1
|
Fei Y, Abazari R, Ren M, Wang X, Zhang X. Defect Engineering in a Nanoporous Thulium-Organic Framework in Catalyzing Knoevenagel Condensation and Chemical CO 2 Fixation. Inorg Chem 2024; 63:18914-18923. [PMID: 39311507 DOI: 10.1021/acs.inorgchem.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Defect engineering is an extremely effective strategy for modifying metal-organic frameworks (MOFs), which can break through the application limitations of traditional MOFs and enhance their functionality. Herein, we report a highly robust nanoporous thulium(III)-organic framework, {[Tm2(BDCP)(H2O)5](NO3)·3DMF·2H2O}n (NUC-105), with [Tm(COO)2(H2O)]n chains and [Tm2(COO)4(H2O)8] dinuclears as metal nodes and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (BDCP) linkers. In NUC-105, each of the four chains of [Tm(COO)2]n and the two rows of [Tm2(COO)4(H2O)8] units is unified by the organic skeleton, resulting in a rectangular nanochannel with dimensions of 15.35 Å × 11.29 Å, which leads to a void volume of 50%. It is worth mentioning that the [Tm2(COO)4(H2O)8] cluster is very rare in terms of its higher level of associated water molecules, implying that the activated host framework can serve as a strong Lewis acid. NUC-105a exhibited great heterogeneous catalytic performance for CO2 cycloaddition with epoxides under the reaction conditions (0.60 mol % NUC-105a, 5.0 mol % n-Bu4NBr, 65 °C, 5 h), ensuring exclusive selectivity and high conversion rates. In addition, NUC-105a's strong catalytic impact on the Knoevenagel condensation of aldehydes and malononitrile can be attributed to the collaboration between the drastically unsaturated Lewis acidic Tm3+ centers and Lewis basic pyridine groups.
Collapse
Affiliation(s)
- Yang Fei
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Reza Abazari
- Department of Inorganic Chemistry, Faculty of Science, University of Maragheh, Maragheh 83111-55181, Iran
| | - Meiyu Ren
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xiaotong Wang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xiutang Zhang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
| |
Collapse
|
2
|
Abazari R, Ghorbani N, Shariati J, Varma RS, Qian J. Copper-Based Bio-MOF/GO with Lewis Basic Sites for CO 2 Fixation into Cyclic Carbonates and C-C Bond-Forming Reactions. Inorg Chem 2024; 63:12667-12680. [PMID: 38916987 DOI: 10.1021/acs.inorgchem.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Several measures, including crude oil recovery improvement and carbon dioxide (CO2) conversion into valuable chemicals, have been considered to decrease the greenhouse effect and ensure a sustainable low-carbon future. The Knoevenagel condensation and CO2 fixation have been introduced as two principal solutions to these challenges. In the present study for the first time, bio-metal-organic frameworks (MOF)(Cu)/graphene oxide (GO) nanocomposites have been used as catalytic agents for these two reactions. In view of the attendance of amine groups, biological MOFs with NH2 functional groups as Lewis base sites protruding on the channels' internal surface were used. The bio-MOF(Cu)/20%GO performs efficaciously in CO2 fixation, leading to more than 99.9% conversion with TON = 525 via a solvent-free reaction under a 1 bar CO2 atmosphere. It has been shown that these frameworks are highly catalytic due to the Lewis basic sites, i.e., NH2, pyrimidine, and C═O groups. Besides, the Lewis base active sites exert synergistic effects and render bio-MOF(Cu)/10%GO nanostructures as highly efficient catalysts, significantly accelerating Knoevenagel condensation reactions of aldehydes and malononitrile as substrates, thanks to the high TOF (1327 h-1) and acceptable reusability. Bio-MOFs can be stabilized in reactions using GO with oxygen-containing functional groups that contribute as efficient substitutes, leading to an expeditious reaction speed and facilitating substrate absorption.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Nasrin Ghorbani
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Jafar Shariati
- Department of Chemical Engineering, Darab Branch, Islamic Azad University, P.O. Box 74817-83143 Darab, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
3
|
Kumar P, Behera A, Tiwari P, Karthik S, Biswas M, Sonawane A, Mobin SM. Exploring the antimicrobial potential of isoniazid loaded Cu-based metal-organic frameworks as a novel strategy for effective killing of Mycobacterium tuberculosis. J Mater Chem B 2023; 11:10929-10940. [PMID: 37937634 DOI: 10.1039/d3tb02292g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Tuberculosis (TB) remains one of the most infectious pathogens with the highest human mortality and morbidity. Biofilm formation during Mycobacterium tuberculosis (Mtb) infection is responsible for bacterial growth, communication, and, most essentially, increased resistance/tolerance to antibiotics leading to higher bacterial persistence. Thus, biofilm growth is presently considered a key virulence factor in the case of chronic disease. Metal-Organic Frameworks (MOFs) have recently emerged as a highly efficient system to improve existing antibiotics' therapeutic efficacy and reduce adverse effects. In this regard, we have synthesized Cu-MOF (IITI-3) using a solvothermal approach. IITI-3 was well characterized by various spectroscopic techniques. Herein, IITI-3 was first encapsulated with isoniazid (INH) to form INH@IITI-3 with 10 wt% loading within 1 hour. INH@IITI-3 was well characterized by PXRD, TGA, FTIR, and BET surface area analysis. Furthermore, the drug release kinetics studies of INH@IITI-3 have been performed at pH 5.8 and 7.4 to mimic the small intestine and blood pH, respectively. The results show that drug release follows first-order kinetics. Furthermore, the antimycobacterial activity of INH@IITI-3 demonstrated significant bacterial killing and altered the structural morphology of the bacteria. Moreover, INH@IITI-3 was able to inhibit the mycobacterial biofilm formation upon treatment and showed less cytotoxicity toward the murine RAW264.7 macrophages. Thus, this work significantly opens up new possibilities for the applications of INH@IITI-3 in biofilm infections in Mtb and further contributes to TB therapeutics.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| | - Ananyaashree Behera
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pranav Tiwari
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| | - Sibi Karthik
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
| | - Avinash Sonawane
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
- Center for Advance Electronic (CAE), Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
- Center for Electric Vehicle and Intelligent Transport Systems, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| |
Collapse
|
4
|
Pan X, Si X, Zhang X, Yao Q, Li Y, Duan W, Qiu Y, Su J, Huang X. A robust and porous titanium metal-organic framework for gas adsorption, CO 2 capture and conversion. Dalton Trans 2023; 52:3896-3906. [PMID: 36877532 DOI: 10.1039/d2dt03158b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A robust and porous titanium metal-organic framework (Ti-MOF; LCU-402) has been hydrothermally synthesized through combining a tetranuclear Ti2Ca2(μ3-O)2(μ2-H2O)1.3(H2O)4(O2C-)8 cluster and a tritopic 1,3,5-benzene(tris)benzoic (BTB) ligand. LCU-402 shows remarkable stability and permanent porosity for CO2, CH4, C2H2, C2H4, and C2H6 gas adsorption. Moreover, LCU-402 as a heterogeneous catalyst can smoothly convert CO2 under a simulated flue atmosphere into organic carbonate molecules by cycloaddition reactions of CO2 and epoxides, indicating that LCU-402 might be a promising catalyst candidate in practical applications. We are confident that the identification of a persistent titanium-oxo building unit would accelerate the development of new porous Ti-MOF materials.
Collapse
Affiliation(s)
- Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yunwu Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yi Qiu
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Jie Su
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
5
|
Detection of antibiotics by electrochemical sensors based on metal-organic frameworks and their derived materials. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Choudhary N, Abdelgaid M, Mpourmpakis G, Mobin SM. CuNi bimetallic nanocatalyst enables sustainable direct carboxylation reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Nazeri MT, Javanbakht S, Nabi M, Shaabani A. Copper phthalocyanine-conjugated pectin via the Ugi four-component reaction: An efficient catalyst for CO2 fixation. Carbohydr Polym 2022; 283:119144. [DOI: 10.1016/j.carbpol.2022.119144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
8
|
Guo Y, Liang C, Zhang CC, Ferrando-Soria J, Gao Y, Yang JH, Liu XY, Pardo E. Enhanced Sieving of C2-Hydrocarbon from Methane by Fluoro-Functionalization of In-MOF with Robust Stability. Chem Asian J 2022; 17:e202101220. [PMID: 34758095 DOI: 10.1002/asia.202101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Indexed: 11/09/2022]
Abstract
Developing efficient adsorbent materials is crucial for adsorption and separation to realize the purification of energy source and raw chemicals. Here, we report a novel and robust 3D In-based MOF built up with fluorine-functionalized ligands, QMOF-2F, with improved separation properties of C2-light hydrocarbons over methane at room temperature respect isoreticular non-fluorinated MOF. QMOF-2F shows a remarkable chemical stability in different solvents, including water, and pH (2-12). DFT calculations support the key role of fluorine-functionalization on the improved performance of QMOF-2F.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Chen Liang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Chengcheng C Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Jesús Ferrando-Soria
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna, 46980, Valencia, Spain
| | - Yu Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Jiahui H Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Xiangyu Y Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Emilio Pardo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna, 46980, Valencia, Spain
| |
Collapse
|
9
|
Ghosh AK, Saha U, Biswas S, ALOthman ZA, Islam MA, Dolai M. Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aloke Kumar Ghosh
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| | - Urmila Saha
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700 073 West Bengal, India
| | - Surajit Biswas
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741 235 West Bengal, India
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, M13 9PL Manchester, U.K
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| |
Collapse
|
10
|
Kumar R, Naz Ansari S, Deka R, Kumar P, Saraf M, Mobin SM. Progress and Perspectives on Covalent-organic Frameworks (COFs) and Composites for Various Energy Applications. Chemistry 2021; 27:13669-13698. [PMID: 34288163 DOI: 10.1002/chem.202101587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Covalent-organic frameworks (COFs), being a new member of the crystalline porous materials family, have emerged as important materials for energy storage/conversion/generation devices. They possess high surface areas, ordered micro/mesopores, designable structures and an ability to precisely control electro-active groups in their pores, which broaden their application window. Thanks to their low weight density, long range crystallinity, reticular nature and tunable synthesis approach towards two and three dimensional (2D and 3D) networks, they have been found suitable for a range of challenging electrochemical applications. Our review focuses on the progress made on the design, synthesis and structure of COFs and their composites for various energy applications, such as metal-ion batteries, supercapacitors, water-splitting and solar cells. Additionally, attempts have been made to correlate the structural and mechanistic characteristics of COFs with their applications.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shagufi Naz Ansari
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Rakesh Deka
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mohit Saraf
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
11
|
Environmentally benign melamine functionalized silica-coated iron oxide for selective CO2 capture and fixation into cyclic carbonate. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Decavanadate-based clusters as bifunctional catalysts for efficient treatment of carbon dioxide and simulant sulfur mustard. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Zhang K, Cao X, Zhang Z, Cheng Y, Zhou YH. MIL-101(Cr) with incorporated polypyridine zinc complexes for efficient degradation of a nerve agent simulant: spatial isolation of active sites promoting catalysis. Dalton Trans 2021; 50:1995-2000. [PMID: 33522548 DOI: 10.1039/d0dt04048g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Development of an efficient catalyst for degradation of organophosphorus toxicants is highly desirable. Herein, an MIL-101(Cr)LZn catalyst was fabricated by incorporating polypyridine zinc complexes into a MOF to achieve the spatial isolation of active sites. Compared with a terpyridine zinc complex without an MIL-101 support, this catalyst was highly active for detoxification of diethyl-4-nitrophenylphosphate.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | | | | | | | | |
Collapse
|
14
|
Abazari R, Sanati S, Morsali A, Kirillov AM, Slawin AMZ, Carpenter-Warren CL. Simultaneous Presence of Open Metal Sites and Amine Groups on a 3D Dy(III)-Metal–Organic Framework Catalyst for Mild and Solvent-Free Conversion of CO2 to Cyclic Carbonates. Inorg Chem 2021; 60:2056-2067. [DOI: 10.1021/acs.inorgchem.0c03634] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Alexander M. Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenido Rovisco Pais, 1049-001 Lisbon, Portugal
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya strasse, Moscow 117198, Russia
| | - Alexandra M. Z. Slawin
- School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | | |
Collapse
|
15
|
Design catalytic space engineering of Ag-Ag bond-based metal organic framework for carbon dioxide fixation reactions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Tavakoli Z. Catalytic CO2 fixation over a high-throughput synthesized copper terephthalate metal-organic framework. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Guo F, Su C, Fan Y, Shi W, Zhang X, Xu J. Coordination-driven assembly of a 3d-4f heterometallic organic framework with 1D Cu 4I 4 and Eu-based chains: syntheses, structures and various properties. Dalton Trans 2020; 49:11209-11216. [PMID: 32749416 DOI: 10.1039/d0dt01811b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-dimensional porous 3d-4f heterometallic organic framework, namely, {[Eu3(Cu4I4)3(INA)9(DMF)4]·3DMF}n (YNU-2), was successfully prepared under solvothermal conditions. There are two different one-dimensional metal chains in the structure, namely, Cu4I4 and EuIII-based chains, resulting in an excellent stability of the prepared sample. A N2 sorption isotherm at 77 K revealed that the activated sample exhibits a Brunauer-Emmett-Teller surface area of 371 m2 g-1, while, YNU-2 can adsorb obviously higher CO2 amounts than CH4 at 273 K and 298 K under 1 atm because of the stronger interaction force between CO2 and the porous skeleton. Furthermore, YNU-2 is highly efficient heterogeneous catalyst for chemical fixation of the CO2 and epoxides into cyclic carbonates with a preferable recyclability. Taking into account its excellent stability, the prepared sample can be used to construct an electrochemical adapter sensor for detecting cocaine with a detection limit of 0.27 pg mL-1 in the wide range of 0.001-0.5 ng mL-1.
Collapse
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Changhua Su
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Yuhang Fan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Jiakun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Drugs and Byproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, P. R. China.
| |
Collapse
|
18
|
Hierarchical porous CuNi-based bimetal-organic frameworks as efficient catalysts for ammonia borane hydrolysis. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Gupta AK, Guha N, Krishnan S, Mathur P, Rai DK. A Three-Dimensional Cu(II)-MOF with Lewis acid−base dual functional sites for Chemical Fixation of CO2 via Cyclic Carbonate Synthesis. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101173] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Rajak R, Kumar R, Ansari SN, Saraf M, Mobin SM. Recent highlights and future prospects on mixed-metal MOFs as emerging supercapacitor candidates. Dalton Trans 2020; 49:11792-11818. [PMID: 32779674 DOI: 10.1039/d0dt01676d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-metal metal-organic frameworks (M-MOFs) consist of at least two different metal ions as nodes in the same framework. The incorporation of a second or more metal ions provides structural/compositional diversity, multi-functionality and stability to the framework. Moreover, the periodical array of different metal ions in the framework may alter the physical/chemical properties of M-MOFs and result in fascinating applications. M-MOFs with exciting structural features offer superior supercapacitor performances compared to single metal MOFs due to the synergic effect of different metal ions. In this review, we summarize several synthetic methods to construct M-MOFs by employing various organic ligands or metalloligands. Further, we discuss the electrochemical performance of several M-MOFs and their derived composite materials for supercapacitor applications.
Collapse
Affiliation(s)
- Richa Rajak
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Ravinder Kumar
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Shagufi Naz Ansari
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Mohit Saraf
- Discipline of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India. and Discipline of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India and Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
21
|
Guo F, Su C, Fan Y, Shi W. Constructing an Interpenetrated NiII-Based Coordination Polymer Based on a Flexible Dicarboxylate Ligand and an N-Donor Ligand: Preparation, Topological Diversity, and Catalytic Properties. Aust J Chem 2020. [DOI: 10.1071/ch19498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel coordination polymer (CP) was constructed using 1,3-bis(4-carboxyphenoxy) propane (H2bcp), 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene (bimb), and NiII ions. [Ni(bcp)(bimb)]·H2O]n (1) shows an interesting 2D+2D → 3D inclined polyrotaxane topology. The structure was characterised by many methods. This work indicates that the flexible and neutral pyridine ligand plays a significant role in constructing CPs. Furthermore, 1 is a highly efficient catalyst for the reaction of CO2 and epoxides.
Collapse
|
22
|
Zhang T, Zang H, Gai F, Feng Z, Li M, Duan C. Photoswitchable Cu(ii)/Cu(i) catalyses assisted by enzyme-like non-covalent interactions in Cu(ii)–melamine coordination polymers for installing CO2/CS2 and CF3 groups in heterocycles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02154g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes photoswitchable Cu(ii)/Cu(i) catalyses and enzyme-like interactions in Cu–TDPAT for installing CO2/CS2 and CF3 groups in heterocycles.
Collapse
Affiliation(s)
- Tiexin Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Hanbin Zang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Fangyuan Gai
- Advanced Institute of Materials Science
- School of Chemistry and Biology
- Changchun University of Technology
- Changchun
- P. R. China
| | - Zhi Feng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Mochen Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering
| |
Collapse
|
23
|
Guo F, Zhang X. Metal–organic frameworks for the energy-related conversion of CO2 into cyclic carbonates. Dalton Trans 2020; 49:9935-9947. [DOI: 10.1039/d0dt01516d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MOFs are promising heterogeneous catalysts for chemical fixation of CO2 and epoxides into cyclic carbonates.
Collapse
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering
- Dezhou University
- Dezhou
- People's Republic of China
| |
Collapse
|
24
|
Zhu QQ, Zhang WW, Zhang HW, Yuan Y, Yuan R, Sun F, He H. A Double-Walled Porous Metal–Organic Framework as a Highly Efficient Catalyst for Chemical Fixation of CO2 with Epoxides. Inorg Chem 2019; 58:15637-15643. [DOI: 10.1021/acs.inorgchem.9b02717] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qian-Qian Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Han-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Rongrong Yuan
- Dapartment of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, People’s Republic of China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| |
Collapse
|