1
|
Perez-Jimenez M, Geoghegan BL, Collauto A, Röβler MM, Crimmin MR. A Paramagnetic Nickel-Zinc Hydride Complex. Angew Chem Int Ed Engl 2024; 63:e202411828. [PMID: 39078719 DOI: 10.1002/anie.202411828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 10/15/2024]
Abstract
Reaction of a molecular zinc-hydride [{(ArNCMe)2CH}ZnH] (Ar=2,6-di-isopropylphenyl) with 0.5 equiv. of [Ni(CO)Cp]2 led to the isolation of a nickel-zinc hydride complex containing a bridging 3-centre,2-electron Ni-H-Zn interaction. This species has been characterized in the solid-state by single crystal X-ray diffraction. DFT calculations are consistent with its formulation as a σ-complex derived from coordination of the zinc-hydride to a paramagnetic nickel(I) fragment. Continuous-wave and pulse EPR experiments suggest that this species is labile in solution. Further experiments show that in the presence of catalytic quantities of nickel(I) precursors, zinc-hydride bonds can undergo either H/D-exchange with D2 or dehydrocoupling to form Zn-Zn bonds. In combination, the data support the activation and functionalisation of zinc-hydride bonds at nickel(I) centres.
Collapse
Affiliation(s)
- Marina Perez-Jimenez
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Blaise L Geoghegan
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Alberto Collauto
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Maxie M Röβler
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Mark R Crimmin
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| |
Collapse
|
2
|
Tensi L, Moretti F, Amendola A, Froese RDJ, Macchioni A, Kuhlman RL, Pearson DM, Zuccaccia C. Solution Structure and Dynamics of Hf-Al and Hf-Zn Heterobimetallic Adducts Mimicking Relevant Intermediates in Chain Transfer Reactions. Inorg Chem 2024; 63:8222-8236. [PMID: 38666625 DOI: 10.1021/acs.inorgchem.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cationic cyclometalated hafnocenes [CpPrCpCH2CH2CH2Hf][B(C6F5)4] (4Pr) and [CpiBuCpCH2CH(Me)CH2Hf][B(C6F5)4] (4aiBu and 4biBu) were synthesized from the corresponding [(CpPr)2HfMe][B(C6F5)4] (1Pr) and [(CpiBu)2HfMe][B(C6F5)4] (1iBu) complexes via C-H activation. 4aiBu, 4biBu, and 4Pr, mimicking a propagating M-polymeryl species (M = transition metal) with or without a β-methyl branch on the metalated chains, serve to investigate whether and how the nature of the last inserted olefin molecules changes the structure, stability, and reactivity of the corresponding heterobimetallic complexes, formed in the presence of aluminum- or zinc-alkyl chain transfer agents (CTAs), which are considered relevant intermediates in coordinative chain transfer polymerization (CCTP) and chain shuttling polymerization (CSP) technologies. NMR and DFT data indicate no major structural difference between the resulting heterobridged complexes, all characterized by the presence of multiple α-agostic interactions. On the contrary, thermodynamic and kinetic investigations, concerning the reversible formation and breaking of heterobimetallic adducts, demonstrate that isomer 4aiBu, in which the β-Me is oriented away from the reactive coordination site on Hf, but not 4biBu, having the β-Me pointing in the opposite direction, is capable of reacting with CTAs. Quantification of kinetic rate constants highlights that the formation process is rate limiting and that the nature of the last inserted α-olefin unit modulates transalkylation kinetics. The reaction of 4aiBu, 4biBu, and 4Pr with diisobutylaluminum hydride (DiBAlH) allows the interception and characterization of new heterobinuclear and heterotrinuclear species, featuring both hydride and alkyl bridging moieties, which represent structural models of elusive intermediates in CCTP and CSP processes, capturing the instant when an alkyl chain has just transferred from a transition metal to a main group metal, while the two metals remain engaged in a single heterobimetallic intermediate.
Collapse
Affiliation(s)
- Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia and CIRCC, Via del Liceo 1, 06123 Perugia, Italy
| | - Francesca Moretti
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Alessandra Amendola
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Robert D J Froese
- Core R&D, The Dow Chemical Company, 1776 Building, Midland, Michigan 48674, United States
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Roger L Kuhlman
- The Dow Chemical Company, 230 Abner Jackson Parkway Herbert H Dow Building #2B104, Lake Jackson, Texas 77566, United States
| | - David M Pearson
- The Dow Chemical Company, 230 Abner Jackson Parkway Herbert H Dow Building #2B104, Lake Jackson, Texas 77566, United States
| | - Cristiano Zuccaccia
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
3
|
Nodaraki LE, Liu J, Ariciu AM, Ortu F, Oakley MS, Birnoschi L, Gransbury GK, Cobb PJ, Emerson-King J, Chilton NF, Mills DP, McInnes EJL, Tuna F. Metal-carbon bonding in early lanthanide substituted cyclopentadienyl complexes probed by pulsed EPR spectroscopy. Chem Sci 2024; 15:3003-3010. [PMID: 38404384 PMCID: PMC10882510 DOI: 10.1039/d3sc06175b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
We examine lanthanide (Ln)-ligand bonding in a family of early Ln3+ complexes [Ln(Cptt)3] (1-Ln, Ln = La, Ce, Nd, Sm; Cptt = C5H3tBu2-1,3) by pulsed electron paramagnetic resonance (EPR) methods, and provide the first characterization of 1-La and 1-Nd by single crystal XRD, multinuclear NMR, IR and UV/Vis/NIR spectroscopy. We measure electron spin T1 and Tm relaxation times of 12 and 0.2 μs (1-Nd), 89 and 1 μs (1-Ce) and 150 and 1.7 μs (1-Sm), respectively, at 5 K: the T1 relaxation of 1-Nd is more than 102 times faster than its valence isoelectronic uranium analogue. 13C and 1H hyperfine sublevel correlation (HYSCORE) spectroscopy reveals that the extent of covalency is negligible in these Ln compounds, with much smaller hyperfine interactions than observed for equivalent actinide (Th and U) complexes. This is corroborated by ab initio calculations, confirming the predominant electrostatic nature of the metal-ligand bonding in these complexes.
Collapse
Affiliation(s)
- Lydia E Nodaraki
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Jingjing Liu
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ana-Maria Ariciu
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Fabrizio Ortu
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Meagan S Oakley
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Letitia Birnoschi
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gemma K Gransbury
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J Cobb
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Jack Emerson-King
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David P Mills
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Eric J L McInnes
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
4
|
Nguyen TH, Paul EL, Lukens WW, Hayton TW. Evaluating f-Orbital Participation in the U V═E Multiple Bonds of [U(E)(NR 2) 3] (E = O, NSiMe 3, NAd; R = SiMe 3). Inorg Chem 2023; 62:6447-6457. [PMID: 37053543 DOI: 10.1021/acs.inorgchem.3c00455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The reaction of 1 equiv of 1-azidoadamantane with [UIII(NR2)3] (R = SiMe3) in Et2O results in the formation of [UV(NR2)3(NAd)] (1, Ad = 1-adamantyl) in good yields. The electronic structure of 1, as well as those of the related U(V) complexes, [UV(NR2)3(NSiMe3)] (2) and [UV(NR2)3(O)] (3), were analyzed with EPR spectroscopy, SQUID magnetometry, NIR-visible spectroscopy, and crystal field modeling. This analysis revealed that, within this series of complexes, the steric bulk of the E2- (E═O, NR) ligand is the most important factor in determining the electronic structure. In particular, the increasing steric bulk of this ligand, on moving from O2- to [NAd]2-, results in increasing U═E distances and E-U-Namide angles. These changes have two principal effects on the resulting electronic structure: (1) the increasing U═E distances decreases the energy of the fσ orbital, which is primarily σ* with respect to the U═E bond, and (2) the increasing E-U-Namide angles increases the energy of fδ, due to increasing antibonding interactions with the amide ligands. As a result of the latter change, the electronic ground state for complexes 1 and 2 is primarily fφ in character, whereas the ground state for complex 3 is primarily fδ.
Collapse
Affiliation(s)
- Thien H Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Edward L Paul
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Fetrow TV, Zgrabik J, Bhowmick R, Eckstrom FD, Crull G, Vlaisavljevich B, Daly SR. Quantifying the Influence of Covalent Metal-Ligand Bonding on Differing Reactivity of Trivalent Uranium and Lanthanide Complexes. Angew Chem Int Ed Engl 2022; 61:e202211145. [PMID: 36097137 PMCID: PMC9828012 DOI: 10.1002/anie.202211145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Qualitative differences in the reactivity of trivalent lanthanide and actinide complexes have long been attributed to differences in covalent metal-ligand bonding, but there are few examples where thermodynamic aspects of this relationship have been quantified, especially with U3+ and in the absence of competing variables. Here we report a series of dimeric phosphinodiboranate complexes with trivalent f-metals that show how shorter-than-expected U-B distances indicative of increased covalency give rise to measurable differences in solution deoligomerization reactivity when compared to isostructural complexes with similarly sized lanthanides. These results, which are in excellent agreement with supporting DFT and QTAIM calculations, afford rare experimental evidence concerning the measured effect of variations in metal-ligand covalency on the reactivity of trivalent uranium and lanthanide complexes.
Collapse
Affiliation(s)
- Taylor V. Fetrow
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| | - Joshua Zgrabik
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| | - Rina Bhowmick
- Department of ChemistryThe University of South Dakota414 East Clark StreetVermillionSouth Dakota57069USA
| | - Francesca D. Eckstrom
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| | - George Crull
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| | - Bess Vlaisavljevich
- Department of ChemistryThe University of South Dakota414 East Clark StreetVermillionSouth Dakota57069USA
| | - Scott R. Daly
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| |
Collapse
|
6
|
Sinhababu S, Radzhabov MR, Telser J, Mankad NP. Cooperative Activation of CO 2 and Epoxide by a Heterobinuclear Al-Fe Complex via Radical Pair Mechanisms. J Am Chem Soc 2022; 144:3210-3221. [PMID: 35157448 PMCID: PMC9308047 DOI: 10.1021/jacs.1c13108] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of inert molecules like CO2 is often mediated by cooperative chemistry between two reactive sites within a catalytic assembly, the most common form of which is Lewis acid/base bifunctionality observed in both natural metalloenzymes and synthetic systems. Here, we disclose a heterobinuclear complex with an Al-Fe bond that instead activates CO2 and other substrates through cooperative behavior of two radical intermediates. The complex Ldipp(Me)AlFp (2, Ldipp = HC{(CMe)(2,6-iPr2C6H3N)}2, Fp = FeCp(CO)2, Cp = η5-C5H5) was found to insert CO2 and cyclohexene oxide, producing LdippAl(Me)(μ:κ2-O2C)Fp (3) and LdippAl(Me)(μ-OC6H10)Fp (4), respectively. Detailed mechanistic studies indicate unusual pathways in which (i) the Al-Fe bond dissociates homolytically to generate formally AlII and FeI metalloradicals, then (ii) the metalloradicals add to substrate in a pairwise fashion initiated by O-coordination to Al. The accessibility of this unusual mechanism is aided, in part, by the redox noninnocent nature of Ldipp that stabilizes the formally AlII intermediates, instead giving them predominantly AlIII-like physical character. The redox noninnocent nature of the radical intermediates was elucidated through direct observation of LdippAl(Me)(OCPh2) (22), a metalloradical species generated by addition of benzophenone to 2. Complex 22 was characterized by X-band EPR, Q-band EPR, and ENDOR spectroscopies as well as computational modeling. The "radical pair" pathway represents an unprecedented mechanism for CO2 activation.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Maxim R. Radzhabov
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2019. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ashuiev A, Allouche F, Wili N, Searles K, Klose D, Copéret C, Jeschke G. Molecular and supported Ti(iii)-alkyls: efficient ethylene polymerization driven by the π-character of metal-carbon bonds and back donation from a singly occupied molecular orbital. Chem Sci 2020; 12:780-792. [PMID: 34163812 PMCID: PMC8178971 DOI: 10.1039/d0sc04436a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While Ti(iii) alkyl species are the proposed active sites in Ziegler–Natta ethylene polymerization catalysts, the corresponding well-defined homogeneous catalysts are not known. We report that well-defined neutral β-diiminato Ti(iii) alkyl species, namely [Ti(nacnac)(CH2tBu)2] and its alumina-grafted derivative [(AlsO)Ti(nacnac)(CH2tBu)], are active towards ethylene polymerization at moderate pressures and temperatures and possess an electron configuration well-adapted to insertion of ethylene. Advanced EPR spectroscopy showed that ethylene insertion into a Ti(iii)–C bond takes place during polymerization from Ti(nacnac)(CH2tBu)2. A combination of pulsed EPR spectroscopy and DFT calculations, based on a crystal structure of [Ti(nacnac)(CH2tBu)2], enabled us to reveal details about the structure and electronic configurations of both molecular and surface-grafted species. For both compounds, the α-agostic C–H interaction, which involves the singly occupied molecular orbital, indicates a π character of the metal–carbon bond; this π character is enhanced upon ethylene coordination, leading to a nearly barrier-less C2H4 insertion into Ti(iii)–C bonds after this first step. During coordination, back donation from the SOMO to the π*(C2H4) occurs, leading to stabilization of π-ethylene complexes and to a significant lowering of the overall energy of the C2H4 insertion transition state. In d1 alkyl complexes, ethylene insertion follows an original “augmented” Cossee–Arlman mechanism that involves the delocalization of unpaired electrons between the SOMO, π*(C2H4) and σ*(Ti–C) in the transition state, which further favors ethylene insertion. All these factors facilitate ethylene polymerization on Ti(iii) neutral alkyl species and make d1 alkyl complexes potentially more effective polymerization catalysts than their d0 analogues. Ti(iii) alkyl species polymerize ethylene via an original mechanism, which involves back donation to the π*(C2H4) and a delocalization of the unpaired electron in the transition state of C2H4 insertion into the partially alkylidenic Ti(iii)–C bond.![]()
Collapse
Affiliation(s)
- Anton Ashuiev
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1-5 CH-8093 Zürich Switzerland
| | - Florian Allouche
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1-5 CH-8093 Zürich Switzerland
| | - Nino Wili
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1-5 CH-8093 Zürich Switzerland
| | - Keith Searles
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1-5 CH-8093 Zürich Switzerland
| | - Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1-5 CH-8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1-5 CH-8093 Zürich Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1-5 CH-8093 Zürich Switzerland
| |
Collapse
|
9
|
Arnett CH, Bogacz I, Chatterjee R, Yano J, Oyala PH, Agapie T. Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase. J Am Chem Soc 2020; 142:18795-18813. [PMID: 32976708 DOI: 10.1021/jacs.0c05920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Binding of N2 by the FeMo-cofactor of nitrogenase is believed to occur after transfer of 4 e- and 4 H+ equivalents to the active site. Although pulse EPR studies indicate the presence of two Fe-(μ-H)-Fe moieties, the structural and electronic features of this mixed valent intermediate remain poorly understood. Toward an improved understanding of this bioorganometallic cluster, we report herein that diiron μ-carbyne complex (P6ArC)Fe2(μ-H) can be oxidized and reduced, allowing for the first time spectral characterization of two EPR-active Fe(μ-C)(μ-H)Fe model complexes linked by a 2 e- transfer which bear some resemblance to a pair of En and En+2 states of nitrogenase. Both species populate S = 1/2 states at low temperatures, and the influence of valence (de)localization on the spectroscopic signature of the μ-hydride ligand was evaluated by pulse EPR studies. Compared to analogous data for the {Fe2(μ-H)}2 state of FeMoco (E4(4H)), the data and analysis presented herein suggest that the hydride ligands in E4(4H) bridge isovalent (most probably FeIII) metal centers. Although electron transfer involves metal-localized orbitals, investigations of [(P6ArC)Fe2(μ-H)]+1 and [(P6ArC)Fe2(μ-H)]-1 by pulse EPR revealed that redox chemistry induces significant changes in Fe-C covalency (-50% upon 2 e- reduction), a conclusion further supported by X-ray absorption spectroscopy, 57Fe Mössbauer studies, and DFT calculations. Combined, our studies demonstrate that changes in covalency buffer against the accumulation of excess charge density on the metals by partially redistributing it to the bridging carbon, thereby facilitating multielectron transformations.
Collapse
Affiliation(s)
- Charles H Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Salvadori E, Chiesa M, Buonerba A, Grassi A. Structure and dynamics of catalytically competent but labile paramagnetic metal-hydrides: the Ti(iii)-H in homogeneous olefin polymerization. Chem Sci 2020; 11:12436-12445. [PMID: 34123229 PMCID: PMC8162776 DOI: 10.1039/d0sc04967k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022] Open
Abstract
Metal hydride complexes find widespread application in catalysis and their properties are often understood on the basis of the available crystal structures. However, some catalytically relevant metal hydrides are only spontaneously formed in situ, cannot be isolated in large quantities or crystallised and their structure is therefore ill defined. One such example is the paramagnetic Ti(iii)-hydride involved in homogeneous Ziegler-Natta catalysis, formed upon activation of CpTi(iv)Cl3 with modified methylalumoxane (MMAO). In this contribution, through a combined use of electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopies we identify the nature of the ligands, their bonding interaction and the extent of the spin distribution. From the data, an atomistic and electronic model is proposed, which supports the presence of a self-assembled ion pair between a cationic terminal Ti-hydride and an aluminate anion, with a hydrodynamic radius of ca. 16 Å.
Collapse
Affiliation(s)
- Enrico Salvadori
- Department of Chemistry, University of Turin Via Pietro Giuria 7 Torino 10125 Italy
| | - Mario Chiesa
- Department of Chemistry, University of Turin Via Pietro Giuria 7 Torino 10125 Italy
| | - Antonio Buonerba
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno Via Giovanni Paolo II, 132 I-84084 Fisciano SA Italy
| | - Alfonso Grassi
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno Via Giovanni Paolo II, 132 I-84084 Fisciano SA Italy
| |
Collapse
|
11
|
Tensi L, Froese RDJ, Kuhlman RL, Macchioni A, Zuccaccia C. Interception of Elusive Cationic Hf–Al and Hf–Zn Heterobimetallic Adducts with Mixed Alkyl Bridges Featuring Multiple Agostic Interactions. Chemistry 2020; 26:3758-3766. [DOI: 10.1002/chem.201905699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Leonardo Tensi
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | | | | | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| |
Collapse
|