1
|
Koehler V. From Double-Stranded Helicates to Abiotic Double Helical Supramolecular Assemblies. Chemistry 2025; 31:e202402222. [PMID: 39429111 DOI: 10.1002/chem.202402222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The folding of oligomeric strands is the method that nature has selected to generate ordered assemblies presenting spectacular functions. In the purpose to mimic these biomacromolecules and extend their properties and functions, chemists make important efforts to prepare artificial secondary, tertiary, and even quarternary structures based on folded abiotic backbones. A large variety of oligomers and polymers, encoded with chemical informations, were designed, synthesized and characterized, and the establishment of non-covalent interactions lead to complex and functional supramolecular architectures resulting from a spontaneous self-assembly process. The association of complementary molecular strands into double helical structures is a common structural pattern of nucleic acids and proteins, so the synthesis of bio-inspired double helices has emerged as an important subject. In recent years, a number of synthetic oligomers have been reported to form stable double helices and it was shown that the equilibrium between single and double helices can be controlled via different stimuli like the modification of the solvent or the temperature. This kind of structure presents highly interesting functions, such as molecular recognition within the cavity of double helices, and some other potential applications will emerge in the future.
Collapse
Affiliation(s)
- Victor Koehler
- Adionics, The Advanced Ionic Solution, 17 bis avenue des Andes, 91940, Les Ulis, France
| |
Collapse
|
2
|
Benchimol E, Ebbert KE, Walther A, Holstein JJ, Clever GH. Ligand Conformation Controls Assembly of a Helicate/Mesocate, Heteroleptic [Pd 2L 2L' 2] Cages and a Six-Jagged [Pd 6L 12] Ring. Chemistry 2024; 30:e202401850. [PMID: 38853595 DOI: 10.1002/chem.202401850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Molecular building blocks, capable of adopting several strongly deviating conformations, are of particular interest in the development of stimuli-responsive self-assemblies. The pronounced structural flexibility of a short acridone-based bridging ligand, equipped with two monodentate isoquinoline donors, is herein exploited to assemble a surprisingly diverse series of coordination-driven Pd(II) architectures. First, it can form a highly twisted Pd2L4 helicate, transformable into the corresponding mesocate, controlled by temperature, counter anion and choice of solvent. Second, it also allows the formation of heteroleptic cages, either from a mix of ligands with Pd(II) cations or by cage-to-cage transformation from homoleptic assemblies. Here, the acridone-based ligand tolerates counter ligands that carry their donors either in a diverging or converging arrangement, as it can rotate its own coordination sites by 90° and structurally adapt to both situations via shape complementarity. Third, by a near 180° rotation of only one of its arms, the ligand can adopt an S-shape conformation and form an unprecedented C6h-symmetric Pd6L12 saw-toothed six-membered ring.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kristina E Ebbert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexandre Walther
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Fernández-Fariña S, Maneiro M, Zaragoza G, Seco JM, Pedrido R, González-Noya AM. Nickel, copper, and zinc dinuclear helicates: how do bulky groups influence their architecture? Dalton Trans 2024; 53:5676-5685. [PMID: 38445308 DOI: 10.1039/d4dt00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The ligand design factors that may influence the isolation of metallosupramolecular helicates or mesocates still deserve to be investigated. In this sense, dinuclear nickel(II), copper(II) and zinc(II) compounds were obtained by electrochemical synthesis using a family of five Schiff base ligands, H2Ln (n = 1-5), derived from bisphenylmethane and functionalized with bulky tert-butyl groups in the periphery and ethyl groups in the spacer. Six of the new complexes were characterized by X-ray crystallography, thus demonstrating that the helicate structure is predominant in the solid state. 1H NMR studies were performed for the zinc complexes to analyze if the helical architecture of the metal complexes is retained in solution. These studies reveal that the presence of a tert-butyl group in the ortho position with respect to the OH group is an essential factor identified for the existence of a helicate conformation in solution.
Collapse
Affiliation(s)
- Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, E-27002, Lugo, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, E-27002, Lugo, Spain
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, Edificio CACTUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Galicia, E-15782, Spain
| | - José M Seco
- Departamento de Química Orgánica Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain.
| | - Ana M González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain.
| |
Collapse
|
4
|
Bhol M, Borkar RL, Shankar B, Panda SK, Wolff M, Sathiyendiran M. Self-Assembly of Rhenium(I) Double-Stranded Helicate and Mesocate from Flexible Ditopic Benzimidazolyl/Naphthanoimidazolyl N-Donor and Rigid Bis-Chelating Hydroxyphenylbenzimidazolyl N∩OH-Donor Ligands: Synthesis, Characterization, and Photophysical and B-DNA Docking Studies. Inorg Chem 2023; 62:11554-11569. [PMID: 37436081 DOI: 10.1021/acs.inorgchem.3c01213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The self-assembly of three rheniumtricarbonyl core-based supramolecular coordination complexes (SCCs), fac-[Re(CO)3(μ-L)(μ-L')Re(CO)3] (1-3) was carried out using Re2(CO)10, rigid bis-chelating ligand (HO∩N-Ph-N∩OH (L1) (where HO∩N = 2-hydroxyphenylbenzimidazolyl), and flexible ditopic N-donor ligands (L2 = bis(3-((1H-benzoimidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L3 = bis(3-((1H-naphtho[2,3-d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L4 = bis(4-(naphtho[2,3-d]imidazol-1-yl-methyl)phenyl)methane) via a one-pot solvothermal approach. In the solid state, the dinuclear SCCs adopt heteroleptic double-stranded helicate and meso-helicate architectures. The supramolecular structures of the complexes are retained in the solution based on the 1H NMR and electrospray ionization (ESI)-mass analysis. The spectral and photophysical properties of the complexes were studied both experimentally and using time-dependent density functional theory (TDDFT) calculations. All of the supramolecules exhibited emission in both solution and solid states. Theoretical studies were conducted to determine the chemical reactivity parameters, molecular electrostatic potential surface plots, natural population, and Hirshfeld analysis for complexes 1-3. Additionally, molecular docking studies were carried out for complexes 1-3 with B-DNA.
Collapse
Affiliation(s)
- Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Reema L Borkar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625015, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur 760010, India
| | - Mariusz Wolff
- Institut für Chemische Katalyse, Universität Wien, Währinger Straße 38-42, Wien 1090, Österreich
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9th Street, Katowice 40-006, Poland
| | | |
Collapse
|
5
|
Barwiolek M, Jankowska D, Kaczmarek-Kędziera A, Lakomska I, Kobylarczyk J, Podgajny R, Popielarski P, Masternak J, Witwicki M, Muzioł TM. New Dinuclear Macrocyclic Copper(II) Complexes as Potentially Fluorescent and Magnetic Materials. Int J Mol Sci 2023; 24:3017. [PMID: 36769351 PMCID: PMC9918273 DOI: 10.3390/ijms24033017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Two dinuclear copper(II) complexes with macrocyclic Schiff bases K1 and K2 were prepared by the template reaction of (R)-(+)-1,1'-binaphthalene-2,2'-diamine and 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde K1, or 4-tert-butyl-2,6-diformylphenol K2 with copper(II) chloride dihydrate. The compounds were characterized by spectroscopic methods. X-ray crystal structure determination and DFT calculations confirmed their geometry in solution and in the solid phase. Moreover, intermolecular interactions in the crystal structure of K2 were analyzed using 3D Hirshfeld surfaces and the related 2D fingerprint plots. The magnetic study revealed very strong antiferromagnetic CuII-CuII exchange interactions, which were supported by magneto-structural correlation and DFT calculations conducted within a broken symmetry (BS) framework. Complexes K1 and K2 exhibited luminescent properties that may be of great importance in the search for new OLEDs. Both K1 and K2 complexes showed emissions in the range of 392-424 nm in solutions at various polarities. Thin materials of the studied compounds were deposited on Si(111) by the spin-coating method or by thermal vapor deposition and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), and fluorescence spectroscopy. The thermally deposited K1 and K2 materials showed high fluorescence intensity in the range of 318-531 nm for K1/Si and 326-472 nm for the K2/Si material, indicating that they could be used in optical devices.
Collapse
Affiliation(s)
- Magdalena Barwiolek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Dominika Jankowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Anna Kaczmarek-Kędziera
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Iwona Lakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | | | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Popielarski
- Faculty of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wrocław, Joliot Curie 14, 50-383 Wrocław, Poland
| | - Tadeusz M. Muzioł
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| |
Collapse
|
6
|
Experimental and Theoretical Studies of the Optical Properties of the Schiff Bases and Their Materials Obtained from o-Phenylenediamine. Molecules 2022; 27:molecules27217396. [DOI: 10.3390/molecules27217396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Two macrocyclic Schiff bases derived from o-phenylenediamine and 2-hydroxy-5-methylisophthalaldehyde L1 or 2-hydroxy-5-tert-butyl-1,3-benzenedicarboxaldehyde L2, respectively, were obtained and characterized by X-ray crystallography and spectroscopy (UV-vis, fluorescence and IR). X-ray crystal structure determination and DFT calculations for compounds confirmed their geometry in solution and in the solid phase. Moreover, intermolecular interactions in the crystal structure of L1 and L2 were analyzed using 3D Hirshfeld surfaces and the related 2D fingerprint plots. The 3D Hirschfeld analyses show that the most numerous interactions were found between hydrogen atoms. A considerable number of such interactions are justified by the presence of bulk tert-butyl groups in L2. The luminescence of L1 and L2 in various solvents and in the solid state was studied. In general, the quantum efficiency between 0.14 and 0.70 was noted. The increase in the quantum efficiency with the solvent polarity in the case of L1 was observed (λex = 350 nm). For L2, this trend is similar, except for the chloroform. In the solid state, emission was registered at 552 nm and 561 nm (λex = 350 nm) for L1 and L2, respectively. Thin layers of the studied compounds were deposited on Si(111) by the spin coating method or by thermal vapor deposition and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), spectroscopic ellipsometry and fluorescence spectroscopy. The ellipsometric analysis of thin materials obtained by thermal vapor deposition showed that the band-gap energy was 3.45 ± 0.02 eV (359 ± 2 nm) and 3.29 ± 0.02 eV (377 ± 2 nm) for L1/Si and L2/Si samples, respectively. Furthermore, the materials of the L1/Si and L2/Si exhibited broad emission. This feature can allow for using these compounds in LED diodes.
Collapse
|
7
|
Nguyen T, Tran NM, Park IH, Yoo H. Heteroleptic Triple-Stranded Metallosupramolecules with Hydrophobic Inner Voids. ACS OMEGA 2022; 7:13067-13074. [PMID: 35474782 PMCID: PMC9026104 DOI: 10.1021/acsomega.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The systematic combination of well-defined coordination spheres and multiple types of ligands (heteroleptic) can lead to the generation of hierarchical metallosupramolecules with a high level of complexity and functionality. In particular, a specific multilevel coordination-driven assembly through the initiate generation of multinuclear clusters can form unique heteroleptic multiple-stranded supramolecular complexes. Herein, we report novel triple-stranded nickel-based supramolecules constructed from two different ditopic ligands ([1,1':3',1''-terphenyl]-4,4''-dicarboxylate (TP) and 2,6-pyridinedicarboxylate (PDA)) and a nickel precursor. The solid-state structures of the as-synthesized supramolecules revealed that three PDA ligands are employed to fabricate a tetranuclear ({Ni4}) cluster, and two {Ni4} clusters are assembled to form the final triple-stranded metallosupramolecules by three TP ligands. The bridging TP ligands also provide large inner voids with highly hydrophobic environments. Structural investigation of the generated complexes provided a deeper understanding of the aspects driving the formation of heteroleptic supramolecules, which is crucial for the design of multiple-strands with desired morphologies and functionalities.
Collapse
Affiliation(s)
- Thanh
Nhan Nguyen
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ngoc Minh Tran
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - In-Hyeok Park
- Graduate
School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyojong Yoo
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
8
|
Do JL, Titi HM, Cuccia LA, Friščić T. A new class of anionic metallohelicates based on salicylic and terephthalic acid units, accessible in solution and by mechanochemistry. Chem Commun (Camb) 2021; 57:5143-5146. [PMID: 33899844 DOI: 10.1039/d0cc08180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a new class of anionic metallohelicates based on an abundant, industrially relevant salicylic acid derivative, leading to discrete double and triple-stranded architectures based on divalent and trivalent metals (Cu2+, Fe3+, respectively). The ability to assemble the metallohelicates in a solvent-free environment presents the opportunity to develop an inexpensive and environmentally-friendly design of helicate materials.
Collapse
Affiliation(s)
- Jean-Louis Do
- Department of Chemistry and Biochemistry, FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada. and Department of Chemistry and FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke St. West, Montreal H3A 0B8, Quebec, Canada.
| | - Hatem M Titi
- Department of Chemistry and FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke St. West, Montreal H3A 0B8, Quebec, Canada.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada.
| | - Tomislav Friščić
- Department of Chemistry and FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke St. West, Montreal H3A 0B8, Quebec, Canada.
| |
Collapse
|
9
|
Suko N, Itamoto H, Okayasu Y, Okura N, Yuasa J. Helix-mediated over 1 nm-range chirality recognition by ligand-to-ligand interactions of dinuclear helicates. Chem Sci 2021; 12:8746-8754. [PMID: 34257874 PMCID: PMC8246085 DOI: 10.1039/d1sc01611c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Long-range chirality recognition between the two chiral guest ligands can be tuned based on the helix distances (dLn–Ln = 11.5 and 14.0 Å) of bis-diketonate bridged dinuclear lanthanide complexes (2Th and 3Th, respectively) used as mediators. Both 2Th and 3Th form one-dimensional (1D) helical structures upon terminal binding of two chiral guest co-ligands (LR or LS). Long-range chiral self-recognition is achieved in self-assembly of 2Th with LR and LS to preferentially form homochiral assemblies, 2Th-LR·LR and 2Th-LS·LS, whereas there is no direct molecular interaction between the two guest ligands at the terminal edges. X-ray crystal structure analysis and density functional theory studies reveal that long-range chiral recognition is achieved by terminal ligand-to-ligand interactions between the bis-diketonate ligands and chiral guest co-ligands. Conversely, in self-assembly of 3Th with a longer helix length, statistical binding of LR and LS occurs, forming heterochiral (3Th-LR·LS) and homochiral (3Th-LR·LR and 3Th-LS·LS) assemblies in an almost 1 : 1 ratio. When phenyl side arms of the chiral guest co-ligands are replaced by isopropyl groups (L′R and L′S), chiral self-recognition is also achieved in the self-assembly process of 3Th with the longer helix length to generate homochiral (3Th-L′R·L′R and 3Th-L′S·L′S) assemblies as the favored products. Thus, subtle modification of the chiral guests is capable of achieving over 1.4 nm-range chirality recognition. Long-range chirality recognition between the two chiral guest ligands can be tuned based on the helix distances (dLn–Ln = 11.5 and 14.0 Å) of bis-diketonate bridged dinuclear lanthanide complexes (2Th and 3Th, respectively).![]()
Collapse
Affiliation(s)
- Natsumi Suko
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Hideki Itamoto
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Naoya Okura
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
10
|
Ousaka N, Itakura M, Nagasaka A, Ito M, Hattori T, Taura D, Ikai T, Yashima E. Water-Mediated Reversible Control of Three-State Double-Stranded Titanium(IV) Helicates. J Am Chem Soc 2021; 143:4346-4358. [PMID: 33688731 DOI: 10.1021/jacs.0c13351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A stimuli-responsible reversible structural transformation is of key importance in biological systems. We now report a unique water-mediated reversible transformation among three discrete double-stranded dinuclear titanium(IV) achiral meso- and chiral rac-helicates linked by a mono(μ-oxo) or a bis(μ-hydroxo) bridge between the titanium ions through hydration/dehydration or its combination with a water-mediated dynamic cleavage/re-formation of the titanium-phenoxide (Ti-OPh) bonds. The bis(μ-hydroxo) bridged titanium(IV) meso-helicate prepared from two tetraphenol strands with titanium(IV) oxide was readily dehydrated in CD3CN containing a small amount of water upon heating, accompanied by Ti-OPh bond cleavage/re-formation catalyzed by water, resulting in the formation of the mono(μ-oxo)-bridged rac-helicate, which reverted back to the original bis(μ-hydroxo)-bridged meso-helicate upon hydration in aqueous CD3CN. These reversible transformations between the meso- and rac-helicates were also promoted in the presence of a catalytic amount of an acid, which remarkably accelerated the reactions at lower temperature. Interestingly, in anhydrous CD3CN, the bis(μ-hydroxo)-bridged meso-helicate was further slowly converted to a different helicate, while its meso-helicate framework was maintained, namely the mono(μ-oxo)-bridged meso-helicate, through dehydration upon heating and its meso to meso transformation was significantly accelerated in the presence of cryptand[2.2.1], which contributes to removing Na+ ions coordinated to the helicate. Upon cooling, the backward meso to meso transformation took place via hydration. Hence, three different, discrete double-stranded chiral rac- and achiral meso-titanium(IV) helicates linked by a mono(μ-oxo) or a bis(μ-hydroxo) bridge were successfully generated in a controllable manner by a change in the water content of the reaction media.
Collapse
Affiliation(s)
- Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Manabu Itakura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Akira Nagasaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masaki Ito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomonari Hattori
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
11
|
Villada JD, Carmona-Vargas CC, Ellena J, Ayala AP, Ramirez-Pradilla JS, Combariza MY, Galarza E, D’Vries RF, Chaur MN. Synthesis, characterization, and redox potential properties of a new double-stranded Ni-bis(hydrazone)-based helicate. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Farwa U, Pait M, Ryu JY, Byun YM, Lee SG, Jeong SH, Singh O, Singh N, Park HR, Lee J. Multinuclear nickel(II) complexes with chiral schiff base ligand. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Iseki S, Nonomura K, Kishida S, Ogata D, Yuasa J. Zinc-Ion-Stabilized Charge-Transfer Interactions Drive Self-Complementary or Complementary Molecular Recognition. J Am Chem Soc 2020; 142:15842-15851. [PMID: 32786739 DOI: 10.1021/jacs.0c05940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here, we show that charge-transfer interactions determine whether donor and acceptor ditopic ligands will associate in a complementary or self-complementary fashion upon metal-ion clipping. Anthracene-based (9,10LD and 1,5LD) and anthraquinone-based (1,5LA) ditopic ligands containing two imidazole side arms as zinc coordination sites were designed. The 9,10LD and 1,5LA systems associated in a complementary fashion (LA/LD/LA) upon clipping by two zinc ions (Zn2+) to form an alternating donor-acceptor assembly [(9,10LD)(1,5LA)2-(Zn2+)2]. However, once the charge-transfer interactions were perturbed by subtle modifications of the imidazole side arms (9,10LD'(S) and 1,5LA'(S)), self-complementary association (LD'/LD'/LD'/LD' and LA'/LA'/LA'/LA') between the donor (9,10LD'(S)) and acceptor (1,5LA'(S)) ligands predominantly occurred to form homoassemblies [(9,10LD'(S))4-(Zn2+)2 and (1,5LA'(S))4-(Zn2+)2]. As in the case of a homochiral pair (9,10LD'(S) and 1,5LA'(S)), self-complementary association (narcissistic self-sorting) occurred in the Zn2+ assembly with heterochiral combinations of the donor and acceptor ligands (9,10LD'(S)/1,5LA'(R) and 9,10LD'(S)/1,5LA'(R)/1,5LA'(R)). Narcissistic self-sorting also took place between the positional isomer of the donor ligands (9,10LD and 1,5LD) to form individual homoligand assemblies [(9,10LD)4-(Zn2+)2 and (1,5LD)4-(Zn2+)2]. Conversely, statistical association took place in the Zn2L4 assembly process of an isomorphous pair of the donor and acceptor ligands (1,5LD and 1,5LA).
Collapse
Affiliation(s)
- Shuta Iseki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohei Nonomura
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakura Kishida
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
14
|
Chinnaraja E, Arunachalam R, Pillai RS, Peuronen A, Rissanen K, Subramanian PS. One‐pot synthesis of [2+2]‐helicate‐like macrocycle and 2+4‐μ
4
‐oxo tetranuclear open frame complexes: Chiroptical properties and asymmetric oxidative coupling of 2‐naphthols. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eswaran Chinnaraja
- Inorganic Materials and Catalysis Division Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rajendran Arunachalam
- Inorganic Materials and Catalysis Division Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Renjith S. Pillai
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| | - Anssi Peuronen
- Department of Chemistry, Nanoscience Center University of Jyvaskyla P.O. Box 35 Jyväskylä FI‐40014 Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center University of Jyvaskyla P.O. Box 35 Jyväskylä FI‐40014 Finland
| | - Palani S. Subramanian
- Inorganic Materials and Catalysis Division Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
15
|
Chinnaraja E, Arunachalam R, Samanta K, Natarajan R, Subramanian PS. Enantioselective Michael Addition Reaction Catalysed by Enantiopure Binuclear Nickel(II) Close‐Ended Helicates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Eswaran Chinnaraja
- Inorganic Materials and Catalysis DivisionCSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) Bhavnagar 364 002, Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rajendran Arunachalam
- Inorganic Materials and Catalysis DivisionCSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) Bhavnagar 364 002, Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Krishanu Samanta
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Organic & Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology Kolkata India
| | - Ramalingam Natarajan
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Organic & Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology Kolkata India
| | - Palani S. Subramanian
- Inorganic Materials and Catalysis DivisionCSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) Bhavnagar 364 002, Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
16
|
Levín P, Escudero D, Díaz N, Oliver A, Lappin AG, Ferraudi G, Lemus L. Structural and Photochemical Properties of Zn(II) Phenanthroline-Derived Complexes: From Mononuclear to Bimetallic and Circular-Trimetallic Helicates. Inorg Chem 2020; 59:1660-1674. [DOI: 10.1021/acs.inorgchem.9b02773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pedro Levín
- Facultad de Química y Biología, Departamento de Química de los Materiales, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins, 3363 Estación Central, Santiago, Chile
| | - Dayra Escudero
- Facultad de Química y Biología, Departamento de Química de los Materiales, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins, 3363 Estación Central, Santiago, Chile
| | - Nicolás Díaz
- Facultad de Química y Biología, Departamento de Química de los Materiales, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins, 3363 Estación Central, Santiago, Chile
| | | | | | | | - Luis Lemus
- Facultad de Química y Biología, Departamento de Química de los Materiales, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins, 3363 Estación Central, Santiago, Chile
| |
Collapse
|
17
|
Ogata D, Yuasa J. Remarkable self-sorting selectivity in covalently linked homochiral and heterochiral pairs driven by Pd 2L 4 helicate formation. Chem Commun (Camb) 2020; 56:8679-8682. [PMID: 32613974 DOI: 10.1039/d0cc03539d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Imidazole-based ditopic ligands bearing two chiral alkyl groups (LRR, LSS, and LRS) were synthesized. The ligands formed Pd2L4 helicates with palladium ions (Pd2+). Self-sorting occurred between LRR and LRS to form (Pd2+)2(LRR)4 and (Pd2+)2(LRS)4 homoligand assemblies, whereas mixing of LRR and LSS with Pd2+ gave a near statistical mixture.
Collapse
Affiliation(s)
- Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
18
|
Cai H, Zou Y, Li Y, Lian X, Tong X, Li J. Structural diversity and magnetic properties of two metal-organic polymers based on bifunctional ligand of 2,5-di(1H-1,2,4-triazol-1-yl)terephthalic acid. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Van Craen D, Schlottmann M, Stahl W, Räuber C, Albrecht M. Kinetic investigation of the dissociation of dinuclear hierarchically assembled titanium( iv) helicates. Dalton Trans 2019; 48:10574-10580. [DOI: 10.1039/c9dt01065c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchically assembled helicates consisting of lithium-bridged triscatecholate titanium(iv) complexes represent a powerful self-assembled supramolecular system with applications as e.g. molecular balances for the evaluation of weak interactions, stereoselectivity switches in asymmetric synthesis or molecular switches.
Collapse
Affiliation(s)
- David Van Craen
- Institut für Organische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Wolfgang Stahl
- Institut für Physikalische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Christoph Räuber
- Institut für Organische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Markus Albrecht
- Institut für Organische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|