1
|
Payam AF, Khalil S, Chakrabarti S. Synthesis and Characterization of MOF-Derived Structures: Recent Advances and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310348. [PMID: 38660830 DOI: 10.1002/smll.202310348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Due to their facile tunability, metal-organic frameworks (MOFs) are employed as precursors and templates to construct advanced functional materials with unique and desired chemical, physical, mechanical, and morphological properties. By tuning MOF precursor composition and manipulating conversion processes, various MOF-derived materials commonly known as MOF derivatives can be constructed. The possibility of controlled and predictable properties makes MOF derivatives a preferred choice for numerous advanced technological applications. The innovative synthetic designs besides the plethora of interdisciplinary characterization approaches applicable to MOF derivatives provide the opportunity to perform a myriad of experiments to explore the performance and offer key insight to develop the next generation of advanced materials. Though there are many published works of literature describing various synthesis and characterization techniques of MOF derivatives, it is still not clear how the synthesis mechanism works and what are the best techniques to characterize these materials to probe their properties accurately. In this review, the recent development in synthesis techniques and mechanisms for a variety of MOF derivates such as MOF-derived metal oxides, porous carbon, composites/hybrids, and sulfides is summarized. Furthermore, the details of characterization techniques and fundamental working principles are summarized to probe the structural, mechanical, physiochemical, electrochemical, and electronic properties of MOF and MOF derivatives. The future trends and some remaining challenges in the synthesis and characterization of MOF derivatives are also discussed.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Sameh Khalil
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Supriya Chakrabarti
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| |
Collapse
|
2
|
Xiao Y, Zhang M, Yang D, Zhang L, Zhuang S, Tang J, Zhang Z, Qiao X. Synergy of Paired Brønsted-Lewis Acid Sites on Defects of Zr-MIL-140A for Methanol Dehydration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37452745 DOI: 10.1021/acsami.3c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As a common defect-capping ligand in metal-organic frameworks (MOFs), the hydroxyl group normally exhibits Brønsted acidity or basicity, but the presence of inherent hydroxyl groups in the MOF structure makes it a great challenge to identify the exact role of defect-capping hydroxyl groups in catalysis. Herein, we used hydroxyl-free MIL-140A as the platform to generate terminal hydroxyl groups on defect sites via a continuous post-synthetic treatment. The structure and acidity of MIL-140A were properly characterized. The hydroxyl-contained MIL-140A-OH exhibited 4.6-fold higher activity than the pristine MIL-140A in methanol dehydration. Spectroscopic and computational investigations demonstrated that the reaction was initiated by the respective adsorption of two methanol molecules on the terminal-OH and the adjacent Zr vacancy. The dehydration of the adsorbed methanol molecules then occurred in the Brønsted-Lewis acid site co-participated associative pathway with the lowest energy barrier.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Minxin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lixiong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shangpu Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Zheng X, Drummer MC, He H, Rayder TM, Niklas J, Weingartz NP, Bolotin IL, Singh V, Kramar BV, Chen LX, Hupp JT, Poluektov OG, Farha OK, Zapol P, Glusac KD. Photoreactive Carbon Dioxide Capture by a Zirconium-Nanographene Metal-Organic Framework. J Phys Chem Lett 2023; 14:4334-4341. [PMID: 37133894 DOI: 10.1021/acs.jpclett.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mechanism of photochemical CO2 reduction to formate by PCN-136, a Zr-based metal-organic framework (MOF) that incorporates light-harvesting nanographene ligands, has been investigated using steady-state and time-resolved spectroscopy and density functional theory (DFT) calculations. The catalysis was found to proceed via a "photoreactive capture" mechanism, where Zr-based nodes serve to capture CO2 in the form of Zr-bicarbonates, while the nanographene ligands have a dual role of absorbing light and storing one-electron equivalents for catalysis. We also find that the process occurs via a "two-for-one" route, where a single photon initiates a cascade of electron/hydrogen atom transfers from the sacrificial donor to the CO2-bound MOF. The mechanistic findings obtained here illustrate several advantages of MOF-based architectures in molecular photocatalyst engineering and provide insights on ways to achieve high formate selectivity.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Matthew C Drummer
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haiying He
- Department of Physics and Astronomy, Valparaiso University, Valparaiso, Indiana 46383, United States
| | - Thomas M Rayder
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicholas P Weingartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Igor L Bolotin
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Varun Singh
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Boris V Kramar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter Zapol
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Hao M, Qin Y, Shen J, Wang B, Li Z. Visible-Light-Initiated Acceptor-Less Dehydrogenation of Alcohols to Vicinal Diols over UiO-66(Zr): Surface Complexation and Role of Bridging Hydroxyl. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingming Hao
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuhuan Qin
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jiexuan Shen
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Bingqing Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
5
|
Lu Y, Jin Q, Ji W, Zhu C, Xu M, Zhu Y, Xu H. Resource utilization of high concentration SO2 for sulfur production over La–Ce-O @ZrO2 composite oxide catalyst. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Metal organic frameworks as a versatile platform for the radioactive iodine capture: State of the art developments and future prospects. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
A zirconium(IV)-based metal–organic framework modified with ruthenium and palladium nanoparticles: synthesis and catalytic performance for selective hydrogenation of furfural to furfuryl alcohol. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02193-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Abednatanzi S, Najafi M, Gohari Derakhshandeh P, Van Der Voort P. Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214259] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Fabrication of MOF-808(Zr) with abundant defects by cleaving Zr O bond for oxidative desulfurization of fuel oil. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Enhancement of catalytic performance over MOF-808(Zr) by acid treatment for oxidative desulfurization of dibenzothiophene. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Wang X, Li L, Li K, Su R, Zhao Y, Gao S, Guo W, Luan Z, Liang G, Xi H, Zou R. Hierarchically porous metal hydroxide/metal-organic framework composite nanoarchitectures as broad-spectrum adsorbents for toxic chemical filtration. J Colloid Interface Sci 2021; 606:272-285. [PMID: 34390994 DOI: 10.1016/j.jcis.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
We demonstrate that the hierarchically porous metal hydroxide/metal-organic framework composite nanoarchitectures exhibit broad-spectrum removal activity for three chemically distinct toxic gases, viz. acid gases, base gases, and nitrogen oxides. A facile and general in-situ hydrolysis strategy combined with gentle ambient pressure drying (APD) was utilized to integrate both Zr(OH)4 and Ti(OH)4 with the amino-functionalized MOF-808 xerogel (G808-NH2). The M(OH)4/G808-NH2 xerogel composites manifested 3D crystalline porous networks and substantially hierarchical porosity, with controllable amounts of amorphous M(OH)4 nanoparticles residing at the edge of xerogel particles. Microbreakthrough tests were performed under both dry and moist conditions to evaluate the filtration capabilities of the composites against three representative compounds: SO2, NH3, and NO2. Compared with the pristine G808-NH2 xerogel, the incorporation of M(OH)4 effectively enhanced the broad-spectrum toxic chemical mitigation ability of the material, with the highest SO2, NH3, and NO2 breakthrough uptake reaching 74.5, 55.3, and 394.0 mg/g, respectively. Post-breakthrough characterization confirmed the abundant M-OH groups with diverse binding configurations, alongside the unsaturated M (IV) centers on the surface of M(OH)4 provided extra adsorption sites for irreversible toxic chemical capture besides Van der Waals driven physisorption. The ability to achieve high-capacity adsorption and strong retention for multiple contaminants is of great significance for real-world filtration applications.
Collapse
Affiliation(s)
- Xinbo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Li Li
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Kai Li
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Ruyue Su
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| | - Wenhan Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| | - Zhiqiang Luan
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Guojie Liang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China.
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China.
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Effect of amino-defective-MOF materials on the selective hydrodeoxygenation of fatty acid over Pt-based catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zhang YY, Liu Q, Zhang LY, Bao YM, Tan JY, Zhang N, Zhang JY, Liu ZJ. MOFs assembled from C3 symmetric ligands: structure, iodine capture and role as bifunctional catalysts towards the oxidation-Knoevenagel cascade reaction. Dalton Trans 2021; 50:647-659. [PMID: 33325957 DOI: 10.1039/d0dt03565c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three new NiII/CoII-metal organic frameworks were self-assembled by the reaction of C3 symmetric 1,3,5-tribenzoic acid (H3BTC) and 2,4,6-tris(4-pyridyl)-1,3,5-triazine (4-TPT) ligands and NiII/CoII salts under solvothermal conditions. Isomorphous MOF1 and MOF2 exhibit a 3D pillar-layer framework based on binuclear M2(OH)(COO)2 units connected by tritopic BTC3- and 4-TPT ligands with a novel (3,5)-connected topology net. MOF3 displays a 3-fold interpenetrated 3D network exhibiting a (3,4)-connected topology net. The porous MOF3 can reversibly take up I2. The activated MOFs contain both Lewis acid (NiII center) and basic (uncoordinated pyridyl or carboxylic groups) sites, and act as bifunctional acid-base catalysts. The catalytic measurements demonstrate that the activated MOF3 exhibits good activities for benzyl alcohol oxidation and the Knoevenagel reaction and can be recycled and reused for at least four cycles without losing its structural integrity and high catalytic activity. Thus, the catalytic properties for the oxidation-Knoevenagel cascade reaction have also been studied.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, PR. China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Raptopoulou CP. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E310. [PMID: 33435267 PMCID: PMC7826725 DOI: 10.3390/ma14020310] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks represent a porous class of materials that are build up from metal ions or oligonuclear metallic complexes and organic ligands. They can be considered as sub-class of coordination polymers and can be extended into one-dimension, two-dimensions, and three-dimensions. Depending on the size of the pores, MOFs are divided into nanoporous, mesoporous, and macroporous items. The latter two are usually amorphous. MOFs display high porosity, a large specific surface area, and high thermal stability due to the presence of coordination bonds. The pores can incorporate neutral molecules, such as solvent molecules, anions, and cations, depending on the overall charge of the MOF, gas molecules, and biomolecules. The structural diversity of the framework and the multifunctionality of the pores render this class of materials as candidates for a plethora of environmental and biomedical applications and also as catalysts, sensors, piezo/ferroelectric, thermoelectric, and magnetic materials. In the present review, the synthetic methods reported in the literature for preparing MOFs and their derived materials, and their potential applications in environment, energy, and biomedicine are discussed.
Collapse
Affiliation(s)
- Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Attikis, Greece
| |
Collapse
|
15
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
16
|
Conic D, Pierloot K, Parac-Vogt TN, Harvey JN. Mechanism of the highly effective peptide bond hydrolysis by MOF-808 catalyst under biologically relevant conditions. Phys Chem Chem Phys 2020; 22:25136-25145. [PMID: 33118561 DOI: 10.1039/d0cp04775a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient and selective hydrolysis of inert peptide bonds is of paramount importance. MOF-808, a metal-organic framework based on Zr6 nodes, can hydrolyze peptide bonds efficiently under biologically relevant conditions. However, the details of the catalyst structure and of the underlying catalytic reaction mechanism are challenging to establish. By means of DFT calculations we first investigate the speciation of the Zr6 nodes and identify the nature of ligands that bind to the Zr6O8H4-x core in aqueous conditions. The core is predicted to strongly prefer a Zr6O8H4 protonation state and to be predominantly decorated by bridging formate ligands, giving Zr6(μ3-O)4(μ3-OH)4(BTC)2(HCOO)6 and Zr6(μ3-O)4(μ3-OH)4(BTC)2(HCOO)5(OH)(H2O) as the most favorable structures at physiological pH. The GlyGly peptide can bind MOF in several different ways, with the preferred structure involving coordination through the terminal carboxylate analogously to the binding mode of formate ligand. The pre-reactive binding mode in which the amide carbonyl oxygen coordinates the metal core lies 7 kcal higher in free energy. The preferred reaction pathway is predicted to have two close-lying transition states, either of which could be the rate-determining step: nucleophilic attack on the amide carbon atom and C-N bond breaking, with calculated relative free energies of 31 and 32 kcal mol-1, respectively. Replacement of formate by water and hydroxide at the Zr6 node is predicted to be possible, but does not appear to play a role in the hydrolysis mechanism.
Collapse
Affiliation(s)
- Dragan Conic
- Division of Quantum Chemistry and Physical Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
17
|
Tran YBN, Nguyen PTK, Luong QT, Nguyen KD. Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal–Organic Frameworks for Catalysis Cycloaddition of CO2. Inorg Chem 2020; 59:16747-16759. [DOI: 10.1021/acs.inorgchem.0c02807] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Y. B. N. Tran
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Phuong T. K. Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Quang T. Luong
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Khoi D. Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
18
|
Yang H, Zhou C, Yang Y, Chu Z, Yan W, Nie S, Luo J, Lin S, Wang Y. A new three sensing channels platform of Eu@Zn-MOF for quantitative detection of Cr(III). INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Guo F, Su C, Fan Y, Shi W, Zhang X. Assembly of Two Self-Interpenetrating Metal–Organic Frameworks Based on a Trigonal Ligand: Syntheses, Crystal Structures, and Properties. Inorg Chem 2020; 59:7135-7142. [DOI: 10.1021/acs.inorgchem.0c00596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Changhua Su
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252059, People’s Republic of China
| | - Yuhang Fan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, People’s Republic of China
| |
Collapse
|
20
|
Chen P, He X, Pang M, Dong X, Zhao S, Zhang W. Iodine Capture Using Zr-Based Metal-Organic Frameworks (Zr-MOFs): Adsorption Performance and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20429-20439. [PMID: 32255599 DOI: 10.1021/acsami.0c02129] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effective capture of radioiodine, produced or released from nuclear-related activities, is of paramount importance for the sustainable development of nuclear energy. Here, a series of zirconium-based metal-organic frameworks (Zr-MOFs), with a Zr6(μ3-O)4(μ3-OH)4 cluster and various carboxylate linkers, were investigated for the capture of volatile iodine. Their adsorption kinetics and recyclability were investigated in dry and humid environments. The structural change of Zr-MOFs during iodine trapping was studied using powder X-ray diffraction and pore structure measurements. Experimental spectra (Raman and X-ray photoelectron spectroscopy) and density functional theory (DFT) calculations for the linkers and Zr clusters were performed to understand the trapping mechanism of the framework. When interacting with iodine molecules, MOF-808, NU-1000, and UiO-66, with highly connected and/or rigid linkers, have better structural stability than UiO-67 and MOF-867, which have flexible linkers with less connectivity. Particularly, MOF-808, with a rigid and tritopic benzenetricarboxylate linker, has the highest iodine adsorption capacity (2.18 g/g, 80 °C), as well as the largest pore volume after iodine elution. In contrast, UiO-67, with long linear ditopic linkers, exhibits the weakest stability and lowest adsorption capacity (0.53 g/g, 80 °C) because of its most serious collapse of pore structures. After incorporating with strong electron-donating imidazole/pyridine ligands, both the stability and adsorption capacity of MOF-808/NU-1000 decrease. DFT calculations verify that the N-heterocycle groups could enhance the affinity toward iodine by strong charge transfer. DFT calculations also suggest that the terminal -OH in MOF-808 has a strong affinity toward iodine (-54 kJ/mol I2) and water (-63 kJ/mol H2O) and a weak affinity toward NO2 (-27 kJ/mol NO2). With high adsorption capacity and excellent stability, MOF-808 shows great potential for the sustainable removal of radioiodine.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xihong He
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Maobin Pang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiuting Dong
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Song Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
21
|
Miao C, Su TE. Self-assembly of two Ag(I) metal-organic frameworks based on tri(pyridin-4-yl)amine: Crystal structures, anion-directed effect, and Cr2O72− capture behaviour. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Wang L. A Dual-Functional Lead(II) Metal–Organic Framework Based on 5-Aminonicotinic Acid as a Luminescent Sensor for Selective Sensing of Nitroaromatic Compounds and Detecting the Temperature. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Jia H, Qi Y, Wang X, Xie J, Yu W. Water-stable CdII-based metal–organic framework as a reversible luminescent sensor for NFT with excellent recyclability and selectivity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Duan L, Zhang C, Cen P, Jin X, Liang C, Yang J, Liu X. Stable Ln-MOFs as multi-responsive photoluminescence sensors for the sensitive sensing of Fe3+, Cr2O72−, and nitrofuran. CrystEngComm 2020. [DOI: 10.1039/c9ce01995b] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stable Ln(iii)-MOFs with a versatile 2-(4-pyridyl)-terephthalic acid ligand can be used as a multifunctional sensing platform for Fe3+, Cr2O72−, and nitrofuran detection.
Collapse
Affiliation(s)
- Lijuan Duan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Chengcheng Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Peipei Cen
- College of Public Health and Management
- Ningxia Medical University
- Yinchuan 750021
- China
| | - Xiaoyong Jin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Chen Liang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| |
Collapse
|
25
|
Baumann AE, Han X, Butala MM, Thoi VS. Lithium Thiophosphate Functionalized Zirconium MOFs for Li–S Batteries with Enhanced Rate Capabilities. J Am Chem Soc 2019; 141:17891-17899. [DOI: 10.1021/jacs.9b09538] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Avery E. Baumann
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xu Han
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Megan M. Butala
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, United States
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - V. Sara Thoi
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Zhang W, Bu A, Ji Q, Min L, Zhao S, Wang Y, Chen J. p Ka-Directed Incorporation of Phosphonates into MOF-808 via Ligand Exchange: Stability and Adsorption Properties for Uranium. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33931-33940. [PMID: 31409065 DOI: 10.1021/acsami.9b10920] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a class of pKa-directed, precise incorporation of phosphonate ligands into a zirconium-based metal-organic framework (Zr-MOF), MOF-808, via ligand exchange. By replacing of formate ligands with methylphosphonic acid (MPA), ethanephosphonic acid (EPA), and vinylphosphonic acid (VPA), whose pKa values are slightly higher than that of the benzenetricarboxylic acid (BTC) linker in MOF-808, daughter MOFs can be synthesized without controlling the stoichiometric amounts of added MPA. The methylphosphonate MOFs (808-MPAs) demonstrate high porosities, with only small changes in the pore diameter and specific surface area when compared with the parent MOF-808. PXRD patterns and structure refinements indicate the expansion of the lattice for all MOFs after decorating with methylphosphonate ligands. The XPS spectra reveal a charge redistribution of the Zr6 node after ligand exchange. FTIR and 31P MAS NMR spectra, combined with DFT calculation, suggest that the methylphosphonate ligand is connected to the Zr6 node as CH3P(O)(OZr)(OH) species with an accessible acidic P-OH group. Besides, 808-MPAs demonstrate excellent chemical stability in concentrated HCl, concentrated HNO3, hot water, and 0.2 mol/L trifluoroacetic acid solutions. Impressively, 808-MPAs show ultrafast adsorption performance for uranyl ions using the ion-exchange property of P-OH sites in their cavity environment, with an equilibrium time of 10 min, much quicker than the previous adsorbents. The present study demonstrates a series of important proof-of-concept examples of the pKa-directed Zr-MOFs with tunable phosphonate-terminated ligands, which can extend to other phosphonate-functionalized Zr-based framework platforms in the near future.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - An Bu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Qingyuan Ji
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Luofu Min
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Song Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Yuxin Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing Key Lab of Radioactive Waste Treatment, and Institute of Nuclear and New Energy Technology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
27
|
Chołuj A, Krzesiński P, Ruszczyńska A, Bulska E, Kajetanowicz A, Grela K. Noncovalent Immobilization of Cationic Ruthenium Complex in a Metal–Organic Framework by Ion Exchange Leading to a Heterogeneous Olefin Metathesis Catalyst for Use in Green Solvents. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Artur Chołuj
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Krzesiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Kajetanowicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
28
|
Zhu QQ, He H, Yan Y, Yuan J, Lu DQ, Zhang DY, Sun F, Zhu G. An Exceptionally Stable TbIII-Based Metal–Organic Framework for Selectively and Sensitively Detecting Antibiotics in Aqueous Solution. Inorg Chem 2019; 58:7746-7753. [DOI: 10.1021/acs.inorgchem.9b00147] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qian-Qian Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Ying Yan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Jing Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Di-Qiu Lu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - De-Yu Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
| |
Collapse
|
29
|
A novel metal-organic framework based on mixed ligands as a highly-selective luminescent sensor for Cr2O72− and nitroaromatic compounds. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Luo HB, Ren Q, Wang P, Zhang J, Wang L, Ren XM. High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton-Conducting MOF-808. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9164-9171. [PMID: 30747511 DOI: 10.1021/acsami.9b01075] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-organic frameworks (MOFs), as newly emerging materials, show compelling intrinsic structural features, e.g., the highly crystalline nature and designable and tunable porosity, as well as tailorable functionality, rendering them suitable for proton-conducting materials. The proton conduction of MOF is significantly improved using the postsynthesis or encapsulation strategy. In this work, the MOF-based proton-conducting material Im@MOF-808 has been prepared by incorporating the imidazole molecules into the pores of proton-conducting MOF-808. Compared with MOF-808, Im@MOF-808 not only possesses higher proton conductivity of 3.45 × 10-2 S cm-1 at 338 K and 99% RH, superior to that of any imidazole-encapsulated proton-conducting materials reported to date, but also good durable and stable proton conduction. Moreover, the thermal stability of H-bond networks is much improved owing to the water molecules partially replaced by higher boiling point imidazole molecules. Additionally, it is further discussed for the possible mechanism of imidazole encapsulation into the pores of MOF-808 to enhance proton conduction.
Collapse
Affiliation(s)
- Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Qiu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Peng Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Jin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Lifeng Wang
- Institute for Frontier Materials (IFM) , Deakin University , 75 Pigdons Road , Waurn Ponds , Victoria 3216 , Australia
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
- State Key Laboratory of Coordination Chemistry , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
31
|
A mononuclear Cu(II)-based metal-organic framework as an efficient heterogeneous catalyst for chemical transformation of CO2 and Knoevenagel condensation reaction. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|