate water proton relaxation (T1 or T2 agents), induce paramagnetic shifts of 1H or 19F resonances (paraSHIFT agents), or are chemical exchange saturation transfer (CEST) agents. The various oxidation state couples and their properties as MRI probes are summarized with a focus on Co(II)/Co(III) or Fe(II)/Fe(III) complexes as small molecules or as liposomal agents. Solution studies of these MRI probes are reviewed with an emphasis on redox changes upon treatment with oxidants or with enzymes that are physiologically important in inflammation and disease. Finally, we outline the challenges of developing these probes further for in vivo MRI applications.
Collapse
Affiliation(s)
- Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Jaclyn J Raymond
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Priya Ranjan Sahoo
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
14
|
Xue SS, Pan Y, Pan W, Liu S, Li N, Tang B. Bioimaging agents based on redox-active transition metal complexes. Chem Sci 2022; 13:9468-9484. [PMID: 36091899 PMCID: PMC9400682 DOI: 10.1039/d2sc02587f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Detecting the fluctuation and distribution of various bioactive species in biological systems is of great importance in determining diseases at their early stages. Metal complex-based probes have attracted considerable attention in bioimaging applications owing to their unique advantages, such as high luminescence, good photostability, large Stokes shifts, low toxicity, and good biocompatibility. In this review, we summarized the development of redox-active transition metal complex-based probes in recent five years with the metal ions of iron, manganese, and copper, which play essential roles in life and can avoid the introduction of exogenous metals into biological systems. The designing principles that afford these complexes with optical or magnetic resonance (MR) imaging properties are elucidated. The applications of the complexes for bioimaging applications of different bioactive species are demonstrated. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yingbo Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Shujie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
15
|
Abdel‐Rahman LH, Abdel‐Mawgoud AM, Mohamed SK, Shehata MR, Abdel‐Hameed M, Ali El‐Remaily MAEAA. Synthesis, Spectroscopic, DFT calculations, Antimicrobial, Cytotoxicity and DNA binding Studies of novel Cu (II), Ni (II), Zn (II) and VO (II) Schiff base complexes based on Ibuprofen. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Shaaban K. Mohamed
- Chemistry and Environmental Division Manchester Metropolitan University Manchester England
- Chemistry Department, Faculty of Science Minia University El‐Minia Egypt
| | | | | | | |
Collapse
|
16
|
Kras EA, Snyder EM, Sokolow GE, Morrow JR. Distinct Coordination Chemistry of Fe(III)-Based MRI Probes. Acc Chem Res 2022; 55:1435-1444. [PMID: 35482819 DOI: 10.1021/acs.accounts.2c00102] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusContrast agents are used in approximately 40% of all magnetic resonance imaging (MRI) procedures to improve the quality of the images based on the distribution and dynamic clearance of the agent. To date, all clinically approved contrast agents are Gd(III) coordination complexes that serve to shorten the longitudinal (T1) and transverse (T2) proton relaxation times of water. Recent interest in replacing Gd with biologically relevant metal ions such as Mn or Fe has led to increased interest in the aqueous coordination chemistry of their complexes. In this Account, we focus on high-spin Fe(III) complexes that have been recently reported as MRI contrast agents or probes in our laboratory.The highly Lewis acidic Fe(III) center has distinct coordination chemistry in aqueous solutions, facilitating alternative strategies in the design of MRI probes. To illustrate this, we describe different classes of Fe(III) MRI probes with a focus on macrocyclic complexes and multinuclear complexes such as self-assembled metal organic polyhedra (MOP). Our initial efforts focused on macrocyclic complexes of Fe(III) in order to tune spin and oxidation states with the goal of stabilizing high-spin Fe(III) in reducing biological environments. Our probes feature six-coordinate Fe(III) complexes of 1,4,7-triazacyclononane with hydroxypropyl, phosphonate, or carboxylate pendant groups to produce Fe(III) complexes that shorten proton T1 times predominantly from second-sphere or outer-sphere interactions at neutral pH. Analogues with pentadentate macrocyclic ligands have an inner-sphere water that does not exchange rapidly on the NMR time scale, yet these complexes are effective relaxation agents. Fe(III) macrocyclic complexes in this class can be modified to modulate their biodistribution and pharmacokinetic clearance in mice. The goal of these studies is for the Fe(III) agents to clear as extracellular fluid agents and produce profiles similar to those of Gd agents. Finally, studies of multimeric Fe(III) complexes are of interest to produce probes that give large proton relaxivity. In this approach the two Fe(III) centers are connected through aryl linkers as demonstrated for several macrocyclic complexes. Even more tightly connected Fe(III) centers are produced in a Fe(III) self-assembled cage with relaxivity of 21 mM-1 s-1 at 4.7 T, 37 °C in the presence of serum albumin to which it is tightly bound. This cage enhances contrast of the vasculature as a blood pool agent and accumulates in tumors. Finally, we present our perspectives on the further development of Fe(III) complexes for various applications in MRI.
Collapse
Affiliation(s)
- Elizabeth A. Kras
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Eric M. Snyder
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Gregory E. Sokolow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
17
|
Kras EA, Abozeid SM, Eduardo W, Spernyak JA, Morrow JR. Comparison of phosphonate, hydroxypropyl and carboxylate pendants in Fe(III) macrocyclic complexes as MRI contrast agents. J Inorg Biochem 2021; 225:111594. [PMID: 34517167 PMCID: PMC9124524 DOI: 10.1016/j.jinorgbio.2021.111594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Fe(III) macrocyclic complexes containing a macrocycle and three pendant groups including phosphonate (NOTP =1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid), carboxylate (NOTA = 1,4,7 - triazacyclononane - N,N',N″ - triacetate) or hydroxypropyl (NOHP =(2S,2'S,2"S)-1,1',1″-(1,4,7-triazonane-1,4,7-triyl)tris(propan-2-ol)) were studied in order to compare the effect of these donor groups on solution chemistry and water proton relaxivity. All three complexes, Fe(NOTP), Fe(NOHP) and Fe(NOTA), display a large degree of kinetic inertness to dissociation in the presence of phosphate and carbonate, under acidic conditions of 100 mM HCl or 1 M HCl or to trans-metalation with Zn(II). The r1 proton relaxivity of the complexes at 1.4 T, 33 °C is compared over the pH range of 1 to 10. At pH 7.4, 33 °C, 1.4 T, Fe(NOHP) has the largest relaxivity (1.5 mM-1 s-1), Fe(NOTP) is second at 1.0 mM-1 s-1, whereas Fe(NOTA) is the lowest at 0.61 mM-1 s-1. Fe(NOTP), Fe(NOHP) and Fe(NOTA) all show an increase in relaxivity at very acidic pH values (< 3) that is consistent with an acid-catalyzed process. Variable temperature 17O NMR studies at near neutral pH are consistent with the absence of an inner-sphere water molecule for Fe(NOTP) and Fe(NOHP), supporting second-sphere or outer-sphere water contributions to proton relaxation. Fe(NOTP) shows contrast enhancement in T1 weighted MRI studies in mice and clears through a renal pathway.
Collapse
Affiliation(s)
- Elizabeth A Kras
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America
| | - Samira M Abozeid
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516 Mansoura, Egypt
| | - Waldine Eduardo
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Institute, Buffalo, New York 14263, United States of America
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America.
| |
Collapse
|
18
|
Wang H, Wong A, Lewis LC, Nemeth GR, Jordan VC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric Properties. Inorg Chem 2020; 59:17712-17721. [PMID: 33216537 DOI: 10.1021/acs.inorgchem.0c02923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complexes of Fe3+ engage in rich aqueous solution speciation chemistry in which discrete molecules can react with solvent water to form multinuclear μ-oxo and μ-hydroxide bridged species. Here we demonstrate how pH- and concentration-dependent equilibration between monomeric and μ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chemistry to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of monomer vs dimer speciation. The monomeric complex exists in a S = 5/2 configuration capable of inducing efficient T1-relaxation, whereas the antiferromagnetically coupled dimeric complex is a much weaker relaxation agent. The mechanisms underpinning the pH dependence on relaxivity were interrogated by using a combination of pH potentiometry, 1H and 17O relaxometry, electronic absorption spectroscopy, bulk magnetic susceptibility, electron paramagnetic resonance spectroscopy, and X-ray crystallography measurements. Taken together, the data demonstrate that PyCy2AI forms a ternary complex with high-spin Fe3+ and a rapidly exchanging water coligand, [Fe(PyCy2AI)(H2O)]+ (ML), which can deprotonate to form the high-spin complex [Fe(PyCy2AI)(OH)] (ML(OH)). Under titration conditions of 7 mM Fe complex, water coligand deprotonation occurs with an apparent pKa 6.46. Complex ML(OH) dimerizes to form the antiferromagnetically coupled dimeric complex [(Fe(PyCy2AI))2O] ((ML)2O) with an association constant (Ka) of 5.3 ± 2.2 mM-1. The relaxivity of the monomeric complexes are between 7- and 18-fold greater than the antiferromagnetically coupled dimer at applied field strengths ranging between 1.4 and 11.7 T. ML(OH) and (ML)2O interconvert rapidly within the pH 6.0-7.4 range that is relevant to human pathophysiology, resulting in substantial observed relaxivity change. Controlling Fe3+ μ-oxo bridging interactions through rational ligand design and in response to local chemical environment offers a robust mechanism for biochemically responsive MR signal modulation.
Collapse
Affiliation(s)
| | | | - Luke C Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | | - Jeffrey W Bacon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | |
Collapse
|
19
|
Abozeid SM, Asik D, Sokolow GE, Lovell JF, Nazarenko AY, Morrow JR. Co II Complexes as Liposomal CEST Agents. Angew Chem Int Ed Engl 2020; 59:12093-12097. [PMID: 32330368 PMCID: PMC7502271 DOI: 10.1002/anie.202003479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 12/23/2022]
Abstract
Three paramagnetic CoII macrocyclic complexes containing 2-hydroxypropyl pendant groups, 1,1',1'',1'''-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetrakis- (propan-2-ol) ([Co(L1)]2+ , 1,1'-(4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis(propan-2-ol) ([Co(L2)]2+ ), and 1,1'-(4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis(octadecan-2-ol) ([Co(L3)]2+ ) were synthesized to prepare transition metal liposomal chemical exchange saturation transfer (lipoCEST) agents. In solution, ([Co(L1)]2+ ) forms two isomers as shown by 1 H NMR spectroscopy. X-ray crystallographic studies show one isomer with 1,8-pendants in cis-configuration and a second isomer with 1,4-pendants in trans-configuration. The [Co(L2)]2+ complex has 1,8-pendants in a cis-configuration. Remarkably, the paramagnetic-induced shift of water 1 H NMR resonances in the presence of the [Co(L1)]2+ complex is as large as that observed for one of the most effective LnIII water proton shift agents. Incorporation of [Co(L1)]2+ into the liposome aqueous core, followed by dialysis against a solution of 300 mOsm L-1 produces a CEST peak at 3.5 ppm. Incorporation of the amphiphilic [Co(L3)]2+ complex into the liposome bilayer produces a more highly shifted CEST peak at -13 ppm. Taken together, these data demonstrate the feasibility of preparing CoII lipoCEST agents.
Collapse
Affiliation(s)
- Samira M. Abozeid
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Didar Asik
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Gregory E. Sokolow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Alexander Y. Nazarenko
- Chemistry Department, SUNY College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222, United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| |
Collapse
|
20
|
Blahut J, Benda L, Kotek J, Pintacuda G, Hermann P. Paramagnetic Cobalt(II) Complexes with Cyclam Derivatives: Toward 19F MRI Contrast Agents. Inorg Chem 2020; 59:10071-10082. [DOI: 10.1021/acs.inorgchem.0c01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Ladislav Benda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Guido Pintacuda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| |
Collapse
|
21
|
Abozeid SM, Asik D, Sokolow GE, Lovell JF, Nazarenko AY, Morrow JR. Co
II
Complexes as Liposomal CEST Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samira M. Abozeid
- Department of Chemistry University at Buffalo, The State University of New York Amherst NY 14260 USA
| | - Didar Asik
- Department of Chemistry University at Buffalo, The State University of New York Amherst NY 14260 USA
| | - Gregory E. Sokolow
- Department of Chemistry University at Buffalo, The State University of New York Amherst NY 14260 USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering University at Buffalo The State University of New York Amherst NY 14260 USA
| | | | - Janet R. Morrow
- Department of Chemistry University at Buffalo, The State University of New York Amherst NY 14260 USA
| |
Collapse
|
22
|
Gupta A, Caravan P, Price WS, Platas-Iglesias C, Gale EM. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg Chem 2020; 59:6648-6678. [PMID: 32367714 DOI: 10.1021/acs.inorgchem.0c00510] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transition-metal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.
Collapse
Affiliation(s)
- Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | | | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | | |
Collapse
|
23
|
Snyder EM, Asik D, Abozeid SM, Burgio A, Bateman G, Turowski SG, Spernyak JA, Morrow JR. A Class of Fe III Macrocyclic Complexes with Alcohol Donor Groups as Effective T 1 MRI Contrast Agents. Angew Chem Int Ed Engl 2020; 59:2414-2419. [PMID: 31725934 PMCID: PMC7502272 DOI: 10.1002/anie.201912273] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Early studies suggested that FeIII complexes cannot compete with GdIII complexes as T1 MRI contrast agents. Now it is shown that one member of a class of high-spin macrocyclic FeIII complexes produces more intense contrast in mice kidneys and liver at 30 minutes post-injection than does a commercially used GdIII agent and also produces similar T1 relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIII macrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable-temperature 17 O NMR studies suggest that none of the complexes has a single, integral inner-sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIII complexes that correspond, in part, to their r1 relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.
Collapse
Affiliation(s)
- Eric M Snyder
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Samira M Abozeid
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Ariel Burgio
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Gage Bateman
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo New York 14263, United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo New York 14263, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| |
Collapse
|
24
|
Masoud MS, AbouEl-Enein SA, Ali AE, Abd Elhamed EH. Chelating behavior of 3-amino-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridine ligand towards some metal ions, spectral and thermal measurements as well as molecular modeling and biological studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Maheshwaran D, Nagendraraj T, Sekar Balaji T, Kumaresan G, Senthil Kumaran S, Mayilmurugan R. Smart dual T1 MRI-optical imaging agent based on a rhodamine appended Fe(iii)-catecholate complex. Dalton Trans 2020; 49:14680-14689. [DOI: 10.1039/d0dt02364g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The high spin Fe(iii) complex Fe(RhoCat)3 is reported as a smart dual-modal T1 MRI-optical imaging probe to visualize the NO molecule and an acidic pH environment.
Collapse
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - T. Sekar Balaji
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Ganesan Kumaresan
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - S. Senthil Kumaran
- Department of NMR
- All India Institute of Medical Sciences
- New Delhi 110 029
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
26
|
Snyder EM, Asik D, Abozeid SM, Burgio A, Bateman G, Turowski SG, Spernyak JA, Morrow JR. A Class of Fe
III
Macrocyclic Complexes with Alcohol Donor Groups as Effective
T
1
MRI Contrast Agents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Eric M. Snyder
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Didar Asik
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Samira M. Abozeid
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Ariel Burgio
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Gage Bateman
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Steven G. Turowski
- Department of Cell Stress Biology Roswell Park Comprehensive Cancer Center Buffalo New York 14263 USA
| | - Joseph A. Spernyak
- Department of Cell Stress Biology Roswell Park Comprehensive Cancer Center Buffalo New York 14263 USA
| | - Janet R. Morrow
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| |
Collapse
|
27
|
Abstract
In this manuscript, we describe medical applications of each first-row transition metal including nutritional, pharmaceutical, and diagnostic applications. The 10 first-row transition metals in particular are found to have many applications since there five essential elements among them. We summarize the aqueous chemistry of each element to illustrate that these fundamental properties are linked to medical applications and will dictate some of nature’s solutions to the needs of cells. The five essential trace elements—iron, copper, zinc, manganese, and cobalt—represent four redox active elements and one redox inactive element. Since electron transfer is a critical process that must happen for life, it is therefore not surprising that four of the essential trace elements are involved in such processes, whereas the one non-redox active element is found to have important roles as a secondary messenger.. Perhaps surprising is the fact that scandium, titanium, vanadium, chromium, and nickel have many applications, covering the entire range of benefits including controlling pathogen growth, pharmaceutical and diagnostic applications, including benefits such as nutritional additives and hardware production of key medical devices. Some patterns emerge in the summary of biological function andmedical roles that can be attributed to small differences in the first-row transition metals.
Collapse
|
28
|
De S, Flambard A, Garnier D, Herson P, Köhler FH, Mondal A, Costuas K, Gillon B, Lescouëzec R, Le Guennic B, Gendron F. Probing the Local Magnetic Structure of the [Fe
III
(Tp)(CN)
3
]
−
Building Block Via Solid‐State NMR Spectroscopy, Polarized Neutron Diffraction, and First‐Principle Calculations. Chemistry 2019; 25:12120-12136. [DOI: 10.1002/chem.201902239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Siddhartha De
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Alexandrine Flambard
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Delphine Garnier
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Patrick Herson
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Frank H. Köhler
- Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Abhishake Mondal
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Karine Costuas
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226 35000 Rennes France
| | - Béatrice Gillon
- Laboratoire Léon Brillouin, CEA and CNRS, UMR 12Centre d'Etudes de Saclay 91191 Gif-sur-Yvette France
| | - Rodrigue Lescouëzec
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Boris Le Guennic
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226 35000 Rennes France
| | - Frédéric Gendron
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226 35000 Rennes France
| |
Collapse
|
29
|
Bond CJ, Sokolow GE, Crawley MR, Burns PJ, Cox JM, Mayilmurugan R, Morrow JR. Exploring Inner-Sphere Water Interactions of Fe(II) and Co(II) Complexes of 12-Membered Macrocycles To Develop CEST MRI Probes. Inorg Chem 2019; 58:8710-8719. [PMID: 31247845 DOI: 10.1021/acs.inorgchem.9b01072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several paramagnetic Co(II) and Fe(II) macrocyclic complexes were prepared with the goal of introducing a bound water ligand to produce paramagnetically shifted water 1H resonances and for paramagnetic chemical exchange saturation transfer (paraCEST) applications. Three 12-membered macrocycles with amide pendent groups including 1,7-bis(carbamoylmethyl)-1,4,7,10-tetraazacyclodocane (DCMC), 4,7,10-tris(carbamoylmethyl)-,4,7,10-triaza-12-crown-ether (N3OA), and 4,10-bis(carbamoylmethyl)-4,10-diaza-12-crown-ether (NODA) were prepared and their Co(II) complexes were characterized in the solid state and in solution. The crystal structure of [Co(DCMC)]Br2 featured a six-coordinated Co(II) center with distorted octahedral geometry, while [Co(NODA)(OH2)]Cl2 and [Co(N3OA)](NO3)2 were seven-coordinated. The analogous Fe(II) complexes of NODA and NO3A were successfully prepared, but the complex of DCMC oxidized rapidly to the Fe(III) form. Similarly, [Fe(NODA)]2+ oxidized over several days, forming crystals of the Fe(III) complex isolated as the μ-O bridged dimer. Magnetic susceptibility values and paramagnetic NMR spectra of the Fe(II) complexes of NODA and N3OA, as well as Co(II) complexes of DCMC, NODA, and N3OA, were consistent with high spin complexes. CEST peaks ranging from 60 ppm to 70 ppm, attributed to NH groups of the amide pendents, were identified. Variable-temperature 17O NMR spectra of Co(II) and Fe(II) NODA complexes were consistent with rapid exchange of the water ligand with bulk water. Notably, the Co(II) and Fe(II) complexes presented here produced substantial paramagnetic shifts of bulk water 1H resonances, independent of having an inner-sphere water.
Collapse
Affiliation(s)
- Christopher J Bond
- Department of Chemistry , University at Buffalo, State University of New York , Amherst , New York 14260 , United States
| | - Gregory E Sokolow
- Department of Chemistry , University at Buffalo, State University of New York , Amherst , New York 14260 , United States
| | - Matthew R Crawley
- Department of Chemistry , University at Buffalo, State University of New York , Amherst , New York 14260 , United States
| | - Patrick J Burns
- Department of Chemistry , University at Buffalo, State University of New York , Amherst , New York 14260 , United States
| | - Jordan M Cox
- Department of Chemistry , University at Buffalo, State University of New York , Amherst , New York 14260 , United States
| | - Ramasamy Mayilmurugan
- Department of Chemistry , University at Buffalo, State University of New York , Amherst , New York 14260 , United States
| | - Janet R Morrow
- Department of Chemistry , University at Buffalo, State University of New York , Amherst , New York 14260 , United States
| |
Collapse
|
30
|
Scepaniak JJ, Kang EB, John M, Kaminsky W, Dechert S, Meyer F. Non‐Macrocyclic Schiff Base Complexes of Iron(II) as ParaCEST Agents for MRI. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jeremiah J. Scepaniak
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
- Department of Chemistry Drexel University 32 S. 32nd St. Disque Hall 506 19104 Philadelphia PA USA
| | - Eun Byoung Kang
- Department of Chemistry Drexel University 32 S. 32nd St. Disque Hall 506 19104 Philadelphia PA USA
| | - Michael John
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Werner Kaminsky
- Department of Chemistry University of Washington Box 351700 98195‐1700 Seattle WA USA
| | - Sebastian Dechert
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Franc Meyer
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
31
|
Chaabane L, Chahdoura H, Moslah W, Snoussi M, Beyou E, Lahcini M, Srairi‐Abid N, Baouab MHV. Synthesis and characterization of Ni (II), Cu (II), Fe (II) and Fe
3
O
4
nanoparticle complexes with tetraaza macrocyclic Schiff base ligand for antimicrobial activity and cytotoxic activity against cancer and normal cells. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Laroussi Chaabane
- Unité de Recherche Matériaux et Synthèse Organique (UR17ES31) Institut Préparatoire aux Etudes d’Ingénieurs de MonastirUniversité de Monastir‐Tunisie Bd. de l’environnement 5019 Monastir Tunisie
- UMR CNRS5223, Ingénierie des Matériaux PolymèresUniversité Lyon 1 F‐69622 Villeurbanne France
| | - Hassiba Chahdoura
- Laboratoire de Recherche “Bioressourses, Biologie Intégrative & Valorisation”, Institut Supérieur de Biotechnologie de Monastir Avenue Tahar Hadded BP 74, 5000 Monastir Tunisia
| | - Wassim Moslah
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT08 Venins et biomolécules thérapeutiques 1002 Tunis Tunisia
| | - Mejdi Snoussi
- Laboratoire de Recherche “Bioressourses, Biologie Intégrative & Valorisation”, Institut Supérieur de Biotechnologie de Monastir Avenue Tahar Hadded BP 74, 5000 Monastir Tunisia
| | - Emmanuel Beyou
- UMR CNRS5223, Ingénierie des Matériaux PolymèresUniversité Lyon 1 F‐69622 Villeurbanne France
| | - Mohammed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry‐Composites Materials, Faculty of Sciences and TechnologiesCadi Ayyad University Avenue Abdelkrim Elkhattabi, B.P. 549 40000 Marrakech Morocco
- Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid 43150 Ben Guerir Morocco
| | - Najet Srairi‐Abid
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT08 Venins et biomolécules thérapeutiques 1002 Tunis Tunisia
| | - Mohamed Hassen V. Baouab
- Unité de Recherche Matériaux et Synthèse Organique (UR17ES31) Institut Préparatoire aux Etudes d’Ingénieurs de MonastirUniversité de Monastir‐Tunisie Bd. de l’environnement 5019 Monastir Tunisie
| |
Collapse
|
32
|
Ismael M, Abdou A, Abdel-Mawgoud AM. Synthesis, Characterization, Modeling, and Antimicrobial Activity of FeIII, CoII, NiII, CuII, and ZnIIComplexes Based on Tri-substituted Imidazole Ligand. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mohamed Ismael
- Chemistry Department; Faculty of Science; Sohag University; Sohag 82524 Egypt
| | - Aly Abdou
- Chemistry Department; Faculty of Science; Sohag University; Sohag 82524 Egypt
| | - A.-M. Abdel-Mawgoud
- Chemistry Department; Faculty of Science; Sohag University; Sohag 82524 Egypt
| |
Collapse
|
33
|
Oberoi D, Dagar P, Shankar U, Vyas G, Kumar A, Sahu S, Bandyopadhyay A. Design, synthesis, and characterization of an Fe(ii)-polymer of a redox non-innocent, heteroatomic, polydentate Schiff's base ligand: negative differential resistance and memory behaviour. NEW J CHEM 2018. [DOI: 10.1039/c8nj04106g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complete characterization and memristive study of the electrochemically active, novel Fe(ii)-polymer of a fluorescence active conjugated, hexadentate ligand.
Collapse
Affiliation(s)
- Deepa Oberoi
- Department of Polymer and Process Engineering
- Saharanpur-247001
- India
| | | | - Uday Shankar
- Department of Polymer and Process Engineering
- Saharanpur-247001
- India
| | | | - Anil Kumar
- Department of Polymer and Process Engineering
- Saharanpur-247001
- India
| | | | | |
Collapse
|