1
|
Kimberly TQ, Frasch MH, Kauzlarich SM. Colloidal synthesis of two-dimensional nanocrystals by the polyol route. Dalton Trans 2024. [PMID: 39046257 DOI: 10.1039/d4dt01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The field of 2D nanomaterials is ever-growing with a myriad of synthetic advancements that have been used to obtain such materials. There are top-down, as well as bottom-up, fabrication methods for obtaining 2D nanomaterials; however, synthesis of 2D nanomaterials from solution offers a simple scalable way to control size, shape, and surface. This review outlines the recent advances in colloidal polyol synthesis of 2D nanomaterials and provides perspectives on the similarities and differences in various syntheses. Various materials classes are presented and discussed, including metals, oxides, chalcogenides, and halides, that can be synthesized as 2D nanomaterials via a polyol process. Throughout the literature, polyol media is demonstrated to be versatile not only as a solvent and reducing agent for metal precursors but also as a binding and shape-directing agent for many 2D nanomaterials. Polyols also offer the ability to dissolve various surfactants and additives that can further control the morphology and composition of various nanomaterials. In this review, we outline the various 2D materials that have been realized via the solution polyol route.
Collapse
Affiliation(s)
- Tanner Q Kimberly
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Michelle H Frasch
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Susan M Kauzlarich
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| |
Collapse
|
2
|
Bhardwaj A, Kundu K, Sasmal R, Acharyya P, Pradhan J, Kalita S, Agasti SS, Biswas K. 2D nanosheets of layered double perovskites: synthesis, photostable bright orange emission and photoluminescence blinking. Chem Sci 2023; 14:7161-7169. [PMID: 37416708 PMCID: PMC10321497 DOI: 10.1039/d3sc02506c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Lead (Pb)-free layered double perovskites (LDPs) with exciting optical properties and environmental stability have sparked attention in optoelectronics, but their high photoluminescence (PL) quantum yield and understanding of the PL blinking phenomenon at the single particle level are still elusive. Herein, we not only demonstrate a hot-injection route for the synthesis of two-dimensional (2D) ∼2-3 layer thick nanosheets (NSs) of LDP, Cs4CdBi2Cl12 (pristine), and its partially Mn-substituted analogue [i.e., Cs4Cd0.6Mn0.4Bi2Cl12 (Mn-substituted)], but also present a solvent-free mechanochemical synthesis of these samples as bulk powders. Bright and intense orange emission has been perceived for partially Mn-substituted 2D NSs with a relatively high PL quantum yield (PLQY) of ∼21%. The PL and lifetime measurements both at cryogenic (77 K) and room temperatures were employed to understand the de-excitation pathways of charge carriers. With the implementation of super-resolved fluorescence microscopy and time-resolved single particle tracking, we identified the occurrence of metastable non-radiative recombination channels in a single NS. In contrast to the rapid photo-bleaching that resulted in a PL blinking-like nature of the controlled pristine NS, the 2D NS of the Mn-substituted sample displayed negligible photo-bleaching with suppression of PL fluctuation under continuous illumination. The blinking-like nature in pristine NSs appeared due to a dynamic equilibrium flanked by the active and in-active states of metastable non-radiative channels. However, the partial substitution of Mn2+ stabilized the in-active state of the non-radiative channels, which increased the PLQY and suppressed PL fluctuation and photo-bleaching events in Mn-substituted NSs.
Collapse
Affiliation(s)
- Aditya Bhardwaj
- New Chemistry Unit and School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Kaushik Kundu
- New Chemistry Unit and School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Ranjan Sasmal
- New Chemistry Unit and School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Paribesh Acharyya
- New Chemistry Unit and School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Jayita Pradhan
- New Chemistry Unit and School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Simanta Kalita
- Chemistry and Physics of Materials Unit, JNCASR Jakkur P.O. Bangalore 560064 India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
- Chemistry and Physics of Materials Unit, JNCASR Jakkur P.O. Bangalore 560064 India
| | - Kanishka Biswas
- New Chemistry Unit and School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| |
Collapse
|
3
|
Ghimire S, Rehhagen C, Fiedler S, Parekh U, Lesyuk R, Lochbrunner S, Klinke C. Synthesis, optoelectronic properties, and charge carrier dynamics of colloidal quasi-two-dimensional Cs 3Bi 2I 9 perovskite nanosheets. NANOSCALE 2023; 15:2096-2105. [PMID: 36629319 DOI: 10.1039/d2nr06048e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Non-toxicity and stability make two-dimensional (2D) bismuth halide perovskites better alternatives to lead-based ones for optoelectronic applications and catalysis. In this work, we synthesize sub-micron size colloidal quasi-2D Cs3Bi2I9 perovskite nanosheets and study their generation and relaxation of charge carriers. Steady-state absorption spectroscopy reveals an indirect bandgap of 2.07 eV, which is supported by the band structure calculated using density functional theory. The nanosheets show no detectable photoluminescence at room temperature at near bandgap excitation which is attributed to the indirect bandgap. However, cathodoluminescence spanning a broad range from 500 nm to 750 nm with an asymmetric and Stokes-shifted emission is observed, indicating the phonon- and trap-assisted recombination of charge carriers. We study the ultrafast charge carrier dynamics in Cs3Bi2I9 nanosheets using femtosecond transient absorption spectroscopy. The samples are excited with photon energies higher than their bandgap, and the results are interpreted in terms of hot carrier generation (<1 ps), thermalization with local phonons (∼1 ps), and cooling (>30 ps). Further, a relatively slow relaxation of excitons (≳3 ns) at the band edge suggests the formation of stable polarons which decay nonradiatively by releasing phonons.
Collapse
Affiliation(s)
- Sushant Ghimire
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany.
| | - Chris Rehhagen
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany.
| | - Saskia Fiedler
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Urvi Parekh
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany.
| | - Rostyslav Lesyuk
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany.
- Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine, Naukowa str. 3b, 79060 Lviv & Department of Photonics, Lviv Polytechnic National University, Bandery str. 12, 79000 Lviv, Ukraine
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany.
| | - Christian Klinke
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany.
- Department of Chemistry, Swansea University, Swansea SA2 8PP, UK
- Department "Life, Light & Matter", University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
4
|
Salari R, Amjadi M, Hallaj T. Perovskite quantum dots as a chemiluminescence platform for highly sensitive assay of cefazolin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121845. [PMID: 36152503 DOI: 10.1016/j.saa.2022.121845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
This paper reports on a chemiluminescence (CL) probe consist of CsPbBr3 quantum dots (QDs) in organic phase together with Fe(II) and K2S2O8 in aqueous medium for the highly selective and sensitive determination of the antibiotic, cefazolin (CFZ). The CsPbBr3perovskite QDs prepared by the ligand assisted reprecipitation method, exhibit a narrow fluorescence at 533 nm under 460 nm excitation with a high quantum yield (42 %). The Fe(II) - S2O82- as an ultra-weak CL system is converted to a rather strong CL sensing platform in the presence of organic-phase CsPbBr3 QDs. It was observed that CFZ exerts an enhancement effect on the CL signal of the designed probe in the linear range of 25 - 300 nM, with a low limit of detection (9.6 nM). The introduced sensor has broad application prospects in biosensing, food detection, and other fields with recovery ranging from 94 to 106 %.
Collapse
Affiliation(s)
- Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| |
Collapse
|
5
|
Liu X, Li Y, Zeng L, Li X, Chen N, Bai S, He H, Wang Q, Zhang C. A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108327. [PMID: 35015320 DOI: 10.1002/adma.202108327] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Mechanochemistry with solvent-free and environmentally friendly characteristics is one of the most promising alternatives to traditional liquid-phase-based reactions, demonstrating epoch-making significance in the realization of different types of chemistry. Mechanochemistry utilizes mechanical energy to promote physical and chemical transformations to design complex molecules and nanostructured materials, encourage dispersion and recombination of multiphase components, and accelerate reaction rates and efficiencies via highly reactive surfaces. In particular, mechanochemistry deserves special attention because it is capable of endowing energy materials with unique characteristics and properties. Herein, the latest advances and progress in mechanochemistry for the preparation and modification of energy materials are reviewed. An outline of the basic knowledge, methods, and characteristics of different mechanochemical strategies is presented, distinguishing this review from most mechanochemistry reviews that only focus on ball-milling. Next, this outline is followed by a detailed and insightful discussion of mechanochemistry-involved energy conversion and storage applications. The discussion comprehensively covers aspects of energy transformations from mechanical/optical/chemical energy to electrical energy. Finally, next-generation advanced energy materials are proposed. This review is intended to bring mechanochemistry to the frontline and guide this burgeoning field of interdisciplinary research for developing advanced energy materials with greener mechanical force.
Collapse
Affiliation(s)
- Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Li Zeng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xi Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shibing Bai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Tailor NK, Maity P, Satapathi S. Phonon-Mediated Slow Hot Carrier Dynamics in Lead-Free Cs 3Bi 2I 9 Perovskite Single Crystal. J Phys Chem Lett 2022; 13:5260-5266. [PMID: 35674417 DOI: 10.1021/acs.jpclett.2c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this report, we study the hot carrier cooling mechanism of the Cs3Bi2I9 single crystal by using femtosecond transient reflectance (fs-TR) spectroscopy. We find an unusual slow hot carrier cooling associated with longitudinal optical (LO) and coherent longitudinal acoustic phonons (CLAPs) emission during the deexcitation of the hot carriers. We posit the interplay between the hot-carriers and the LO and CLA phonons in subpicosecond to subnanosecond time scales, respectively, by analyzing the TR kinetics upon perturbation with excess energy. Furthermore, we measured the CLAPs propagation velocity in Cs3Bi2I9, the crystal, ranging from 1820 to 2000 ms-1. The elastic constants and frequency of Brillouin oscillations were estimated as 20.08 GPa and 14.66 GHz, respectively. Our discovery delivers new physical insights into how the hot carriers in Cs3Bi2I9 single crystal are coupled with a crystal lattice that controls the hot carrier dynamics.
Collapse
Affiliation(s)
- Naveen Kumar Tailor
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
7
|
Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films. MATERIALS 2021; 14:ma14247827. [PMID: 34947425 PMCID: PMC8706077 DOI: 10.3390/ma14247827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Lead halide perovskites have been revolutionary in the last decade in many optoelectronic sectors. Their bismuth-based counterparts have been considered a good alternative thanks to their composition of earth-abundant elements, good chemical stability, and low toxicity. Moreover, their electronic structure is in a quasi-zero-dimensional (0D) configuration, and they have recently been explored for use beyond optoelectronics. A significant limitation in applying thin-film technology is represented by the difficulty of synthesizing compact layers with easily scalable methods. Here, the engineering of a two-step synthesis in an air of methylammonium bismuth iodide compact thin films is reported. The critical steps of the process have been highlighted so that the procedure can be adapted to different substrates and application areas.
Collapse
|
8
|
Saothayanun TK, Ogawa M. Mechanochemical syntheses of all-inorganic iodide perovskites from layered cesium titanate and bismuth (and antimony) iodide. Chem Commun (Camb) 2021; 57:10003-10006. [PMID: 34498022 DOI: 10.1039/d1cc03615g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All-inorganic iodide perovskites were prepared by a mechanochemical reaction between a layered cesium titanate and bismuth (or antimony) triiodide under ambient conditions. The layered cesium titanate was a sacrificial template and also acted as a milling media for the formation of the perovskite nanoparticles with the size of a few nanometres.
Collapse
Affiliation(s)
- Taya Ko Saothayanun
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
9
|
Acharyya P, Kundu K, Biswas K. 2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties. NANOSCALE 2020; 12:21094-21117. [PMID: 33057536 DOI: 10.1039/d0nr06138g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, halide perovskites have appeared as a superior class of materials for diverse applications, mainly in optoelectronics and photovoltaics. Perovskite halides are broadly classified as hybrid organic-inorganic and all-inorganic analogues depending on the chemical nature of the A cation in the ABX3-type structure. Immense progress has already been achieved in halide perovskites focusing mainly on the hybrid equivalents and all-inorganic three-dimensional (3D) structures, however all-inorganic two-dimensional (2D) layered halide perovskites are relatively new and their nanostructures have gained significant attention in the last few years. In this minireview, we presented a discussion on the recently developed all-inorganic 2D layered halide perovskites highlighting their crystal structure, synthetic methodologies, chemical transformations, and optical properties. We have demonstrated a significant number of examples of Pb-free 2D halide perovskite nanostructures. Strategies for the shape-controlled synthesis of nanostructures and their excitonic properties are discussed in detail. Thermal conductivity and thermoelectric properties are emphasized along with the magnetic properties of layered transition-metal based perovskites. We have also mentioned the recent examples of all-inorganic 2D halide perovskites as photocatalysts for solar-driven CO2 reduction. Finally, we have concluded the article with an outlook for the further progress in 2D all-inorganic halide perovskites toward the structural diversity and prospective new applications.
Collapse
Affiliation(s)
- Paribesh Acharyya
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Kaushik Kundu
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Kanishka Biswas
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| |
Collapse
|
10
|
Rathore E, Maji K, Rao D, Saha B, Biswas K. Charge Transfer in the Heterostructure of CsPbBr 3 Nanocrystals with Nitrogen-Doped Carbon Dots. J Phys Chem Lett 2020; 11:8002-8007. [PMID: 32871070 DOI: 10.1021/acs.jpclett.0c02139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterostructures of inorganic halide perovskites with mixed-dimensional inorganic nanomaterials have shown great potential not only in the field of optoelectronic energy devices and photocatalysis but also for improving our fundamental understanding of the charge transfer across the heterostructure interface. Herein, we present for the first time the heterostructure integration of the CsPbBr3 nanocrystal with an N-doped carbon dot. We explore the photoluminescence (PL) and photoconductivity of the heterostructure of CsPbBr3 nanocrystals and N-doped carbon dots. PL quenching of CsPbBr3 nanocrystals with the addition of N-doped carbon dots was observed. The photoexcited electrons from the conduction band of CsPbBr3 are trapped in the N-acceptor state of N-doped carbon dots, and the charge transfer occurs via quasi type II-like electronic band alignment. The charge transfer in the halide perovskite-based heterostructure should motivate further research into the new heterostructure synthesis with perovskites and the fundamental understanding of the mechanism of charge/energy transfer across the heterostructure interface.
Collapse
|
11
|
Kundu K, Acharyya P, Maji K, Sasmal R, Agasti SS, Biswas K. Synthesis and Localized Photoluminescence Blinking of Lead‐Free 2D Nanostructures of Cs
3
Bi
2
I
6
Cl
3
Perovskite. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kaushik Kundu
- New Chemistry Unit and School of Advanced Materials Bangalore 560064 India
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Paribesh Acharyya
- New Chemistry Unit and School of Advanced Materials Bangalore 560064 India
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Krishnendu Maji
- New Chemistry Unit and School of Advanced Materials Bangalore 560064 India
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Ranjan Sasmal
- New Chemistry Unit and School of Advanced Materials Bangalore 560064 India
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Sarit S. Agasti
- New Chemistry Unit and School of Advanced Materials Bangalore 560064 India
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| | - Kanishka Biswas
- New Chemistry Unit and School of Advanced Materials Bangalore 560064 India
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bangalore 560064 India
| |
Collapse
|
12
|
Kundu K, Acharyya P, Maji K, Sasmal R, Agasti SS, Biswas K. Synthesis and Localized Photoluminescence Blinking of Lead-Free 2D Nanostructures of Cs 3 Bi 2 I 6 Cl 3 Perovskite. Angew Chem Int Ed Engl 2020; 59:13093-13100. [PMID: 32374512 DOI: 10.1002/anie.202005966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 11/10/2022]
Abstract
Two-dimensional (2D) lead-free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in-depth understanding on their shape-controlled charge-carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single-particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3 Bi2 I6 Cl3 , by solution-based method. We applied fluorescence microscopy and super-resolution optical imaging at single-particle level to investigate their morphology-dependent PL properties. Narrow emission line widths and passivation of non-radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super-resolution optical image of the NS from localization-based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.
Collapse
Affiliation(s)
- Kaushik Kundu
- New Chemistry Unit and School of Advanced Materials, Bangalore, 560064, India.,Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Paribesh Acharyya
- New Chemistry Unit and School of Advanced Materials, Bangalore, 560064, India.,Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Krishnendu Maji
- New Chemistry Unit and School of Advanced Materials, Bangalore, 560064, India.,Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit and School of Advanced Materials, Bangalore, 560064, India.,Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials, Bangalore, 560064, India.,Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Kanishka Biswas
- New Chemistry Unit and School of Advanced Materials, Bangalore, 560064, India.,Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| |
Collapse
|
13
|
Kumar GS, Sarkar PK, Pradhan B, Hossain M, Rao KDM, Acharya S. Large-area transparent flexible guanidinium incorporated MAPbI 3 microstructures for high-performance photodetectors with enhanced stability. NANOSCALE HORIZONS 2020; 5:696-704. [PMID: 32226965 DOI: 10.1039/c9nh00774a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unveiling the transparency and flexibility in perovskite-based photodetectors with superior photoresponse and environmental stability remains an open challenge. Here we report on guanidinium incorporated metal halide perovskite (MA1-xGuaxPbI3, x = 0 to 0.65) random percolative microstructure (RPM) fabrication using an ultra-fast spray coating technique. Remarkably, RPMs over a large area of 5 × 5 cm2 on flexible substrates with a transparency of ∼50% can be achieved with enriched environmental stability. Transparent photodetectors based on MA1-xGuaxPbI3 (x = 0.12) RPMs manifest excellent performance with a responsivity of 187 A W-1, a detectivity of 2.23 × 1012 Jones and an external quantum efficiency of 44 115%. Additionally, the photodetectors exhibited superior mechanical flexibility under a wide range of bending angles and large number of binding cycles. Integrating features including transparency, high performance, stability, flexibility and scalability within a photodetector is unmatched and holds potential for novel applications in transparent and wearable optoelectronic devices.
Collapse
Affiliation(s)
- Gundam Sandeep Kumar
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | | | | | | | | | | |
Collapse
|
14
|
Fu D, Yuan J, Wu S, Yao Y, Zhang X, Zhang XM. A two-dimensional bilayered Dion–Jacobson-type perovskite hybrid with a narrow bandgap for broadband photodetection. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01540j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A unique 2D bilayered Dion–Jacobson type perovskite hybrid semiconductor shows broadband photodetection.
Collapse
Affiliation(s)
- Dongying Fu
- Institute of Crystalline Materials
- Shanxi University
- Taiyuan
- China
- Institute of Molecular Science
| | - Jianrong Yuan
- Institute of Crystalline Materials
- Shanxi University
- Taiyuan
- China
- Institute of Molecular Science
| | - Shichao Wu
- Institute of Crystalline Materials
- Shanxi University
- Taiyuan
- China
- Institute of Molecular Science
| | - Yunpeng Yao
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P.R. China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P.R. China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials
- Shanxi University
- Taiyuan
- China
- Institute of Molecular Science
| |
Collapse
|
15
|
Maji K, Acharyya P, Satapathy P, Prasad SK, Biswas K. Mechanochemical Synthesis and Temperature-Dependent Optical Properties of Thermochromic (Ag 1-x Cu x ) 2 HgI 4. Chem Asian J 2019; 14:4641-4644. [PMID: 31282039 DOI: 10.1002/asia.201900716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 11/11/2022]
Abstract
Thermochromic materials are generally synthesized via high-temperature melting reaction or solution-based synthesis. Herein, all-inorganic thermochromic compounds of (Ag1-x Cux )2 HgI4 were synthesized by solvent-free simple and scalable mechanochemical grinding at room temperature. Temperature-dependent electronic absorption spectroscopy along with DSC analysis confirmed the thermochromic events within these materials, and the phase transition temperature varied with solid solution compositions. The photoluminescence (PL) spectra is red-shifted with the increase in the Cu content in (Ag1-x Cux )2 HgI4 (x=0-1).
Collapse
Affiliation(s)
- Krishnendu Maji
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Paribesh Acharyya
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | | | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences, Bangalore, 560013, India
| | - Kanishka Biswas
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India.,School of Advanced Materials and International Centre of Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| |
Collapse
|
16
|
Premkumar S, Kundu K, Umapathy S. Impact of cesium in methylammonium lead bromide perovskites: insights into the microstructures, stability and photophysical properties. NANOSCALE 2019; 11:10292-10305. [PMID: 31099377 DOI: 10.1039/c9nr02733e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The thermal and moisture instabilities of pure organic lead halide perovskites are the foremost concerns towards the commercialization of perovskite solar cells, which can be avoided by introducing an inorganic cation, such as cesium ion (Cs+) at the A-site of the perovskite crystals. In this report, the impacts of substituted Cs+ cations on the inherent properties such as microstructures, morphology, and photophysics of pure methylammonium lead bromide (MAPbBr3) perovskites have been investigated. Successful formation of mixed MA1-xCsxPbBr3 phases (with 0 ≤ x ≤ 1.0) was predicted from the theoretically calculated tolerance factor, which was further supported by the appearance of sharp diffraction peaks in X-ray diffraction (XRD) patterns without any additional peaks in the whole composition range. Substitution of Cs+ ions brings significant lattice contraction in the parent MAPbBr3 crystal due to the ion size disparity in the ionic radii between MA+ and Cs+ ions. We examine the vibrational signatures of the Raman bands related to the organic MA+ and infer the nature of interactions between the organic moiety and the surrounding inorganic cage as a function of Cs concentration. Raman spectroscopic analysis reveals structural distortion due to the altered H-bonding interaction of the N+-HBr- type between MA+ and the PbBr3- octahedral framework as a function of Cs content, which is responsible for the octahedral tilting in Cs substituted MAPbBr3. We also found hindered rotational motions of MA+ in the octahedral cage of mixed cationic systems, resulting in the orientational ordering of MA in the presence of Cs. These results certainly offer highly ordered mixed phase structures and promote superior thermal stability, as evident from the thermogravimetric analysis. The photoluminescence intensity becomes considerably enhanced at increased substitution levels, which highlights the capability of incorporated Cs+ cations in suppressing non-radiative recombination in a pure MA-based crystal, possibly related to the mitigation of trapping. The substitution of Cs+ with MAPbBr3 allows innovative strategies to improve the proficiency of tandem solar cells by modifying their structural and photophysical properties.
Collapse
Affiliation(s)
- S Premkumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|