1
|
Keot N, Sarma M. Unraveling the Stability and Magnetic Properties of Bis-Hydrated Mn(II) Complexes via Tailored Ligand Design. J Phys Chem A 2024; 128:8346-8359. [PMID: 39292621 DOI: 10.1021/acs.jpca.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Exploring the electronic structure and dynamic behavior of Mn(II) complexes reveals fascinating magnetic properties and prospective biomedical applications. In this study, we investigate the solvent phase dynamics of heptacoordinated Mn(II) complexes through ab initio molecular dynamics simulations and density functional theory (DFT) calculations with effectively varying temperatures. We observed that the complex with high stability ([Mn(pmpa)(H2O)2]) remains relatively rigid as the temperature increases to 90 °C, with only a minor change in its radial distribution functions (RDFs), compared to the RDF peaks at 25 °C. To elucidate the impact of halogens on the magnetic anisotropy of seven-coordinated Mn(II) complexes, we performed both DFT and multireference calculations. This shows that the zero-field splitting (ZFS) parameter D follows the order D(I)> D(Br)> D(Cl). We observed a significant increase in the D-value following the substitution of soft Se-donors in the equatorial position and heavier halogens in the axial position. The D-value of halogen derivatives of Se-analogues varies in the order of D(Cl) < D(I) < D(Br), deviating from the regular spectrochemical series with the discrepancy between the covalency of the Mn(II)-Se bond and the ligand field strength. We anticipate that this study will enhance our understanding of the solvent phase dynamics and structural aspects of ZFS in various Mn(II) complexes with different electronic environments.
Collapse
Affiliation(s)
- Niharika Keot
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Wang M, Han Z, Garcia Y, Cheng P. Six-Coordinated Co II Single-Molecule Magnets: Synthetic Strategy, Structure and Magnetic Properties. Chemphyschem 2024; 25:e202400396. [PMID: 38889310 DOI: 10.1002/cphc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Gu C, Zhang Y, He P, Gan M, Zhu J, Yin H. Bioinspired axial S-coordinated single-atom cobalt catalyst to efficient activate peroxymonosulfate for selective high-valent Co-Oxo species generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134515. [PMID: 38703676 DOI: 10.1016/j.jhazmat.2024.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The efficient activation and selective high-valent metal-oxo (HVMO) species generation remain challenging for peroxymonosulfate (PMS)-based advanced oxidation processes (PMS-AOPs) in water purification. The underlying mechanism of the activation pathway is ambiguous, leading to a massive dilemma in the control and regulation of HVMO species generation. Herein, bioinspired by the bio-oxidase structure of cytochrome P450, the axial coordination strategy was adopted to tailor a single-atom cobalt catalyst (CoN4S-CB) with an axial S coordination. CoN4S-CB high-selectively generated high-valent Co-Oxo species (Co(IV)=O) via PMS activation. Co(IV)=O demonstrated an ingenious oxygen atom transfer (OAT) reaction to achieve the efficient degradation of sulfamethoxazole (SMX), and this allowed robust operation in various complex environments. The axial S coordination modulated the 3d orbital electron distribution of the Co atom. Density functional theory (DFT) calculation revealed that the axial S coordination decreased the energy barrier for PMS desorption and lowered the free energy change (ΔG) for Co(IV)=O generation. CoN4S-PMS* had a narrow d-band close to the Fermi level, which enhanced charge transfer to accelerate the cleavage of O-O and O-H bonds in PMS. This work provides a broader perspective on the activator design with natural enzyme structure-like active sites to efficient activate PMS for selective HVMO species generation.
Collapse
Affiliation(s)
- Chunyao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Yaqin Zhang
- College of Food Science and Technology, Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China.
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| |
Collapse
|
4
|
Cui HH, Xu H, Zhang T, Chen Q, Luo S, Wang M, Wang J, Chen L, Zhang M, Tang Y. Magnetic Anisotropy and Relaxation in Four-Coordinate Cobalt(II) Single-Ion Magnets with a [Co IIO 4] Core. Inorg Chem 2024; 63:9050-9057. [PMID: 38709957 DOI: 10.1021/acs.inorgchem.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A mononuclear four-coordinate Co(II) complex with a [CoIIO4] core, namely, PPN[Li(MeOH)4][Co(L)2] (1) (PPN = bis(phosphoranediyl)iminium; H2L = perfluoropinacol), has been studied by X-ray crystallography, magnetic characterization, and theoretical calculations. This complex presents a severely distorted coordination geometry. The O-Co-O bite angle is 83.42°/83.65°, and the dihedral twist angle between the O-Co-O chelate planes is 55.6°. The structural distortion results in a large easy-axis magnetic anisotropy with D = -104(1) cm-1 and a transverse component with |E| = +4(2) cm-1. Alternating current (ac) susceptibility measurements demonstrate that 1 exhibits slow relaxation of magnetization at zero static field. However, the frequency-dependent out-of-phase (χ"M) susceptibilities of 1 at 0 Oe do not show a characteristic maximum. Upon the application of a dc field or the dilution with a diamagnetic Zn matrix, the quantum tunneling of magnetization (QTM) process can be successfully suppressed. Notably, after dilution with the Zn matrix, the obtained sample exhibits a structure different from that of the pristine complex. In this altered sample, the asymmetric unit does not contain the Li(MeOH)4+ cation, resulting in an O-Co-O bite angle of 86.05° and a dihedral twist angle of 75.84°, thereby leading to an approximate D2d symmetry. Although such differences are not desirable for magnetic studies, this study still gives some insights. Theoretical calculations reveal that the D parameter is governed by the O-Co-O bite angle, in line with our previous report for other tetrahedral Co(II) complex with a [CoIIN4] core. On the other hand, the rhombic component is found to increase as the dihedral angle deviates from 90°. These findings provide valuable guidelines for fine-tuning the magnetic properties of Co(II) complexes.
Collapse
Affiliation(s)
- Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongjuan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tengkun Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Qiukai Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shuchang Luo
- School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Mingxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Zhang P, Tian YC, Wang Z, Lee WZ, Ye S. Magneto-Structural Correlation of Five-Coordinate Trigonal Bipyramidal High Spin Cobalt(II) Complexes. Chemistry 2024; 30:e202400336. [PMID: 38438303 DOI: 10.1002/chem.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Here, we combined magnetometry, multi-frequency electronic paramagnetic resonance, and wave function based ab initio calculations to investigate magnetic properties of two high spin Co(II) complexes Co(BDPRP) (BDPRP=2,6-bis((2-(S)-di(4-R)phenylhydroxylmethyl-1-pyrrolidi-nyl)methyl)pyridine, R=H for 8; R=tBu for 9). Complexes 8 and 9 featuring effective D3h symmetry were found to possess D=24.0 and 32.0 cm-1, respectively, in their S=3/2 ground states of1 e ' ' d x z / y z 4 1 e ' d x y / x 2 - y 2 2 1 a 1 ' d z 2 1 ${{\left(1{{\rm e}}^{{\rm { {^\prime}}}{\rm { {^\prime}}}}\right({d}_{xz/yz}\left)\right)}^{4}{\left(1{{\rm e}}^{{\rm { {^\prime}}}}\right({d}_{{xy/{x}^{2}-y}^{2}}\left)\right)}^{2}{\left(1{{\rm a}}_{1}^{{\rm { {^\prime}}}}\right({d}_{{z}^{2}}\left)\right)}^{1}}$ . Ligand field analyses revealed that the low-lying d-d excited states make either positive or vanishing contributions to D. Hence, total positive D values were measured for 8 and 9, as well as related D3h high spin Co(II) complexes. In contrast, negative D values are usually observed for C3v congeners. In-depth analyses suggested that lowering symmetry from D3h to C3v induces orbital mixing between1 e d x z / y z ${1{\rm e}\left({d}_{xz/yz}\right)}$ and2 e d x y / x 2 - y 2 ${2{\rm e}\left({d}_{{xy/{x}^{2}-y}^{2}}\right)}$ and admixes excited state4 A 2 1 e → 2 e ${{}^{4}{{\rm A}}_{2}\left(1e\to 2e\right)}$ into the ground state. Both factors turn the total D value progressively negative with the increasing distance (δ) of the Co(II) center out of the equatorial plane. Therefore, δ determines the sign and magnitude of final D values of five-coordinate trigonal bipyramidal S=3/2 Co(II) complexes as measured for a series of such species with varying δ.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yao-Cheng Tian
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
6
|
Lococciolo G, Gupta SK, Dechert S, Demeshko S, Duboc C, Atanasov M, Neese F, Meyer F. Oxygen-Donor Metalloligands Induce Slow Magnetization Relaxation in Zero Field for a Cobalt(II) Complex with {CoO 4} Motif. Inorg Chem 2024; 63:5652-5663. [PMID: 38470330 DOI: 10.1021/acs.inorgchem.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.
Collapse
Affiliation(s)
- Giuseppe Lococciolo
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sandeep K Gupta
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Carole Duboc
- Université Grenoble Alpes, CNRS UMR 5250, DCM, Grenoble F-38000, France
| | - Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street 11, Sofia 1113, Bulgaria
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| |
Collapse
|
7
|
Nagelski AL, Ozerov M, Fataftah MS, Krzystek J, Greer SM, Holland PL, Telser J. Electronic Structure of Three-Coordinate Fe II and Co II β-Diketiminate Complexes. Inorg Chem 2024; 63:4511-4526. [PMID: 38408452 PMCID: PMC11751772 DOI: 10.1021/acs.inorgchem.3c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The β-diketiminate supporting group, [ArNCRCHCRNAr]-, stabilizes low coordination number complexes. Four such complexes, where R = tert-butyl, Ar = 2,6-diisopropylphenyl, are studied: (nacnactBu)ML, where M = FeII, CoII and L = Cl, CH3. These are denoted FeCl, FeCH3, CoCl, and CoCH3 and have been previously reported and structurally characterized. The two FeII complexes (S = 2) have also been previously characterized by Mössbauer spectroscopy, but only indirect assessment of the ligand-field splitting and zero-field splitting (zfs) parameters was available. Here, EPR spectroscopy is used, both conventional field-domain for the CoII complexes (with S = 3/2) and frequency-domain, far-infrared magnetic resonance spectroscopy (FIRMS) for all four complexes. The CoII complexes were also studied by magnetometry. These studies allow accurate determination of the zfs parameters. The two FeII complexes are similar with nearly axial zfs and large magnitude zfs given by D = -37 ± 1 cm-1 for both. The two CoII complexes likewise exhibit large and nearly axial zfs, but surprisingly, CoCl has positive D = +55 cm-1 while CoCH3 has negative D = -49 cm-1. Theoretical methods were used to probe the electronic structures of the four complexes, which explain the experimental spectra and the zfs parameters.
Collapse
Affiliation(s)
- Alexandra L Nagelski
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Majed S Fataftah
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Samuel M Greer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
8
|
Jana M, Quiroz M, Darensbourg MY. A single carbon atom controls the geometry and reactivity of Co II(N 2S 2) complexes. Chem Commun (Camb) 2024; 60:1128-1131. [PMID: 38180490 DOI: 10.1039/d3cc05394f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Three- vs. two-carbon N-to-N connectors give rise to monomeric, tetrahedral N2S2Co(II) (μeff = 4.24 BM) or dimeric [(N2S2)Co(II)]2 (diamagnetic) complexes, respectively. Differences in the derivative products of the Lewis acid receivers, W0(CO)3 and W0(CO)4, illustrate nucleophilicity of the thiolate sulfur lone pairs in each case, as well as their structural control.
Collapse
Affiliation(s)
- Manish Jana
- Department of Chemistry, Texas A&M University, College Station, Texas-77843, USA.
| | - Manuel Quiroz
- Department of Chemistry, Texas A&M University, College Station, Texas-77843, USA.
| | | |
Collapse
|
9
|
Bhatt G, Sharma T, Gupta SK, Meyer F, Rajaraman G, Murugavel R. Tuning Magnetic Anisotropy in Co(II) Tetrahedral Carbazole-Modified Phosphine Oxide Single-Ion Magnets: Importance of Structural Distortion versus Heavy-Ion Effect. Inorg Chem 2023; 62:18915-18925. [PMID: 37947449 DOI: 10.1021/acs.inorgchem.3c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Three mononuclear cobalt(II) tetrahedral complexes [Co(CzPh2PO)2X2] (CzPh2PO = (9H-carbazol-9-yl)diphenylphosphine oxide and X = Cl (1), Br (2), I (3)) have been synthesized using a simple synthetic approach to examine their single-ion magnetic (SIM) behavior. A detailed study of the variation in the dynamic magnetic properties of the Co(II) ion in a tetrahedral ligand field has been carried out by the change of the halide ligand. The axial zero-field splitting parameter D was found to vary from -16.4 cm-1 in 1 to -13.8 cm-1 in 2 and +14.6 cm-1 in 3. All the new complexes exhibit field-induced SIM behavior. The results obtained from ab initio CASSF calculations match well with the experimental data, revealing how halide ions induce a change in the D value as we move from Cl- to I-. The ab initio calculations further reveal that the change in the sign of D is due to the multideterminant characteristics of the ground state wave function of 1 and 2, while single-determinant characteristics are instead observed for 3. To gain a better understanding of the relationship between the structural distortion and the sign and magnitude of D values, magnetostructural D correlations were developed using angular relationships, revealing the importance of structural distortions over the heavy halide effect in controlling the sign of D values. This study broadens the scope of employing electronically and sterically modified phosphine oxide ligands in building new types of air-stable Co(II) SIMs.
Collapse
Affiliation(s)
- Gargi Bhatt
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Tanu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Sandeep K Gupta
- University of Göttingen, Institute of Inorganic Chemistry, Göttingen D-37077, Germany
| | - Franc Meyer
- University of Göttingen, Institute of Inorganic Chemistry, Göttingen D-37077, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| |
Collapse
|
10
|
Dey A, Ali J, Moorthy S, Gonzalez JF, Pointillart F, Singh SK, Chandrasekhar V. Field induced single ion magnet behavior in Co II complexes in a distorted square pyramidal geometry. Dalton Trans 2023; 52:14807-14821. [PMID: 37791680 DOI: 10.1039/d3dt01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report three CoII-based complexes with the general formula [CoII(L)(X)2] by changing the halide/pseudo-halide ions [X = NCSe (1SeCN); Cl (2Cl) and Br (3Br)]. The obtained τ5 and CShM values confirm a distorted square pyramidal geometry around the CoII ion in all these complexes. In these three complexes, the central CoII ion is situated above the basal plane of the square pyramidal geometry. The extent of distortion from the ideal SPY-5 geometry differs upon changing the coordinating halide/pseudo-halide ion in these complexes. This essentially results in the alteration of the anisotropic parameter D and hence impacts the magnetic properties in these complexes. This phenomenon has been corroborated with the aid of theoretical investigations. All these complexes display field-induced SIM behaviour with magnetic relaxation occurring through a combination of processes depending on the applied dc magnetic field values and dilution.
Collapse
Affiliation(s)
- Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru 561203, India.
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
11
|
Gupta SK, Rao SV, Demeshko S, Dechert S, Bill E, Atanasov M, Neese F, Meyer F. Air-stable four-coordinate cobalt(ii) single-ion magnets: experimental and ab initio ligand field analyses of correlations between dihedral angles and magnetic anisotropy. Chem Sci 2023; 14:6355-6374. [PMID: 37325133 PMCID: PMC10266464 DOI: 10.1039/d3sc00813d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
For single-ion magnets (SIMs), understanding the effects of the local coordination environment and ligand field on magnetic anisotropy is key to controlling their magnetic properties. Here we present a series of tetracoordinate cobalt(ii) complexes of the general formula [FL2Co]X2 (where FL is a bidentate diamido ligand) whose electron-withdrawing -C6F5 substituents confer stability under ambient conditions. Depending on the cations X, these complexes adopt structures with greatly varying dihedral twist angle δ between the N-Co-N' chelate planes in the solid state (48.0 to 89.2°). AC and DC field magnetic susceptibility measurements show this to translate into very different magnetic properties, the axial zero-field splitting (ZFS) parameter D ranging from -69 cm-1 to -143 cm-1 with substantial or negligible rhombic component E, respectively. A close to orthogonal arrangement of the two N,N'-chelating σ- and π-donor ligands at the Co(ii) ion is found to raise the energy barrier for magnetic relaxation to above 400 K. Multireference ab initio methods were employed to describe the complexes' electronic structures, and the results were analyzed within the framework of ab initio ligand field theory to probe the nature of the metal-ligand bonding and spin-orbit coupling. A relationship between the energy gaps of the first few electronic transitions and the ZFS was established, and the ZFS was correlated with the dihedral angle δ as well as with the metal-ligand bonding variations, viz. the two angular overlap parameters eσ and eπs. These findings not only give rise to a Co(ii) SIM showing open hysteresis up to 3.5 K at a sweep rate of 30 Oe s-1, but they also provide design guidelines for Co(ii) complexes with favorable SIM signatures or even switchable magnetic relaxation properties.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Shashank V Rao
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Mihail Atanasov
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences Akad. Georgi Bontchev Street 11 1113 Sofia Bulgaria
| | - Frank Neese
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
12
|
Change in the Electronic Structure of the Cobalt(II) Ion in a One-Dimensional Polymer with Flexible Linkers Induced by a Structural Phase Transition. Int J Mol Sci 2022; 24:ijms24010215. [PMID: 36613658 PMCID: PMC9820815 DOI: 10.3390/ijms24010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
A new 1D-coordination polymer [Co(Piv)2(NH2(CH2)6NH2)]n (1, Piv is Me3CCO2- anion) was obtained, the mononuclear fragments {Co(O2CR)2} within which are linked by μ-bridged molecules of hexamethylenediamine (NH2(CH2)6NH2). For this compound, two different monoclinic C2/c (α-1) and P2/n (β-1) phases were found at room temperature by single-crystal X-ray diffraction analysis, with a similar structure of chains and their packages in unit cells. The low-temperature phase (γ-1) of crystal 1 at 150 K corresponds to the triclinic space group P-1. As the temperature decreases, the structural phase transition (SPT) in the α-1 and β-1 crystals is accompanied by an increase in the crystal packing density caused by the rearrangements of both H-bonds and the nearest ligand environment of the cobalt atom ("octahedral CoN2O4 around the metal center at room temperature" → "pseudo-tetrahedral CoN2O2 at 150 K"). The SPT was confirmed by DSC in the temperature range 210-150 K; when heated above 220 K, anomalies in the behavior of the heat flow are observed, which may be associated with the reversibility of SPT; endo effects are observed up to 300 K. The SPT starts below 200 K. At 100 K, a mixture of phases was found in sample 1: 27% α-1 phase, 61% γ-1 phase. In addition, at 100 K, 12% of the new δ-1 phase was detected, which was identified from the diffraction pattern at 260 K upon subsequent heating: the a,b,c-parameters and unit cell volume are close to the structure parameters of γ-1, and the values of the α,β,γ-angles are significantly different. Further heating leads to a phase transition from δ-1 to α-1, which both coexist at room temperature. According to the DC magnetometry data, during cooling and heating, the χMT(T) curves for 1 form a hysteresis loop with ~110 K, in which the difference in the χMT values reaches 9%. Ab initio calculations of the electronic structure of cobalt(II) in α-1 and γ-1 have been performed. Based on the EPR data at 10 K and the ab initio calculations, the behavior of the χMT(T) curve for 1 was simulated in the temperature range of 2-150 K. It was found that 1 exhibits slow magnetic relaxation in a field of 1000 Oe.
Collapse
|
13
|
Ahmed N, Sharma T, Spillecke L, Koo C, Ansari KU, Tripathi S, Caneschi A, Klingeler R, Rajaraman G, Shanmugam M. Probing the Origin of Ferro-/Antiferromagnetic Exchange Interactions in Cu(II)–4f Complexes. Inorg Chem 2022; 61:5572-5587. [DOI: 10.1021/acs.inorgchem.2c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Tanu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Lena Spillecke
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Changhyun Koo
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Andrea Caneschi
- Department of Industrial Engineering, “DIEF” and INSTM RU, University of Florence, Via di S. Marta 3, 50131 Florence, Italy
| | - Rüdiger Klingeler
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
14
|
Comba P, Rajaraman G, Sarkar A, Velmurugan G. What controls the magnetic anisotropy in heptacoordinate high-spin cobalt(II) complexes? A theoretical perspective. Dalton Trans 2022; 51:5175-5183. [PMID: 35274660 DOI: 10.1039/d1dt03903b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The magnetic anisotropy of sixteen seven-coordinate high-spin CoII complexes with O, N, Cl and I donors was investigated with state-of-the-art ab initio CASSCF/NEVPT2 calculations and compared with experimental data. Based on the nature of the equatorial and axial ligands, which were found to tune the zero-field splitting, the complexes were classified into four groups. The experimental zero-field splitting parameters D which, for the various structures are in a range of +30 to +60 cm-1, as well as the g and E values are well reproduced. The investigation of the electronic structure shows that in these pentagonal bipyramidal complexes the donors and symmetry in the equatorial plane play an important role in the values of the axial zero-field splitting parameter D, and breaking of the horizontal plane of symmetry was found to enhance the magnitude of the D value. Although negative values of D are a desired condition for SIMs, many CoII based SIMs with positive zero-field splitting are fundamentally important to understand the nature of magnetic anisotropy, and seven coordinate CoII complexes with a large overall crystal field splitting might provide a way forward in this class of molecules.
Collapse
Affiliation(s)
- Peter Comba
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Gunasekaran Velmurugan
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Trigonally Distorted Hexacoordinate Co(II) Single-Ion Magnets. MATERIALS 2022; 15:ma15031064. [PMID: 35161010 PMCID: PMC8839918 DOI: 10.3390/ma15031064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
By simple reactions involving various cobalt(II) carboxylates (acetate and in situ prepared pivalate and 4-hydroxybenzoate salts) and neocuproine (neo), we were able to prepare three different carboxylate complexes with the general formula [Co(neo)(RCOO)2] (R = –CH3 for 1, (CH3)3C– for 2, and 4OH-C4H6– for 3). The [Co(neo)(RCOO)2] molecules in the crystal structures of 1–3 adopt a rather distorted coordination environment, with the largest trigonal distortion observed for 1, whereas 2 and 3 are similarly distorted from ideal octahedral geometry. The combined theoretical and experimental investigations of magnetic properties revealed that the spin Hamiltonian formalism was not a valid approach and the L-S Hamiltonian had to be used to reveal very large magnetic anisotropies for 1–3. The measurements of AC susceptibility showed that all three compounds exhibited slow-relaxation of magnetization in a weak external static magnetic field, and thus can be classified as field-induced single-ion magnets. It is noteworthy that 1 also exhibits a weak AC signal in a zero-external magnetic field.
Collapse
|
16
|
Shao D, Moorthy S, Zhou Y, Wu ST, Zhu JY, Yang J, Wu D, Tian Z, Singh SKK. Field-induced slow magnetic relaxation behaviours in binuclear cobalt(II) metallocycle and exchange-coupled cluster. Dalton Trans 2022; 51:9357-9368. [DOI: 10.1039/d2dt01620f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise control of structures and magnetic properties of a molecular material constitutes an important challenge to realize the tailor-made magnetic function. Herein, we reported that the ligand-directed coordination self-assembly of...
Collapse
|
17
|
Landart Gereka A, Quesada-Moreno MM, Díaz-Ortega IF, Nojiri H, Ozerov M, Krzystek J, Palacios MA, Colacio E. Large easy-axis magnetic anisotropy in a series of trigonal prismatic mononuclear cobalt (II) complexes with zero-field hidden single-molecule magnet behaviour: The important role of the distortion of the coordination sphere and intermolecular interactions on the slow relaxation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00275b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexes [Co(L)]X·S (X = CoCl42- , S = CH3CN (1); X = ZnCl42- , S = CH3OH (2)), [Co(L)]X2·S (X = ClO4-, S = 2CH3OH (3) and X =...
Collapse
|
18
|
Shao D, Moorthy S, Yang X, Yang J, Shi L, Singh SK, Tian Z. Tuning the structure and magnetic properties via distinct pyridine derivatives in cobalt(II) coordination polymers. Dalton Trans 2021; 51:695-704. [PMID: 34913942 DOI: 10.1039/d1dt03489h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Precise modulation of the structure and magnetic properties of coordination compounds is of great importance in the development of framework magnetic materials. Herein, we report that the coordination self-assembly of a neutral cobalt(II) magnetic building block and selective pyridine derivatives as organic linkers has led to two distinct cobalt(II) coordination polymers, {Co(DClQ)2(bpy)}n (1) and {Co2(DClQ)4(tpb)}n (2) (DClQ = (5,7-dichloro-8-hydroxyquinoline; bpy = 4, 4'-dipyridine; tpb = 1,2,4,5-tetra(4-pyridyl)benzene)). Structural analyses revealed that 1 and 2 are one-dimensional (1D) and 2D coordination polymers containing the same neutral magnetic building block [Co(DClQ)2] bridged by bitopic bpy and tetratopic tpb ligands, respectively. Both the complexes have a distorted octahedral CoN4O2 coordination geometry around each cobalt center offered by the bidentate ligand and organic linkers. Magnetic studies reveal large easy-plane and easy-axis magnetic anisotropy for 1 and 2, respectively. However, because of the weak antiferromagnetic coupling between the bpy-bridged CoII centers, no slow relaxation of the magnetization was observed in 1 under both zero or applied dc fields. Interestingly, complex 2 exhibits slow magnetic relaxation under external fields, indicative of a framework single-ion magnet of 2. Theoretical calculations further support the experimental results and unveil that the D values are +65.3 and -91.2 cm-1 for 1 and 2, respectively, while the magnetic exchange interaction was precisely estimated as -0.16 (1) and -0.009 (2) cm-1. The foregoing results show that the structural dimensionality and magnetic properties can be rationally modified via pre-designed magnetic building blocks and a suitable choice of organic bridging ligands.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Xiaodong Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Le Shi
- Faculty of Chemistry, Jagiellonian University, 30387 Kraków, Poland
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| |
Collapse
|
19
|
A high-frequency EPR study of magnetic anisotropy and intermolecular interactions of Co(II) ions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Klahn EA, Damgaard-Møller E, Krause L, Kibalin I, Gukasov A, Tripathi S, Swain A, Shanmugam M, Overgaard J. Quantifying magnetic anisotropy using X-ray and neutron diffraction. IUCRJ 2021; 8:833-841. [PMID: 34584744 PMCID: PMC8420765 DOI: 10.1107/s2052252521008290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, CoX 2tmtu2 [X = Cl(1) and Br(2), tmtu = tetra-methyl-thio-urea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 ab initio calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bis-ector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with ab initio calculations and high-resolution X-ray diffraction. Theoretical ab initio ligand field theory (AILFT) analysis finds the d xy orbital to be stabilized relative to the d xz and d yz orbitals, thus providing the intuitive explanation for the presence of a negative zero-field splitting parameter, D, from coupling and thus mixing of d xy and . Experimental d-orbital populations support this interpretation, showing in addition that the metal-ligand covalency is larger for Br-ligated 2 than for Cl-ligated 1.
Collapse
Affiliation(s)
- Emil Andreasen Klahn
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Emil Damgaard-Møller
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Lennard Krause
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Iurii Kibalin
- LLB, CEA, CE de Saclay, Gif sur Yvette 91191, France
| | - Arsen Gukasov
- LLB, CEA, CE de Saclay, Gif sur Yvette 91191, France
| | - Shalini Tripathi
- Department of Chemistry, IIT Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Abinash Swain
- Department of Chemistry, IIT Bombay, Powai, Mumbai, Maharashtra 400076, India
| | | | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| |
Collapse
|
21
|
Wang M, Xu H, Sun T, Cui H, Zhang YQ, Chen L, Tang Y. Optimal N–Co–N bite angle for enhancing the magnetic anisotropy of zero-field Co(II) single-ion magnets in tetrahedral [N4] coordination environment. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Legendre CM, Damgaard‐Møller E, Overgaard J, Stalke D. The Quest for Optimal 3 d Orbital Splitting in Tetrahedral Cobalt Single‐Molecule Magnets Featuring Colossal Anisotropy and Hysteresis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christina M. Legendre
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraβe 4 37077 Göttingen Germany
| | - Emil Damgaard‐Møller
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Jacob Overgaard
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Dietmar Stalke
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraβe 4 37077 Göttingen Germany
| |
Collapse
|
23
|
Bazhenova TA, Zorina LV, Simonov SV, Mironov VS, Maximova OV, Spillecke L, Koo C, Klingeler R, Manakin YV, Vasiliev AN, Yagubskii EB. The first pentagonal-bipyramidal vanadium(III) complexes with a Schiff-base N 3O 2 pentadentate ligand: synthesis, structure and magnetic properties. Dalton Trans 2020; 49:15287-15298. [PMID: 33112327 DOI: 10.1039/d0dt03092a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of three mononuclear pentagonal-bipyramidal V(iii) complexes with the equatorial pentadentate N3O2 ligand (2,6-diacethylpyridinebis(benzoylhydrazone), H2DAPBH) in the different charge states (H2DAPBH0, HDAPBH1-, DAPBH2-) and various apical ligands (Cl-, CH3OH, SCN-) were synthesized and characterized structurally and magnetically: [V(H2DAPBH)Cl2]Cl·C2H5OH (1), [V(HDAPBH)(NCS)2]·0.5CH3CN·0.5CH3OH (2) and [V(DAPBH)(CH3OH)2]Cl·CH3OH (3). All three complexes reveal paramagnetic behavior, resulting from isolated S = 1 spins with positive zero-field splitting energy expected for the high-spin ground state of the V3+ (3d2) ion in a PBP coordination. Detailed high-field EPR measurements for compound 3 show that its magnetic properties are best described by using the spin Hamiltonian with the positive ZFS energy (D = +4.1 cm-1) and pronounced dimer-like antiferromagnetic spin coupling (J = -1.1 cm-1). Theoretical analysis based on superexchange calculations reveals that the long-range spin coupling between distant V3+ ions (8.65 Å) is mediated through π-stacking contacts between the planar DAPBH2- ligands of two neighboring [V(DAPBH)(CH3OH)2]+ complexes.
Collapse
Affiliation(s)
- Tamara A Bazhenova
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia.
| | | | - Sergey V Simonov
- Institute of Solid State Physics, RAS, Chernogolovka 142432, Russia
| | - Vladimir S Mironov
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia. and Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", RAS, Moscow, Russia.
| | - Olga V Maximova
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia. and Lomonosov Moscow State University, Moscow 119991, Russia and National University of Science and Technology "MISiS", Moscow 119049, Russia
| | - Lena Spillecke
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Changhyun Koo
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Rüdiger Klingeler
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany. and Centre for Advanced Materials (CAM), Heidelberg University, 69120 Heidelberg, Germany
| | - Yuriy V Manakin
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia.
| | - Alexander N Vasiliev
- Lomonosov Moscow State University, Moscow 119991, Russia and National Research South Ural State University, Chelyabinsk 454080, Russia
| | - Eduard B Yagubskii
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia.
| |
Collapse
|
24
|
Das C, Rasamsetty A, Tripathi S, Shanmugam M. Magnetization relaxation dynamics of a rare coordinatively unsaturated Co(II) complex: experimental and theoretical insights. Chem Commun (Camb) 2020; 56:13397-13400. [PMID: 33035279 DOI: 10.1039/d0cc05963c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A robust and unusual three coordinate Co(ii) complex [Li(DME)3][Co(L)3] (1, where L = Lithium (2,6-diisopropylphenyl) amide and DME = Dimethoxyethane) shows easy plane magnetic anisotropy (D) which is validated by variable temperature X-band EPR studies. 1 also registered with the largest anisotropic barrier (51.1 K, τ0 = 1.98 × 10-8 s; Hdc ≠ 0) to the magnetization reversal among the three coordinate Co(ii) complexes. The role of its geometry on the SH parameters and the experimental observations are rationalized by theoretical calculations including the origin of magnetic anisotropy.
Collapse
Affiliation(s)
- Chinmoy Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India. and Current address: AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Amaleswari Rasamsetty
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
25
|
Cui HH, Ding MM, Zhang XD, Lv W, Zhang YQ, Chen XT, Wang Z, Ouyang ZW, Xue ZL. Magnetic anisotropy in square pyramidal cobalt(II) complexes supported by a tetraazo macrocyclic ligand. Dalton Trans 2020; 49:14837-14846. [PMID: 33034595 DOI: 10.1039/d0dt01954b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two five-coordinate mononuclear Co(ii) complexes [Co(12-TMC)X][B(C6H5)4] (L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC), X = Cl- (1), Br- (2)) have been studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes have a distorted square pyramidal geometry with the Co(ii) ion lying above the basal plane constrained by the rigid tetradentate macrocyclic ligand. In contrast to the reported five-coordinate Co(ii) complex [Co(12-TMC)(NCO)][B(C6H5)4] (3) exhibiting easy-axis anisotropy, an easy-plane magnetic anisotropy was found for 1 and 2via the analyses of the direct-current magnetic data and HF-EPR spectroscopy. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements demonstrated that complexes 1 and 2 show slow magnetic relaxation at an applied dc field. Ab initio calculations were performed to reveal the impact of the terminal ligands on the nature of the magnetic anisotropies of this series of five-coordinate Co(ii) complexes.
Collapse
Affiliation(s)
- Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
27
|
Paul A, Viciano-Chumillas M, Puschmann H, Cano J, Manna SC. Field-induced slow magnetic relaxation in mixed valence di- and tri-nuclear Co II-Co III complexes. Dalton Trans 2020; 49:9516-9528. [PMID: 32608402 DOI: 10.1039/d0dt00588f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel mixed valence CoII-CoIII complexes, namely [CoIICoIII(L1)(ab)(mb)2(H2O)]·dmf (1) and [CoCoII(L2)4(H2O)4]·2H2O (2) [H2L1 = (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol, ab = 2-amino-butan-1-ol anion, mb = p-methyl benzoate, H2L2 = 3-((2-hydroxy-3-methoxy-benzylidene)-amino)-propionic acid, and dmf = N,N-dimethyl-formamide], were synthesized and characterized by single crystal X-ray diffraction and magnetic studies at low temperature. The structure determination reveals that both complexes belong to the monoclinic system with P21/c (1) and I2/a (2) space groups. Complex 1 is a dinuclear CoIIICoII compound with distorted octahedral cobalt centers showing different coordination environments. In 2, a bent trinuclear CoCoII complex, the coordination environments around the two terminal CoIII sites are alike, whereas they are different in the central CoII ion. Alternating current/direct current (ac/dc) magnetic studies revealed that both complexes show field-induced slow magnetic relaxation. The dc magnetic susceptibility and magnetization data were analyzed with the following Hamiltonianwhere D and E are the axial and rhombic zero-field splitting (zfs) parameters, respectively, and a good agreement between experimental and simulated results was found using the parameters g⊥ = 2.585, g∥ = 2.437, D = +98.1 cm-1, E/D = 0.008 and F = 8.2× 10-5 for 1 and g⊥ = 2.580, g∥ = 2.580, D = +55.4 cm-1, and E/D = 0.000 for 2.
Collapse
Affiliation(s)
- Aparup Paul
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | | | | | | | | |
Collapse
|
28
|
Yao B, Singh MK, Deng YF, Wang YN, Dunbar KR, Zhang YZ. Trigonal Prismatic Cobalt(II) Single-Ion Magnets: Manipulating the Magnetic Relaxation Through Symmetry Control. Inorg Chem 2020; 59:8505-8513. [DOI: 10.1021/acs.inorgchem.0c00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Mukesh Kumar Singh
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi-Nuo Wang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
29
|
Peng G, Chen Y, Li B, Zhang YQ, Ren XM. Bulky Schiff-base ligand supported Co(ii) single-ion magnets with zero-field slow magnetic relaxation. Dalton Trans 2020; 49:5798-5802. [PMID: 32338258 DOI: 10.1039/d0dt00790k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear Co(ii) complexes with tetrahedral coordination geometry have been constructed from different bulky Schiff-base ligands. Both complexes exhibit slow magnetic relaxation without a static field and their relaxation behaviors can be tuned by ligand substitution. Clear magnetic hysteresis loops were observed for both complexes at 2 K.
Collapse
Affiliation(s)
- Guo Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | |
Collapse
|
30
|
Świtlicka A, Machura B, Penkala M, Bieńko A, Bieńko DC, Titiš J, Rajnák C, Boča R, Ozarowski A. Slow magnetic relaxation in hexacoordinated cobalt(ii) field-induced single-ion magnets. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00257g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To gain an insight into the factors affecting the enhancement of the energy barrier in SMM/SIM, hexacoordinate pseudohalide Co(ii) complexes based on the tridentate ligand were investigated.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Mateusz Penkala
- Department of Inorganic
- Organometallic Chemistry and Catalysis
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
| | - Alina Bieńko
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Dariusz C. Bieńko
- Faculty of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Ján Titiš
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- 917 01 Trnava
- Slovakia
| | - Cyril Rajnák
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- 917 01 Trnava
- Slovakia
| | - Roman Boča
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- 917 01 Trnava
- Slovakia
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
31
|
Sarkar A, Tewary S, Sinkar S, Rajaraman G. Magnetic Anisotropy in Co
II
X
4
(X=O, S, Se) Single‐Ion Magnets: Role of Structural Distortions versus Heavy Atom Effect. Chem Asian J 2019; 14:4696-4704. [DOI: 10.1002/asia.201901140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/04/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Arup Sarkar
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Subrata Tewary
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
- Current address: RIKEN Center for Computational Science 7-1-26, Minatojima-minami-machi Chuo-ku Kobe 650-0047 Japan
| | - Shwetali Sinkar
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Gopalan Rajaraman
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|