1
|
Jin QY, Liang YY, Zhang ZH, Meng L, Geng JS, Hu KQ, Yu JP, Chai ZF, Mei L, Shi WQ. Colossal negative thermal expansion in a cucurbit[8]uril-enabled uranyl-organic polythreading framework via thermally induced relaxation. Chem Sci 2023; 14:6330-6340. [PMID: 37325134 PMCID: PMC10266465 DOI: 10.1039/d3sc01343j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
It is an ongoing goal to achieve the effective regulation of the thermal expansion properties of materials. In this work, we propose a method for incorporating host-guest complexation into a framework structure and construct a flexible cucurbit[8]uril uranyl-organic polythreading framework, U3(bcbpy)3(CB8). U3(bcbpy)3(CB8) can undergo huge negative thermal expansion (NTE) and has a large volumetric coefficient of -962.9 × 10-6 K-1 within the temperature range of 260 K to 300 K. Crystallographic snapshots of the polythreading framework at various temperatures reveal that, different from the intrinsic transverse vibrations of the subunits of metal-organic frameworks (MOFs) that experience NTE via a well-known hinging model, the remarkable NTE effect observed here is the result of a newly-proposed thermally induced relaxation process. During this process, an extreme spring-like contraction of the flexible CB8-based pseudorotaxane units, with an onset temperature of ∼260 K, follows a period of cumulative expansion. More interestingly, compared with MOFs that commonly have relatively strong coordination bonds, due to the difference in the structural flexibility and adaptivity of the weakly bonded U3(bcbpy)3(CB8) polythreading framework, U3(bcbpy)3(CB8) shows unique time-dependent structural dynamics related to the relaxation process, the first time this has been reported in NTE materials. This work provides a feasible pathway for exploring new NTE mechanisms by using tailored supramolecular host-guest complexes with high structural flexibility and has promise for the design of new kinds of functional metal-organic materials with controllable thermal responsive behaviour.
Collapse
Affiliation(s)
- Qiu-Yan Jin
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuan-Yuan Liang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University Changzhou 213164 China
| | - Liao Meng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
2
|
Hanna SL, Farha OK. Energy-structure-property relationships in uranium metal-organic frameworks. Chem Sci 2023; 14:4219-4229. [PMID: 37123191 PMCID: PMC10132172 DOI: 10.1039/d3sc00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Located at the foot of the periodic table, uranium is a relatively underexplored element possessing rich chemistry. In addition to its high relevance to nuclear power, uranium shows promise for small molecule activation and photocatalysis, among many other powerful functions. Researchers have used metal-organic frameworks (MOFs) to harness uranium's properties, and in their quest to do so, have discovered remarkable structures and unique properties unobserved in traditional transition metal MOFs. More recently, (e.g. the last 8-10 years), theoretical calculations of framework energetics have supplemented structure-property studies in uranium MOFs (U-MOFs). In this Perspective, we summarize how these budding energy-structure-property relationships in U-MOFs enable a deeper understanding of chemical phenomena, enlarge chemical space, and elevate the field to targeted, rather than exploratory, discovery. Importantly, this Perspective encourages interdisciplinary connections between experimentalists and theorists by demonstrating how these collaborations have elevated the entire U-MOF field.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
- Department of Chemical and Biological Engineering, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
3
|
Kusumoto S, Atoini Y, Masuda S, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Zwitterionic and Anionic Polycarboxylates as Coligands in Uranyl Ion Complexes, and Their Influence on Periodicity and Topology. Inorg Chem 2022; 61:15182-15203. [PMID: 36083206 DOI: 10.1021/acs.inorgchem.2c02426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The three zwitterionic di- and tricarboxylate ligands 1,1'-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-4-carboxylate) (pL1), 1,1'-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-3-carboxylate) (mL1), and 1,1',1″-[(2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)]tris(pyridin-1-ium-4-carboxylate) (L2) have been used as ligands to synthesize a series of 15 uranyl ion complexes involving various anionic coligands, in most cases polycarboxylates. [(UO2)2(pL1)2(cbtc)(H2O)2]·10H2O (1, cbtc4- = cis,trans,cis-1,2,3,4-cyclobutanetetracarboxylate) is a discrete, dinuclear ring-shaped complex with a central cbtc4- pillar. While [UO2(pL1)(NO3)2] (2), [UO2(pL1)(OAc)2] (3), and [UO2(pL1)(HCOO)2] (4) are simple chains, [(UO2)2(mL1)(1,3-pda)2] (5, 1,3-pda2- = 1,3-phenylenediacetate) is a daisy chain and [UO2(pL1)(pdda)]3·10H2O (6, pdda2- = 1,2-phenylenedioxydiacetate) is a double-stranded, ribbon-like chain. Both [UO2(pL1)(pht)]·5H2O (7, pht2- = phthalate) and [(UO2)3(mL1)(pht)2(OH)2] (8) crystallize as diperiodic networks with the sql topology, the latter involving hydroxo-bridged trinuclear nodes. [(UO2)2(pL1)(c/t-1,3-chdc)2] (9, c/t-1,3-chdc2- = cis/trans-1,3-cyclohexanedicarboxylate) and [UO2(pL1)(t-1,4-chdc)]·1.5H2O (10, t-1,4-chdc2- = trans-1,4-cyclohexanedicarboxylate) are also diperiodic, with the V2O5 and sql topologies, respectively. Both [(UO2)2(mL1)(c/t-1,4-chdc)2] (11) and [(UO2)2(pL1)(1,2-pda)2] (12, 1,2-pda2- = 1,2-phenylenediacetate) crystallize as diperiodic networks with hcb topology, and they display threefold parallel interpenetration. [HL2][(UO2)3(L2)(adc)3]Br (13, adc2- = 1,3-adamantanedicarboxylate) contains a very corrugated hcb network with two different kinds of cells, and the uncoordinated HL2+ molecule associates with the coordinated L2 to form a capsule containing the bromide anion. [(UO2)2(pL1)(kpim)2] (14, kpim2- = 4-ketopimelate) is a three-periodic framework with pL1 molecules pillaring fes diperiodic subunits, whereas [(UO2)2(L2)2(t-1,4-chdc)](NO3)1.7Br0.3·6H2O (15), the only cationic complex in the series, is a triperiodic framework with dmc topology and t-1,4-chdc2- anions pillaring fes diperiodic subunits. Solid-state emission spectra and photoluminescence quantum yields are reported for all complexes.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Jee Young Kim
- Department of Food and Nutrition, Kosin University, 194 Wachiro, Yongdo-Gu, Busan 49104, South Korea
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Li Y, Xu YJ, Fan MY, Feng ZJ, Li JJ, Wu XS, Sun J, Wang XL, Su ZM. Three layered cucurbit[6]uril-based metal-organic rotaxane networks functionalized by sulfonic groups for proton conduction. Dalton Trans 2022; 51:12225-12231. [PMID: 35894676 DOI: 10.1039/d2dt01283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new cucurbit[6]uril (CB[6])-based metal-organic rotaxane networks (MORNs) (named CUST-711, CUST-712, and CUST-713) functionalized by a sulfonic group (-SO3H) have been designed and synthesized via a hydrothermal method. All three compounds exhibited similar two-dimensional (2D) wave layer structures. Their stability under different temperature and relative humidity conditions has been investigated and all the compounds showed excellent stability. Furthermore, their proton conduction properties were also discussed in detail. Due to different structures and sulfonic group sites, the three compounds exhibited different proton conduction abilities of which CUST-712 exhibited an intrinsic relatively high proton conductivity (1.75 × 10-4 S cm-1 at 85 °C and 97% relative humidity). These results provide ideas for the design and synthesis of functional CB[6]-based metal-organic rotaxane frameworks (MORFs) as proton conducting materials.
Collapse
Affiliation(s)
- Ying Li
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Yan-Jun Xu
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Ming-Yue Fan
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Zhen-Jie Feng
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Jun-Jun Li
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Xue-Song Wu
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Jing Sun
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Xin-Long Wang
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China
| | - Zhong-Min Su
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China
| |
Collapse
|
5
|
Byrne NM, Schofield MH, Cahill CL. A novel symmetric pyrazine (pyz)-bridged uranyl dimer [UO 2Cl 3(H 2O)(Pyz) 0.5] 22-: synthesis, structure and computational analysis. Dalton Trans 2022; 51:11013-11020. [PMID: 35791868 DOI: 10.1039/d2dt01486f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report on the synthesis of (HPyz+)2[UO2Cl3(H2O)(Pyz)0.5]2·2H2O which features a novel pyrazine-bridged uranyl dimer, [UO2Cl3(H2O)(Pyz)0.5]22-. A rigorous computational and experimental analysis of this compound was performed to fully explore the influence of coordination on the electronic structure and potential charge-transfer characteristics of this dimer, revealing a delocalized π-system across the bridging pyrazine and the axial components of both uranyl centers. Electrostatic surface potentials, used to rationalize the observed assembly, indicate a decreased basicity of the uranyl oxo versus [UO2Cl4]2-, and signify a lessened capacity for the terminal -yl oxos of the [UO2Cl3(H2O)(Pyz)0.5]22- dimer to participate in supramolecular assembly. A combined density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) analysis further evidenced an increase in UO bond strengths within the dimer, which is supported by a blue shift in the characteristic Raman-active uranyl symmetric stretch (ν1) with respect to the more typically observed [UO2Cl4]2-.
Collapse
Affiliation(s)
- Nicole M Byrne
- Department of Chemistry, The George Washington University, 800 22nd St NW, Suite 4000, Washington, D.C., 20052, USA.
| | - Mark H Schofield
- Department of Chemistry, The George Washington University, 800 22nd St NW, Suite 4000, Washington, D.C., 20052, USA.
| | - Christopher L Cahill
- Department of Chemistry, The George Washington University, 800 22nd St NW, Suite 4000, Washington, D.C., 20052, USA.
| |
Collapse
|
6
|
Wang JY, Mei L, Huang ZW, Chi XW, Geng JS, Hu KQ, Yu JP, Jiao CS, Zhang M, Chai ZF, Shi WQ. Coordination-Adaptive Polydentate Pseudorotaxane Ligand for Capturing Multiple Uranyl Species. Inorg Chem 2022; 61:3058-3071. [PMID: 35130695 DOI: 10.1021/acs.inorgchem.1c03204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The propensity of uranyl for hydrolysis in aqueous environments prevents precise control of uranyl species in the scenarios of on-demand separation and tailored synthesis. Herein, using cucurbit[7]uril (CB[7]) as the macrocyclic molecule and 4,4'-bipyridine-N,N'-dioxide (DPO) as the string molecule, we propose a new kind of multidentate pseudorotaxane ligand, DPO@CB[7] for capturing uranyl species at different pH's. With the aprotic nature of DPO for metal coordination, the coordination ability of the DPO@CB[7] ligand is less affected by pH and can work in a wide range of pH's. Furthermore, by adaptive uranyl coordination, this aprotic pseudorotaxane ligand achieves effective recognition for different uranyl species ranging from monomeric to tetrameric originating from hydrolysis at varying pH's, and four novel uranyl-rotaxane compounds (URC1-4) are successfully obtained. Single-crystal X-ray diffraction analysis reveals that the DPO@CB[7] ligand coordinates with uranyl centers from monomeric to tetrameric in four different modes, as a result of structural flexibility of the DPO@CB[7] pseudorotaxane ligand. A detailed discussion for conformation flexibility of the DPO@CB[7] ligand has been conducted on the position changes of the DPO ligand trapped in the CB[7], which thus reveals good adaptivity of DPO@CB[7] that is noncovalently bonded as a supramolecular motif. In addition, characterization of the physicochemical properties of URC1 and URC2 with high phase purity, including powder X-ray diffraction (PXRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), and luminescence properties, are also provided. This work provides a good case of an adaptive pseudorotaxane ligand for the recognition and capture of different uranyl species and will bring valuable hints to the design of multifunctional supramolecular ligands for actinide separation in the future.
Collapse
Affiliation(s)
- Jing-Yang Wang
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Wei Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiao-Wang Chi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cai-Shan Jiao
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Meng Zhang
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Li F, Mei L, Peng H, Hu KQ, Chai Z, Liu N. Impact of Proximity Effect on Uranyl Coordination of Conformationally Variable Weakly-Bonded Cucurbit[6]uril-Bipyridinium Pseudorotaxane. CrystEngComm 2022. [DOI: 10.1039/d1ce01330k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore the proximity effect in uranyl coordination of weak-bonded cucurbit[6]uril(CB[6])-bipyridinium ligands, a new pseudorotaxane precursor C7BPCN3@CB[6] containing 1, 1'-(heptyl-1,7-diyl)bis(3-cyanopyridin-1-ium) bromide (C7BPCN3) with elongated alkyl chains and meta-substituted cyano groups,...
Collapse
|
8
|
Meng L, Liang YY, Mei L, Geng JS, Hu KQ, Yu JP, Wang XP, Fujita T, Chai ZF, Shi WQ. Mixed-Ligand Uranyl Squarate Coordination Polymers: Structure Regulation and Redox Activity. Inorg Chem 2021; 61:302-316. [PMID: 34908402 DOI: 10.1021/acs.inorgchem.1c02872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electron-rich squarate ion (C4O42-, SA2-) possesses electronic delocalization over the entire molecule and good redox activity, and the functionalization of metal-organic complexes with the SA2- group is desirable. In this work, a mixed-ligand method is used to construct novel uranyl squarate coordination polymers utilizing 4,4'-bipyridine (bpy), 4,4'-bipyridine-N,N'-dioxide (bpydo), 1,10-phenanthroline (phen), 4,4'-vinylenedipyridine (vidpy), and in situ formed oxalate (OA2-) as ancillary ligands. Seven mixed-ligand uranyl compounds, [(UO2)(OH)(SA)](Hbpy) (1), [(UO2)(H2O)(SA)2](H2bpy) (2), (UO2)(H2O)(SA)(bpydo)·2H2O (3), (UO2)(H2O)(SA)(phen)·H2O (4), (UO2)(OH)(SA)0.5(phen)·H2O (5), [(UO2)(SA)(OA)0.5](Hphen) (6), and [(UO2)(SA)(OA)0.5](Hvidpy) (7), with varying crystal structures were synthesized under hydrothermal conditions. Compound 1, together with bpy molecules filling in the interlayer space as template agents, has a two-dimensional (2D) network structure, while 2 gives a one-dimensional (1D) chain based on mononuclear uranium units. Compound 3 shows a neutral 2D network through the combined linkage of SA2- and bpydo. Both 4 and 5 have a similar chain-like structure due to the capping effect of phen motifs, while phen molecules in 6 act as templating agents after protonation. Similar to 6, compound 7 has a "sandwich-like" structure in which the Hvidpy motifs locate in the voids of layers of 2D uranyl-squarate networks. The redox properties of typical mixed-ligand uranyl-squarate compounds, 1, 4, and 5 with high phase purity, are characterized using cyclic voltammetry. All three of these uranyl coordination compounds show anode peaks (Ea) at 0.777, 0.804, and 0.760 V, respectively, which correspond to the oxidation process of SA2- → SA. Meanwhile, cathodic peaks (Ec) at -0.328, -0.315, and -0.323 V corresponding to the reduction process of U(VI) → U(V) are also observed. The results reveal that all three of these uranyl coordination compounds show good redox activity and, most importantly, the interplay between two different redox-active motifs of SA2- organic linker and uranyl node. This work enriches the library of redox-active uranyl compounds and provides a feasible mixed-ligand method for regulating the synthesis of functional actinide compounds.
Collapse
Affiliation(s)
- Liao Meng
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Liang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Peng Wang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Toyohisa Fujita
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214011] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Li FZ, Geng JS, Hu KQ, Yu JP, Liu N, Chai ZF, Mei L, Shi WQ. Proximity Effect in Uranyl Coordination of the Cucurbit[6]uril-Bipyridinium Pseudorotaxane Ligand for Promoting Host-Guest Synergistic Chelating. Inorg Chem 2021; 60:10522-10534. [PMID: 34212724 DOI: 10.1021/acs.inorgchem.1c01177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present work, we proposed regulating uranyl coordination behavior of cucurbituril-bipyridinium pseudorotaxane ligand by utilizing meta-functionalized bipyridinium dicarboxylate guest. A tailored pseudorotaxane precursor involving 1,1'-(hexane-1,6-diyl)bis(3-cyanopyridin-1-ium) bromide (C6BPCN3) and cucurbit[6]uril (CB[6]) has designed and synthesized. Through in situ hydrolysis of the pseudorotaxane ligands and their coordination assembly with uranyl cations, seven new uranyl-rotaxane coordination polymers URCP1-URCP7 have been obtained under hydrothermal conditions in the presence of different anions. It is demonstrated that the variation of carboxylate groups from para- to meta-position greatly affected the coordination behaviors of the meta-functionalized pseudorotaxane linkers, which are enriched from simple guest-only binding to host-guest simultaneous coordination and synergistic chelating. This effective regulation on uranyl coordination of supramolecular pseudorotaxane can be attributed to the proximity effect, which refers to the meta-position carboxyl group being spatially closer to the portal carbonyl group of CB[6]. Moreover, by combining other regulation methods such as introducing competing counterions and modulating solution acidity, the nuclearity of the uranyl center and the coordination patterns of the pseudorotaxane ligand can be diversely tuned, which subsequently exert great influence on the final dimensionality of resultant uranyl compounds. This work presents a large diversity of uranyl-based coordination polyrotaxane compounds with fascinating mechanically interlocked components and, most importantly, provides a feasible approach to adjust and control the metal coordination behavior of the pseudorotaxane ligand that might expand the scope of application of such supramolecular ligands.
Collapse
Affiliation(s)
- Fei-Ze Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Li F, Geng J, Hu K, Zeng L, Wang J, Kong X, Liu N, Chai Z, Mei L, Shi W. Temperature‐Triggered Structural Dynamics of Non‐Coordinating Guest Moieties in a Fluorescent Actinide Polyrotaxane Framework. Chemistry 2021; 27:8730-8736. [DOI: 10.1002/chem.202100614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Fei‐ze Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology Sichuan University Chengdu 610064 P. R. China
| | - Jun‐shan Geng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kong‐qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐wen Zeng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jing‐yang Wang
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 P. R. China
| | - Xiang‐he Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology Sichuan University Chengdu 610064 P. R. China
| | - Zhi‐fang Chai
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 P. R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei‐qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
12
|
Li P, Wei H, Duan M, Wu J, Li Y, Liu W, Fu Y, Xie F, Wu Y, Ma J. Actinyl-Carboxylate Complexes [AnO 2(COOH) n (H 2O) m ] 2-n (An = U, Np, Pu, and Am; n = 1-3; m = 0, 2, 4; 2 n + m = 6): Electronic Structures, Interaction Features, and the Potential to Adsorbents toward Cs Ion. ACS OMEGA 2020; 5:31974-31983. [PMID: 33344852 PMCID: PMC7745421 DOI: 10.1021/acsomega.0c04887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Organic compounds of actinyls and their bonding features have attracted extensive attention in nuclear waste separation due to their characteristics of separating fission products. Herein, detailed studies on the binding sites of [AnO2(COOH) n (H2O) m ]2-n (An = U, Np, Pu, and Am; n = 1-3; m = 0, 2, 4; 2n + m = 6) complexes toward Cs are predicted by calculation, and their electronic excitation characteristics were illustrated, providing theoretical supports for the design of Cs adsorbents. The quantum theory of atom in molecules and electron localization function have been implemented to analyze the chemical bonding characterization. The covalent character of An-OC bonds become weaker with increasing COOH- ligands, and the covalent interaction in An-OC bonds is more obvious than that in An-OH bonds. Total and partial population density of state suggest that the 2p orbits of O have more significant contribution in the low-energy region atoms and the 6d/5f orbits of An have more significant contribution in the high-energy region. The Cs+ best adsorption site on [UO2(COOH)2(H2O)2] and [UO2(COOH)3]- is the adjacent oxalates, and the [UO2(COOH)3]- complexes have better adsorption capacity. Besides, the electronic excitation characteristics of Cs+ adsorption on the UO2(COOH)2(H2O)2 complex were analyzed by the UV-vis spectrum and hole-electron distribution.
Collapse
Affiliation(s)
- Peng Li
- School
of Physics and Electronics Engineering, State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
| | - Hao Wei
- School
of Physics and Electronics Engineering, State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Meigang Duan
- School
of Physics and Electronics Engineering, State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Jizhou Wu
- School
of Physics and Electronics Engineering, State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
| | - Yuqing Li
- School
of Physics and Electronics Engineering, State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
| | - Wenliang Liu
- School
of Physics and Electronics Engineering, State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
| | - Yongming Fu
- School
of Physics and Electronics Engineering, State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
| | - Feng Xie
- Collaborative
Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory
of Advanced Reactor Engineering and Safety of Ministry of Education,
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yong Wu
- Institute
of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Jie Ma
- School
of Physics and Electronics Engineering, State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
| |
Collapse
|
13
|
Zhang Y, Karatchevtseva I, Liu M, Tao Z, Wei G. Thorium(IV) and uranium(IV) complexes with cucurbit[8]uril: Supramolecular structures via direct coordination and second-shell interactions. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zhang Y, Chen L, Liu Z, Liu W, Yuan M, Shu J, Wang N, He L, Zhang J, Xie J, Chen X, Diwu J. Full-Range Ratiometric Detection of D 2O in H 2O by a Heterobimetallic Uranyl/Lanthanide Framework with 4f/5f Bimodal Emission. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16648-16654. [PMID: 32212614 DOI: 10.1021/acsami.0c02783] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A uranyl-europium heterobimetallic compound, (TEA)3[(UO2)6Eu(H2O)4(PPA)6] (H3PPA = phosphonoacetic acid, TEA = tetraethylammonium cation), was synthesized under mild hydrothermal conditions. The emission spectrum contains characteristic electronic transition features of both Eu3+ and UO22+, while the peak intensity of Eu3+ is notably higher than that of UO22+. This is primarily attributed to the energy transfer from uranyl to europium in the structure. Significantly, a positive correlation between the Eu3+ peak intensity at 621 nm and the D2O content can be established in the aqueous system, while the uranyl peak intensity is almost unchanged, allowing for the full-range ratiometric detection of D2O in H2O.
Collapse
Affiliation(s)
- Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zhiyong Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Wei Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Jie Shu
- Analysis and Testing Center, Soochow University, Suzhou 215123, P. R. China
| | - Ning Wang
- Analysis and Testing Center, Soochow University, Suzhou 215123, P. R. China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Jiarong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Jian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Xijian Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
15
|
Li FZ, Mei L, An SW, Hu KQ, Chai ZF, Liu N, Shi WQ. Kinked-Helix Actinide Polyrotaxanes from Weakly Bound Pseudorotaxane Linkers with Variable Conformations. Inorg Chem 2020; 59:4058-4067. [PMID: 32129613 DOI: 10.1021/acs.inorgchem.0c00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incorporation of a mechanically interlocked molecule such as pseudorotaxane into metal-organic coordination polymers has afforded plenty of new hybrid materials with special structures and unique properties. In this work, we employ a weakly bound cucurbit[6]uril (CB[6])-bipyridinium pseudorotaxane as a supramolecular precursor to assemble with uranyl, aiming to construct uranyl-rotaxane coordination polymers (URCPs) with intriguing structures. By adjusting the synthetic conditions, a new kinked-helix uranyl rotaxane compound (URCP3), together with three other compounds URCP1, URCP2, and URCP4 varying from 1D chains to 2D interwoven networks, was obtained. Detailed structural analyses indicate that the pseudorotaxane ligand (C8BPCA@CB[6]) shows great configuration diversity in the construction of URCPs, which is most probably due to the weak binding strength between the host and guest molecules. Specifically, based on the monodentate coordination of the end carboxyl groups of C8BPCA forced by the surrounding unilaterally-chelated oxalate, the entire flexible pseudorotaxane linker will be more likely to undergo conformational change, thereby binding to the uranyl center from both sides of the uranyl equatorial plane and promoting the formation of a kinked helix structure of URCP3 that is shaped like a Chinese knot along [001]. This work enriches the library of actinide-rotaxane compounds and provides a new approach to construct metal-organic compounds with complicated structures using weakly bonded pseudorotaxanes as well.
Collapse
Affiliation(s)
- Fei-Ze Li
- Key Laboratory of Radiation Physics and Technology (Sichuan University); Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu-Wen An
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University); Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Liu DD, Wang YL, Luo F, Liu QY. Rare Three-Dimensional Uranyl–Biphenyl-3,3′-disulfonyl-4,4′-dicarboxylate Frameworks: Crystal Structures, Proton Conductivity, and Luminescence. Inorg Chem 2020; 59:2952-2960. [DOI: 10.1021/acs.inorgchem.9b03323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dan-Dan Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Feng Luo
- College of Biology, Chemistry and Material Science, East China Institute of Technology, Nanchang, Jiangxi 34400, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
17
|
Wu XS, Cheng DM, Wang XL, Sun J, Zang HY, Su ZM. Syntheses of cucurbit[6]uril-based metal-organic rotaxane networks by the anion regulation strategy and their proton conduction properties. Dalton Trans 2020; 49:1747-1751. [PMID: 31967144 DOI: 10.1039/c9dt04172a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new cucurbit[6]uril (CB[6])-based metal-organic rotaxane networks (MORNs) were successfully obtained by tuning the coordination sphere of metal copper clusters. Compounds 1 and 2 exhibited relatively high proton conductivity at 85 °C and 97% relative humidity (RH), providing great promise for fuel cell electrolyte materials.
Collapse
Affiliation(s)
- Xue-Song Wu
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China.
| | | | | | | | | | | |
Collapse
|
18
|
An SW, Mei L, Hu KQ, Zhang ZH, Xia CQ, Chai ZF, Shi WQ. Noncomplexed Cucurbituril-Mediated Structural Evolution of Layered Uranyl Terephthalate Compounds. Inorg Chem 2020; 59:943-955. [PMID: 31815447 DOI: 10.1021/acs.inorgchem.9b03215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Template synthesis is one of the most feasible ways to explore new uranyl compounds with intriguing structures and properties. Here we demonstrate the preparation of six novel "sandwichlike" uranyl coordination polymers (UCPs) based on two-dimensional uranyl-terephthalate acid (H2TP) networks using CBn (n = 5, 6, 8) as template ligands in the presence of different cations (Na+, K+, Cs+, or H2N(CH3)2+). Compound 1 ([UO2(TP)2][Na2(CB5)(H2O)](H2O)5) is composed of layered uranyl-TP networks with the complex of CB5 and sodium cations as template ligands. In compound 2 ([(UO2)2(TP)3]2(CB6)(H2O)10), CB6 located between uranyl-TP networks contacts them by π-π interactions and hydrogen bonds. Compound 3 ([(UO2)2(TP)3]2[Na2(H2O)10(CB6)]) is the same as compound 2 except for sodium cations bonding with CB6. Similarly in compound 4 ([(UO2)2(TP)3][Cs(H2O)3(CB6)]), CB6 is a capsulelike structure capped with two cesium cations and interacts with uranyl-TP networks through π-π and C-H···π interactions. Compound 5 ([(UO2)2(TP)3(HCOO)2][K(H2O)2(CB5)]2[H2N(CH3)2]2(CB6)(H2O)6) consists of both templates of CB6 and CB5 in which each CB5 is capped with one potassium cation while the H2N(CH3)2+ cation is held at CB6 portals. In compound 6 ([(UO2)2(TP)3]2[UO2(TP)2(H2O)2][Cs(CB8)3(H2O)4](H2O)16), CB8 ligands are connected by cesium cations to form a triangle motif and are further located between the uranyl-TP networks as template agents. All of the 2D layered structures with free CBn or cation-anchored CBn intercalate into the laminates of uranyl-terephthalate and shows a cucurbituril-mediated structural evolution. The regulating role of CBn as structure-directing template agents for the construction of layered UCPs through outer-surface interactions with layers of uranyl terephthalate is demonstrated, especially for the case of CB6 with contractive interlayer spacing.
Collapse
Affiliation(s)
- Shu-Wen An
- College of Chemistry , Sichuan University , Chengdu 610064 , China.,Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center , Changzhou University , 213164 Changzhou , China
| | - Chuan-Qin Xia
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China.,Engineering Laboratory of Advanced Energy Materials , Ningbo Institute of Industrial Technology, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
19
|
Zhang Y, Lu K, Liu M, Karatchevtseva I, Tao Z, Wei G. Thorium(iv) and uranium(vi) compounds of cucurbit[10]uril: from a one-dimensional nanotube to a supramolecular framework. Dalton Trans 2020; 49:404-410. [PMID: 31830161 DOI: 10.1039/c9dt04299g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cucurbit[10]uril {Q[10]} has the largest portal size and cavity in the series of Q[n] (n = 5-10) molecules. In contrast to its rich host-guest chemistry, its coordination chemistry is underdeveloped with only limited metal ions being investigated so far. In this work, we initiated the study of Q[10] complexes with Th(iv) and U(vi) ions in HCl solutions via a self-assembly approach. The coordination of Th(iv) ions with Q[10] led to the formation of a compound, {Th4(Cl)16(H2O)20(Q[10])}·nH2O (Q[10]-Th), with a unique nano-tubular structure, while U(vi) ions facilitated the formation of a compound, [(UO2)2(Cl)4(H2O)6]·(Q[10])2·HCl·nH2O (Q[10]-U), with a Q[10]-based supramolecular framework structure via intermolecular outer-surface and second-shell interactions. The structural and spectroscopic aspects of the two compounds together with their optical and thermal properties have been investigated. The successful preparation and characterization of the first two Q[10] compounds with Th(iv)/U(vi) ions highlighted the potential for further exploration of Q[10] coordination chemistry with actinide ions.
Collapse
Affiliation(s)
- Yingjie Zhang
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Dutta B, Dey S, Pal K, Bera S, Naaz S, Jana K, Sinha C, Mir MH. Supramolecular assembly of a 4-(1-naphthylvinyl)pyridine-appended Zn( ii) coordination compound for the turn-on fluorescence sensing of trivalent metal ions (Fe 3+, Al 3+, and Cr 3+) and cell imaging application. NEW J CHEM 2020. [DOI: 10.1039/d0nj01608j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The as-synthesized Zn(ii) coordination compound exhibited turn-on fluorescence sensing of analytical group-IIIA metal ions (Fe3+, Al3+, and Cr3+) and applications in cell imaging.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Sunanda Dey
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Kunal Pal
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
- Division of Molecular Medicine and Centre for Translational Research
| | | | - Sanobar Naaz
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Kuladip Jana
- Division of Molecular Medicine and Centre for Translational Research
- Bose Institute
- Kolkata 700056
- India
| | | | | |
Collapse
|
21
|
Zhang Y, Chen L, Guan J, Wang X, Wang S, Diwu J. A unique uranyl framework containing uranyl pentamers as secondary building units: synthesis, structure, and spectroscopic properties. Dalton Trans 2020; 49:3676-3679. [DOI: 10.1039/c9dt03871j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this work, two uranyl framework compounds consisting of 1,2,4-benzenetricarboxylic ligands have been synthesized, and one of them adopts an open framework structure built from uranyl pentamers.
Collapse
Affiliation(s)
- Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Xia Wang
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
22
|
Zeng LW, Hu KQ, Mei L, Li FZ, Huang ZW, An SW, Chai ZF, Shi WQ. Structural Diversity of Bipyridinium-Based Uranyl Coordination Polymers: Synthesis, Characterization, and Ion-Exchange Application. Inorg Chem 2019; 58:14075-14084. [PMID: 31573800 DOI: 10.1021/acs.inorgchem.9b02106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As well-known functional groups with excellent electro/photochromic and ion-exchange properties, bipyridinium motifs have been used in functionalized metal-organic coordination polymers, but they are still rarely applied to construct actinide coordination polymers. In this work, we utilized a bipyridinium-based carboxylic acid, 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium bis(chloride) ([H2bcbp]Cl2), as the organic ligand to assemble with uranyl cations. By the introduction of different kinds of auxiliary ligands and adjustment of the pH, five novel uranyl coordination compounds, 1-5, have been synthesized through hydrothermal reactions. Starting from uranyl ions and terephthalic acid (H2TP) and H2bcbp ligands, [(UO2)2(bcbp)(TP)2]·3H2O (1) has a wave-shaped two-dimensional (2D) structure consisting of dinuclear units connected by terephthalate linkers and further supported by the longer H2bcbp ligands. [(UO2)2(bcbp)(PA)2]·4H2O (2) has a zigzag chain of dimeric uranium units, and [(UO2)2(bcbp)(bpdc)2]·5H2O (3) forms a one-dimensional ribbonlike structure. The 2D structures of [(UO2)(bcbp)(OH)(H2O)]·Cl (4) and [(UO2)(bcbp)Cl]·Cl (5) are similar, both of which are constructed from dinuclear uranyl units and bcbp2- ligands. Furthermore, the performance for perrhenate removal of compound 4 with a cationic framework is assessed, and we found that compound 4 can efficiently remove ReO4- from an aqueous solution in a wide range of pH values. This work extends the library of viologen derivative-based uranyl coordination polymers, provides to some extent broader insights into actinide coordination chemistry of functionalized ligands, and may facilitate the ion-exchange applications of related coordination polymers.
Collapse
Affiliation(s)
- Li-Wen Zeng
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China.,University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Fei-Ze Li
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Shu-Wen An
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China.,Engineering Laboratory of Advanced Energy Materials , Ningbo Institute of Industrial Technology, Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
23
|
An SW, Mei L, Hu KQ, Li FZ, Xia CQ, Chai ZF, Shi WQ. Bipyridine-Directed Syntheses of Uranyl Compounds Containing Semirigid Dicarboxylate Linkers: Diversity and Consistency in Uranyl Speciation. Inorg Chem 2019; 58:6934-6945. [DOI: 10.1021/acs.inorgchem.9b00452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shu-wen An
- College of Chemistry, Sichuan University, Chengdu 610064, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fei-ze Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-qin Xia
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhi-fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei-qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|