1
|
Das S, Roy A, Chakrabarti N, Mukhopadhyay N, Sarkar A, Sen Gupta S. Self-sensitized Cu(ii)-complex catalyzed solar driven CO 2 reduction. Chem Sci 2025:d4sc06354f. [PMID: 39829977 PMCID: PMC11736929 DOI: 10.1039/d4sc06354f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO2 transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (H3L), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO2 to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h-1 and a selectivity of 99%. This complex also shows hemilability in the presence of water, which not only plays a role in the proton relay mechanism but also helps stabilize a crucial Cu(i)-NDPA intermediate. The hemilability was justified by the formation of N3O (2) and N2O2 (3) coordinated congeners of the N4 bound complex 1. The overall mechanism was further investigated via spectroscopic techniques such as EPR, UV-vis, and spectroelectrochemistry, culminating in the justification of a single electron-reduced Cu(i)NDPA species as a proposed intermediate. In the next step, the binding of CO2 to the Cu(i) complex and subsequent electron transfer to form Cu(ii)-COO·- was indirectly probed by a radical trapping experiment via the addition of p-methoxy-2,6-di-tert-butylphenol that led to the formation of a phenoxyl radical. This work provides new strategies for designing earth-abundant robust molecular catalysts that can function as photocatalysts without the aid of any external photosensitizers.
Collapse
Affiliation(s)
- Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Aritra Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Navonil Chakrabarti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Aniruddha Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| |
Collapse
|
2
|
Sahil ST, McCardle KM, Le Magueres P, Panetier JA, Jurss JW. Investigations of a Copper(II) Bipyridyl- N-Heterocyclic Carbene Macrocycle for CO 2 Reduction: Apparent Formation of an Imidazolium Carboxylate Intermediate Leading to Demetalation. ACS OMEGA 2024; 9:34555-34566. [PMID: 39157073 PMCID: PMC11325401 DOI: 10.1021/acsomega.4c02520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
A copper complex supported by a redox-active bipyridyl-N-heterocyclic carbene based ligand framework is reported. From X-ray crystallography, the tetradentate macrocycle provides a distorted square planar geometry around the copper metal center. The complex was investigated for the electrocatalytic CO2 reduction reaction (CO2RR) in acetonitrile solutions. Electronic structure calculations were performed on the complex and associated intermediates to provide a fundamental understanding of the metal-ligand redox chemistry and are compared to the previously reported nickel and cobalt analogues. Unlike its predecessors, which are active catalysts for the CO2RR, the copper complex decomposes under reducing conditions in the presence of CO2. A novel decomposition route involving coordination of CO2 to an N-heterocyclic carbene (NHC) donor of the macrocyclic ligand is proposed based on density functional theory (DFT) calculations, which is supported by isolation of a putative ligand-CO2 adduct from the electrolyzed solution and its characterization by 1H NMR spectroscopy and mass spectrometry. The noninnocent behavior of the NHC donors presented here may have important implications for the stability and reactivity of other complexes supported by N-heterocyclic carbenes, and further suggests that cooperative and productive pathways involving metal-bound NHCs could be exploited for CO2 reduction.
Collapse
Affiliation(s)
- Sha Tamanna Sahil
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi 38677, United States
| | - Kaitlin M. McCardle
- Department
of Chemistry, State University of New York
at Binghamton, Binghamton, New York 13902, United States
| | | | - Julien A. Panetier
- Department
of Chemistry, State University of New York
at Binghamton, Binghamton, New York 13902, United States
| | - Jonah W. Jurss
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
3
|
Bruschi C, Gui X, Rauthe P, Fuhr O, Unterreiner AN, Klopper W, Bizzarri C. Dual Role of a Novel Heteroleptic Cu(I) Complex in Visible-Light-Driven CO 2 Reduction. Chemistry 2024; 30:e202400765. [PMID: 38742808 DOI: 10.1002/chem.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
A novel mononuclear Cu(I) complex was synthesized via coordination with a benzoquinoxalin-2'-one-1,2,3-triazole chelating diimine and the bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), to target a new and efficient photosensitizer for photocatalytic CO2 reduction. The Cu(I) complex absorbs in the blue-green region of the visible spectrum, with a broad band having a maximum at 475 nm (ϵ =4500 M-1 cm-1), which is assigned to the metal-to-ligand charge transfer (MLCT) transition from the Cu(I) to the benzoquinoxalin-2'-one moiety of the diimine. Surprisingly, photo-driven experiments for the CO2 reduction showed that this complex can undergo a photoinduced electron transfer with a sacrificial electron donor and accumulate electrons on the diimine backbone. Photo-driven experiments in a CO2 atmosphere revealed that this complex can not only act as a photosensitizer, when combined with an Fe(III)-porphyrin, but can also selectively produce CO from CO2. Thus, owing to its charge-accumulation properties, the non-innocent benzoquinoxalin-2-one based ligand enabled the development of the first copper(I)-based photocatalyst for CO2 reduction.
Collapse
Affiliation(s)
- Cecilia Bruschi
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Liang P, Wang Z, Hao S, Chen KK, Wu K, Wei Z. Management of Triplet States in Modified Mononuclear Ruthenium(II) Complexes for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202407448. [PMID: 38782721 DOI: 10.1002/anie.202407448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Controlling the interplay between relaxation and charge/energy transfer processes in the excited states of photocatalysts is crucial for the performance of artificial photosynthesis. Metal-to-ligand charge-transfer triplet states (3MLCT*) of ruthenium(II) complexes are broadly implemented for photocatalysis, but an effective means of managing the triplets for enhanced photocatalysis has been lacking. Herein, We proposed a strategy to considerably prolong the triplet excited-state lifetime by decorating a ruthenium(II) phosphine complex (RuP-1) with pendent polyaromatic hydrocarbons (PAHs). Systematic studies demonstrate that in RuP-4 decorated with anthracene, sub-picosecond electron transfer from anthracene to 3MLCT* leads to a charge-separated state that can mediate the formation of the intra-ligand triplet state (3IL) of anthracene, resulting in an exceptionally long excited-state up to several milliseconds. This triplet management strategy enables impressive photocatalytic reduction of CO2 to CO with a turnover number (TON) of 404, an optimized quantum yield of 43 % and 100 % selectivity, which is the highest reported performance for mononuclear photocatalysts without additional photosensitizers. RuP-4 also catalyzes photochemical hydrogen generation under argon. This work opens up an avenue for regulating the excited-state charge/energy flow for the development of long-lived 3IL multi-functional mononuclear photocatalysts to boost artificial photosynthesis.
Collapse
Affiliation(s)
- Ping Liang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Siwei Hao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Kai-Kai Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
5
|
Zhang YK, Zhao L, Xie WJ, Li HR, He LN. Mononuclear Iron Pyridinethiolate Complex Promoted CO 2 Photoreduction via Rapid Intramolecular Electron Transfer. CHEMSUSCHEM 2024; 17:e202400090. [PMID: 38426643 DOI: 10.1002/cssc.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
Designing earth-abundant metal complexes as efficient molecular photocatalysts for visible light-driven CO2 reduction is a key challenge in artificial photosynthesis. Here, we demonstrated the first example of a mononuclear iron pyridine-thiolate complex that functions both as a photosensitizer and catalyst for CO2 reduction. This single-component bifunctional molecular photocatalyst efficiently reduced CO2 to formate and CO with a total turnover number (TON) of 46 and turnover frequency (TOF) of 11.5 h-1 in 4 h under visible light irradiation. Notably, the quantum yield was determined to be 8.4 % for the generation of formate and CO at 400 nm. Quenching experiments indicate that high photocatalytic activity is mainly attributed to the rapid intramolecular quenching protocol. The mechanism investigation by DFT calculation and electrochemical studies revealed that the protonation of Febpy(pyS)2 is indispensable step for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yong-Kang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lan Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wen-Jun Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong-Ru Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
6
|
Kamada K, Jung J, Yamada C, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. Photocatalytic CO 2 Reduction Using an Osmium Complex as a Panchromatic Self-Photosensitized Catalyst: Utilization of Blue, Green, and Red Light. Angew Chem Int Ed Engl 2024; 63:e202403886. [PMID: 38545689 DOI: 10.1002/anie.202403886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/24/2024]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) represents an attractive approach for solar-energy storage and leads to the production of renewable fuels and valuable chemicals. Although some osmium (Os) photosensitizers absorb long wavelengths in the visible-light region, a self-photosensitized, mononuclear Os catalyst for red-light-driven CO2 reduction has not yet been exploited. Here, we discovered that the introduction of an Os metal to a PNNP-type tetradentate ligand resulted in the absorption of light with longer-wavelength (350-700 nm) and that can be applied to a panchromatic self-photosensitized catalyst for CO2 reduction to give mainly carbon monoxide (CO) with a total turnover number (TON) of 625 under photoirradiation (λ≥400 nm). CO2 photoreduction also proceeded under irradiation with blue (λ0=405 nm), green (λ0=525 nm), or red (λ0=630 nm) light to give CO with >90 % selectivity. The quantum efficiency using red light was determined to be 12 % for the generation of CO. A catalytic mechanism is proposed based on the detection of intermediates using various spectroscopic techniques, including transient absorption, electron paramagnetic resonance, and UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Chihiro Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Keita Sekizawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunsuke Sato
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Takeshi Morikawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunichi Fukuzumi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennoudai, 305-8571, Tsukuba, Ibaraki, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| |
Collapse
|
7
|
Yang S, Morita Y, Nakamura Y, Iwasawa N, Takaya J. Tuning Photoredox Catalysis of Ruthenium with Palladium: Synthesis of Heterobimetallic Ru-Pd Complexes That Enable Efficient Photochemical Reduction of CO 2. J Am Chem Soc 2024; 146:12288-12293. [PMID: 38651835 DOI: 10.1021/jacs.3c14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
New Ru-Pd heterobimetallic complexes were synthesized and structurally characterized utilizing 6,6″-bis(phosphino)-2,2':6',2″-terpyridine as a scaffold for the metal-metal bond. The dicationic Ru-Pd complex was found to exhibit high catalytic activity as a photocatalyst for photochemical reduction of CO2 to CO under visible light irradiation. This study established a new design of transition metal catalysts that tune photoredox catalysis with metalloligands.
Collapse
Affiliation(s)
- Siteng Yang
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yuto Morita
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yuta Nakamura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Jun Takaya
- Division of Chemistry, Department of Material Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
8
|
Marlier EE. Kappa what? Insights into the coordination modes of N 2P 2 ligands. Dalton Trans 2024; 53:1410-1420. [PMID: 38086708 DOI: 10.1039/d3dt02831c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
While first synthesized more than three decades ago, complexes supported by N2P2 ligands have seen renewed interest due to the synthesis of new ligands, expansion of their reactivity, and catalytic applications. Possessing both soft phosphines and hard nitrogen donors, N2P2 ligands can accommodate various metal geometries and coordination modes thanks to their capability to act as bidentate, tridentate or tetradentate ligands. This short review will explore how metals bind to these ligands and also highlight the complexes' reactivity and catalytic abilities.
Collapse
Affiliation(s)
- Elodie E Marlier
- Department of Chemistry, Saint Olaf College, 1520 St Olaf Avenue, Northfield, Minnesota, 55057, USA.
| |
Collapse
|
9
|
Zhang YQ, Zhang Y, Zeng G, Liao RZ, Li M. Mechanism of photocatalytic CO 2 reduction to HCO 2H by a robust multifunctional iridium complex. Dalton Trans 2024; 53:684-698. [PMID: 38078488 DOI: 10.1039/d3dt03329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The tetradentate PNNP-type IrIII complex Mes-IrPCY2 ([Cl-IrIII-H]+) is reported to be an efficient catalyst for the reduction of CO2 to formate with excellent selectivity under visible light irradiation. Density functional calculations have been carried out to elucidate the mechanism and the origin of selectivity in the present work. Calculations suggest that the double-reduced complex 1-H (1[IrI-H]0) demonstrates higher activity than the single-reduced complex 2-H (2[IrIII(L˙-)-H]+), possibly owing to the higher hydride donor ability of the former compared to the latter; thus 1-H functions as the active species in the overall CO2 reduction reaction. In the HCOO- formation pathway, the hydride of 1-H performs a nucleophilic attack on CO2via an outer-sphere fashion to generate species 1-OCHO (1[IrI-OCHO]0), which then releases HCOO- to produce an IrI intermediate. A subsequent protonation and chloride coordination of the Ir center leads to the regeneration of catalyst 1[Cl-IrIII-H]+. For the CO production, a nucleophilic attack on CO2 takes place by the Ir atom of 1-Hvia an inner-sphere manner to afford complex O2C-3-H (1[O2C-IrIII-H]0), followed by a two-proton-one-electron reduction to furnish the OC-2-H complex (2[OC-IrIII(L˙-)-H]+) after liberating a H2O. Ultimately, CO is released to form 2-H. The stronger nucleophilicity as well as smaller steric hindrance of the hydride than the Ir atom of the active species 1-H (1[IrI-H]0) is found to account for the favoring of formate formation over CO formation. Meanwhile, the CO2 reduction reaction is calculated to be preferred over the hydrogen evolution reaction, and this is consistent with the experimental product distributions.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Yu Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Guoping Zeng
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Feng Q, Huang C, Chen Z, Huang Z, Huang HH, Hu H, Liang F, Liu D. Electronic Effect Promoted Visible-Light-Driven CO 2-to-CO Conversion in a Water-Containing System. Inorg Chem 2023; 62:21416-21423. [PMID: 38061059 DOI: 10.1021/acs.inorgchem.3c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The design of unsaturated nonprecious metal complexes with high catalytic performance for photochemical CO2 reduction is still an important challenge. In this paper, four coordinatively unsaturated Co-salen complexes 1-4 were explored in situ using o-phenylenediamine derivatives and 5-methylsalicylaldehyde as precursors of the ligands in 1-4. It was found that complex 4, bearing a nitro substituent (-NO2) on the aromatic ring of the salen ligand, exhibits the highest photochemical performance for visible-light-driven CO2-to-CO conversion in a water-containing system, with TONCO and CO selectivity values of 5300 and 96%, respectively. DFT calculations and experimental results revealed that the promoted photocatalytic activity of 4 is ascribed to the electron-withdrawing effect of the nitro group in 4 compared to 1-3 (with -CH3, -F, and -H groups, respectively), resulting in a lower reduction potential of active metal centers CoII and lower barriers for CO2 coordination and C-O cleavage steps for 4 than those for catalysts 1-3.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Chunzhao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Zubing Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Hai-Hua Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| |
Collapse
|
11
|
Ishizuka T, Hosokawa A, Kawanishi T, Kotani H, Zhi Y, Kojima T. Self-Photosensitizing Dinuclear Ruthenium Catalyst for CO 2 Reduction to CO. J Am Chem Soc 2023; 145:23196-23204. [PMID: 37831634 DOI: 10.1021/jacs.3c07685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The promise of artificial photosynthesis to solve environmental and energy issues such as global warming and the depletion of fossil fuels has inspired intensive research into photocatalytic systems for CO2 reduction to produce value-added chemicals such as CO and CH3OH. Among the photocatalytic systems for CO2 reduction, self-photosensitizing catalysts, bearing the functions of both photosensitization and catalysis, have attracted considerable attention recently, as such catalysts do not depend on the efficiency of electron transfer from the photosensitizer to the catalyst. Here, we have synthesized and characterized a dinuclear RuII complex bearing two molecules of a tripodal hexadentate ligand as chelating and linking ligands by X-ray crystallography to establish the structure explicitly and have used various spectroscopic and electrochemical methods to elucidate the photoredox characteristics. The dinuclear complex has been revealed to act as a self-photosensitizing catalyst, which acts not only as a photosensitizer but also as a catalyst for CO2 reduction. The dinuclear RuII complex is highly durable and performs efficient and selective CO2 reduction to produce CO with a turnover number of 2400 for 26 h. The quantum yield of the CO formation is also very high─19.7%─and the catalysis is efficient, even at a low concentration (∼1.5%) of CO2.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Atsushi Hosokawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takuya Kawanishi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yipeng Zhi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
12
|
Rana TRK, Swain A, Rajaraman G. The role of agostic interaction in the mechanism of ethylene polymerisation using Cr(III) half-sandwich complexes: What dictates the reactivity? Dalton Trans 2023; 52:11826-11834. [PMID: 37555755 DOI: 10.1039/d3dt02032k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Chromium-based catalysts play a significant role in the production of ultra-high molecular weight polyethylene, and half-sandwich functionalised-metallocene complexes were proven to be one of the most suitable candidates as catalysts for generating such large polymeric-length olefins. Earlier experimental studies on olefin polymerisation using a series of catalysts such as [L1-2CrCl2] (where L1 = 1-((pyridin-2-yl)methyl)indenyl (1) and L2 = 2-methyl-1-{[4-(yridinene-1-yl)yridine-2-yl]methyl}-1H-indenyl (2)) reveal significant variation where peripheral substitution on the ligand was found to influence the reactivity significantly. However, the specific ligand position that affects the reactivity has not been established. As these reactions are fast and robust, it is challenging to establish reactive intermediates via experiments, and therefore, mechanistic clues for such reactions are elusive. Here we have undertaken a detailed computational study by employing an array of DFT (uB3LYP-D3/def2-TZVP, CASSCF/NEVPT2, and DLPNO-CCSD(T) methods to explore the substituted and non-substituted pyridine-cyclo-pentadienyl chromium complexes and their influence on the catalytic activity in ethylene polymerisation. Our study not only unravels the catalytic pathway for olefin polymerisation for such Cr(III)-half-sandwich complexes but also reveals that the energetics of the formation of pseudo-three-coordinate alkyl intermediates is key to the variation in the reactivity observed. A detailed examination using MO and NBO analysis unveils the presence of a C-H⋯Cr agostic interaction that is found to significantly stabilise this intermediate when the pyridine ligand has strong electron-donating groups at its para position. The other substitutions, such as on the cyclopentadienyl ligand, neither yield the desired stability nor the desired interaction. Further studies on models support this proposal. In order to improve the efficiency and selectivity of catalytic systems in olefin polymerisation, we strongly advocate for the integration of agostic interactions as a crucial criterion in the design of future catalysts. Considering the prevalence of electron-deficient metal centres in successful olefin polymerisation catalysts, this research prompts a broader mechanistic inquiry to propose a unified approach for this industrially crucial reaction.
Collapse
Affiliation(s)
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| |
Collapse
|
13
|
Grømer B, Saito S. Hydrogenation of CO 2 to MeOH Catalyzed by Highly Robust (PNNP)Ir Complexes Activated by Alkali Bases in Alcohol. Inorg Chem 2023; 62:14116-14123. [PMID: 37589272 DOI: 10.1021/acs.inorgchem.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Despite receiving significant attention, well-defined homogeneous complexes for hydrogenation of carbon dioxide (CO2) to methanol (MeOH) are scarce and suffer issues of low catalyst turnover numbers (TONs) at high catalyst concentrations and deactivation in the presence of CO and at elevated temperatures. Herein, we disclose a system deploying sterically demanded (PNNP)Ir complexes for a sustained activity for hydrogenation of CO2 to MeOH at temperatures ∼200 °C in an alcohol solvent. Through reaction optimization, we achieved a TON of ∼9000 for MeOH formation, which exceeds most active homogeneous systems reported to date, and robustness on par with or exceeding most reactive systems utilizing amine additives was demonstrated. The key to achieving sustained catalyst turnover for the system was utilizing a catalytic amount of an alkali base additive, which serves the dual purpose of facilitating more efficient outer-sphere reduction of CO2 and HCO2Et and enhancing the selectivity of MeOH over in situ formed CO.
Collapse
Affiliation(s)
- Bendik Grømer
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Muniz CN, Archer CA, Applebaum JS, Alagaratnam A, Schaab J, Djurovich PI, Thompson ME. Two-Coordinate Coinage Metal Complexes as Solar Photosensitizers. J Am Chem Soc 2023. [PMID: 37319428 DOI: 10.1021/jacs.3c02825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Generating sustainable fuel from sunlight plays an important role in meeting the energy demands of the modern age. Herein, we report two-coordinate carbene-metal-amide (cMa, M = Cu(I) and Au(I)) complexes that can be used as sensitizers to promote the light-driven reduction of water to hydrogen. The cMa complexes studied here absorb visible photons (εvis > 103 M-1 cm-1), maintain long excited-state lifetimes (τ ∼ 0.2-1 μs), and perform stable photoinduced charge transfer to a target substrate with high photoreducing potential (E+/* up to -2.33 V vs Fc+/0 based on a Rehm-Weller analysis). We pair these coinage metal complexes with a cobalt-glyoxime electrocatalyst to photocatalytically generate hydrogen and compare the performance of the copper- and gold-based cMa complexes. We also find that the two-coordinate complexes herein can perform photodriven hydrogen production from water without the addition of the cobalt-glyoxime electrocatalyst. In this "catalyst-free" system, the cMa sensitizer partially decomposes to give metal nanoparticles that catalyze water reduction. This work identifies two-coordinate coinage metal complexes as promising abundant metal, solar fuel photosensitizers that offer exceptional tunability and photoredox properties.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Claire A Archer
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jack S Applebaum
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anushan Alagaratnam
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
15
|
Sun Y, Das S, Brown SR, Blevins ER, Qu F, Ward NA, Gregory SA, Boudreaux CM, Kim Y, Papish ET. Ruthenium pincer complexes for light activated toxicity: Lipophilic groups enhance toxicity. J Inorg Biochem 2023; 240:112110. [PMID: 36596265 PMCID: PMC10231263 DOI: 10.1016/j.jinorgbio.2022.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Nine ruthenium CNC pincer complexes (1-9) were tested for anticancer activity in cell culture under both dark and light conditions. These complexes included varied CNC pincer ligands including OH, OMe, or Me substituents on the pyridyl ring and wingtip N-heterocyclic carbene (NHC) groups which varied as methyl (Me), phenyl (Ph), mesityl (Mes), and 2,6-diisopropylphenyl (Dipp). The supporting ligands included acetonitrile, Cl, and 2,2'-bipyridine (bpy) donors. The synthesis of complexes 8 and 9 is described herein and are fully characterized by spectroscopic (1H NMR, IR, UV-Vis, MS) and analytical techniques. Single crystal X-ray diffraction results are reported herein for 8 and 9. The other complexes (1-7) are reported elsewhere. The four most lipophilic ruthenium complexes (6, 7, 8, and 9) showed the best activity vs. MCF7 cancer cells with complexes 6 and 9 showing cytotoxicity and complex 7 and 8 showing light activated photocytotoxicity. The distribution of these compounds between octanol and water is reported as log(Do/w) values, and increasing log(Do/w) values correlate roughly with improved activity vs. cancer cells. Overall, lipophilic wingtip groups (e.g. Ph, Mes, Dipp) on the NHC ring and a lower cationic charge (1+ vs. 2+) appears to be beneficial for improved anticancer activity.
Collapse
Affiliation(s)
- Yifei Sun
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Sanjit Das
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Spenser R Brown
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Emily R Blevins
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Fengrui Qu
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Nicholas A Ward
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Shawn Aiden Gregory
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Chance M Boudreaux
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Yonghyun Kim
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA.
| | - Elizabeth T Papish
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
16
|
Müller AV, Faustino LA, de Oliveira KT, Patrocinio AOT, Polo AS. Visible-Light-Driven Photocatalytic CO 2 Reduction by Re(I) Photocatalysts with N-Heterocyclic Substituents. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andressa V. Müller
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC─UFABC, Av. dos Estados 5001, 09210-580Santo André, São Paulo, Brazil
| | - Leandro A. Faustino
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia─UFU, Av. João Naves de Ávila 212, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Kleber T. de Oliveira
- Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís km 235, 13565-905São Carlos, São Paulo, Brazil
| | - Antonio O. T. Patrocinio
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia─UFU, Av. João Naves de Ávila 212, 38400-902Uberlândia, Minas Gerais, Brazil
| | - André S. Polo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC─UFABC, Av. dos Estados 5001, 09210-580Santo André, São Paulo, Brazil
| |
Collapse
|
17
|
Dual electronic effects achieving a high-performance Ni(II) pincer catalyst for CO 2 photoreduction in a noble-metal-free system. Proc Natl Acad Sci U S A 2022; 119:e2119267119. [PMID: 35998222 PMCID: PMC9436338 DOI: 10.1073/pnas.2119267119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A carbazolide-bis(NHC) NiII catalyst (1; NHC, N-heterocyclic carbene) for selective CO2 photoreduction was designed herein by a one-stone-two-birds strategy. The extended π-conjugation and the strong σ/π electron-donation characteristics (two birds) of the carbazolide fragment (one stone) lead to significantly enhanced activity for photoreduction of CO2 to CO. The turnover number (TON) and turnover frequency (TOF) of 1 were ninefold and eightfold higher than those of the reported pyridinol-bis(NHC) NiII complex at the same catalyst concentration using an identical Ir photosensitizer, respectively, with a selectivity of ∼100%. More importantly, an organic dye was applied to displace the Ir photosensitizer to develop a noble-metal-free photocatalytic system, which maintained excellent performance and obtained an outstanding quantum yield of 11.2%. Detailed investigations combining experimental and computational studies revealed the catalytic mechanism, which highlights the potential of the one-stone-two-birds effect.
Collapse
|
18
|
Kamada K, Jung J, Kametani Y, Wakabayashi T, Shiota Y, Yoshizawa K, Bae SH, Muraki M, Naruto M, Sekizawa K, Sato S, Morikawa T, Saito S. Importance of steric bulkiness of iridium photocatalysts with PNNP tetradentate ligands for CO 2 reduction. Chem Commun (Camb) 2022; 58:9218-9221. [PMID: 35899606 DOI: 10.1039/d2cc01701f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of Ir complexes has been developed as multifunctional photocatalysts for CO2 reduction to give HCO2H selectively. The catalytic activities and photophysical properties vary widely across the series, and the bulky group insertion resulted in the formation of HCO2H and CO with the catalyst turnover number of >10 400.
Collapse
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Yohei Kametani
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Seong Hee Bae
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Manami Muraki
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Masayuki Naruto
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Keita Sekizawa
- Toyota Central R&D Laboratories, Inc., Nagakute 480-1192, Japan
| | - Shunsuke Sato
- Toyota Central R&D Laboratories, Inc., Nagakute 480-1192, Japan
| | | | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. .,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
19
|
Boudreaux CM, Nugegoda D, Yao W, Le N, Frey NC, Li Q, Qu F, Zeller M, Webster CE, Delcamp JH, Papish ET. Low-Valent Cobalt(I) CNC Pincer Complexes as Catalysts for Light-Driven Carbon Dioxide Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chance M. Boudreaux
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Dinesh Nugegoda
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Wenzhi Yao
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Nghia Le
- Department of Chemistry, Mississippi State University, Hand Lab, Mississippi State, Mississippi 39762, United States
| | - Nathan C. Frey
- Department of Chemistry, Mississippi State University, Hand Lab, Mississippi State, Mississippi 39762, United States
| | - Qing Li
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, X-ray Crystallography, Wetherill 101B, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Hand Lab, Mississippi State, Mississippi 39762, United States
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
20
|
Wakabayashi T, Kamada K, Sekizawa K, Sato S, Morikawa T, Jung J, Saito S. Photocatalytic CO 2 Reduction Using an Iron–Bipyridyl Complex Supported by Two Phosphines for Improving Catalyst Durability. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Keita Sekizawa
- Toyota Central R&D Laboratories., Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Shunsuke Sato
- Toyota Central R&D Laboratories., Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Takeshi Morikawa
- Toyota Central R&D Laboratories., Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
21
|
Watanabe T, Saga Y, Kosugi K, Iwami H, Kondo M, Masaoka S. Visible light-driven CO 2 reduction with a Ru polypyridyl complex bearing an N-heterocyclic carbene moiety. Chem Commun (Camb) 2022; 58:5229-5232. [PMID: 35311868 DOI: 10.1039/d2cc00657j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Ru polypyridyl complex with an N-heterocyclic carbene ligand was successfully synthesised and characterised. The complex exhibited an intense absorption band in the visible-light region derived from the strong electron-donating character of the carbene ligand, and efficiently catalysed the visible light-driven CO2 reduction with the reaction rate of 36.7 h-1.
Collapse
Affiliation(s)
- Taito Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yutaka Saga
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kento Kosugi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hikaru Iwami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Mio Kondo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-4 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shigeyuki Masaoka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Yuan H, Du J, Ming M, Chen Y, Jiang L, Han Z. Combination of Organic Dye and Iron for CO 2 Reduction with Pentanuclear Fe 2Na 3 Purpurin Photocatalysts. J Am Chem Soc 2022; 144:4305-4309. [PMID: 35254816 DOI: 10.1021/jacs.1c13081] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecular photocatalysts designed with earth-abundant elements are rare and challenging in artificial photosynthesis study. Herein, we report a multimetallic Fe2Na3 purpurin (1) complex for the reduction of CO2 in DMF under visible-light irradiation. The photocatalytic system achieves 91% selectivity and 2625 ± 334 turnovers of CO in 120 h, which is among the highest reported for a noble-metal-free catalyst without an additional photosensitizer. UV-vis and electrochemical studies suggest that the mechanism involves subsequent reductions and protonations of 1 to generate [FeII2Na3((H)2PP)6]5- and [FeIII2Na3((H)2PP)6]3- as the active photocatalysts in CO2 reduction.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiehao Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ya Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
23
|
Zhang YQ, Li YY, Maseras F, Liao RZ. Mechanism and selectivity of photocatalyzed CO 2 reduction by a function-integrated Ru catalyst. Dalton Trans 2022; 51:3747-3759. [PMID: 35168249 DOI: 10.1039/d1dt03825g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phosphine-substituted Ru(II) polypyridyl complex, [RuII-(tpy)(pqn)(MeCN)]2+ (RuP), was disclosed to be an efficient photocatalyst for the reduction of CO2 to CO with excellent selectivity. In this work, density functional calculations were performed to elucidate the reaction mechanism and understand the origin of selectivity. The calculations showed that RuP was first excited to the singlet excited state, followed by intersystem crossing to produce a triplet species (3RuIII(L˙-)-S), which was then reduced by the sacrificial electron donor BIH to generate a RuII(L˙-) intermediate. The ligand of RuII(L˙-) was further reduced to produce a RuII(L2-) intermediate. The redox non-innocent nature of the tpy and pqn ligands endows the Ru center with an oxidation state of +2 after two one-electron reductions. RuII(L2-) nucleophilically attacks CO2, in which two electrons are delivered from the ligands to CO2, affording a RuII-COOH species after protonation. This is followed by the protonation of the hydroxyl moiety of RuII-COOH, coupled with the C-O bond cleavage, resulting in the formation of RuII-CO. Ultimately, CO is dissociated after two one-electron reductions. Protonation of RuII(L2-) to generate a RuII-hydride, a critical intermediate for the production of formate and H2, turns out to be kinetically less favorable, even though it is thermodynamically more favorable. This fact is due to the presence of a Ru2+ ion in the reduced catalyst, which disfavors its protonation.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Catalonia, Spain
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
24
|
Das S, Nugegoda D, Yao W, Qu F, Figgins MT, Lamb RW, Webster CE, Delcamp JH, Papish ET. Sensitized and Self‐Sensitized Photocatalytic Carbon Dioxide Reduction Under Visible Light with Ruthenium Catalysts Shows Enhancements with More Conjugated Pincer Ligands. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sanjit Das
- The University of Alabama Chemistry UNITED STATES
| | | | - Wenzhi Yao
- The University of Alabama Chemistry UNITED STATES
| | - Fengrui Qu
- The University of Alabama Chemistry UNITED STATES
| | | | | | | | | | - Elizabeth T Papish
- University of Alabama Chemistry 250 Hackberry Lane 35401 Tuscaloosa UNITED STATES
| |
Collapse
|
25
|
Thapa Magar R, Breen DJ, Schrage BR, Ziegler CJ, Rack JJ. Slow 3MLCT Formation Prior to Isomerization in Ruthenium Carbene Sulfoxide Complexes. Inorg Chem 2021; 60:16120-16127. [PMID: 34672621 DOI: 10.1021/acs.inorgchem.1c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of photochromic complexes with general formulas of [Ru(bpy)2(NHC-SR)]2+ and [Ru(bpy)2(NHC-S(O)R)]2+ were prepared and investigated by X-ray crystallography, electrochemistry, and ultrafast transient absorption spectroscopy {where bpy is 2,2'-bipyridine and NHC-SR and NHC-S(O)R are chelating thioether (-SR) and chelating sulfoxide [-S(O)R] N-heterocyclic carbene (NHC) ligands}. The only differences between these complexes are the nature of the R group on the sulfur (Me vs Ph), the identity of the carbene (imidazole vs benzimidazole), and the number of linker atoms in the chelate (CH2 vs C2H4). A total of 13 structures are presented {four [Ru(bpy)2(NHC-SR)]2+ complexes, four [Ru(bpy)2(NHC-S(O)R)]2+ complexes, and five uncomplexed ligands}, and these reveal the expected coordination geometry as predicted from other spectroscopy data. The data do not provide insight into the photochemical reactivity of these compounds. These carbene ligands do impart stability with respect to ground state and excited state ligand substitution reactions. Bulk photolysis reveals that these complexes undergo efficient S → O isomerization, with quantum yields ranging from 0.24 to 0.87. The excited state reaction occurs with a time constant ranging from 570 ps to 1.9 ns. Electrochemical studies reveal an electron transfer-triggered isomerization, and voltammograms are consistent with an ECEC (electrochemical-chemical electrochemical-chemical) reaction mechanism. The carbene facilitates an unusually slow S → O isomerization and an unusally fast O → S isomerization. Temperature studies reveal a small and negative entropy of activation for the O → S isomerization, suggesting an associative transition state in which the sulfoxide simply slides along the S-O bond during isomerization. Ultrafast studies provide evidence of an active role of the carbene in the excited state dynamics of these complexes.
Collapse
Affiliation(s)
- Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87111, United States
| | - Douglas J Breen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87111, United States
| | - Briana R Schrage
- Knight Chemical Laboratory, Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Christopher J Ziegler
- Knight Chemical Laboratory, Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87111, United States
| |
Collapse
|
26
|
Huang C, Liu J, Huang HH, Ke Z. Recent progress in electro- and photo-catalytic CO2 reduction using N-heterocyclic carbene transition metal complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Hansen HB, Wadepohl H, Enders M. The Stronger the Better: Donor Substituents Push Catalytic Activity of Molecular Chromium Olefin Polymerization Catalysts. Chemistry 2021; 27:11084-11093. [PMID: 34018643 PMCID: PMC8453878 DOI: 10.1002/chem.202101586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/06/2022]
Abstract
The donor strength of bifunctional pyridine-cyclopentadienyl ligands was altered systematically by the introduction of donating groups in the para-position of the pyridine. In the resulting chromium complexes an almost linear correlation between donor strength and the nitrogen-chromium distance as well as the electronic absorption maximum is experimentally observed. The connection of electron-donating groups in the ligand backbone leads to an efficient transfer of the electronic influences to the catalytically active metal centre without restricting it through steric effects. Therefore, catalytic olefin polymerization activity, which is already very high for the previously studied catalysts, increase considerably by attaching para-amino groups to the chelating pyridine or quinoline, respectively. Combining electron-rich indenyl ligands with para-amino substituted pyridines lead to the highest catalytic activities observed so far for this class of organo chromium olefin polymerisation catalysts. The resulting polymers are of ultra-high molecular weight and the ability of the catalysts to incorporate co-monomers is also very high.
Collapse
Affiliation(s)
- Helge-Boj Hansen
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Markus Enders
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
28
|
Shirley H, Sexton TM, Liyanage NP, Perkins MA, Autry SA, McNamara LE, Hammer NI, Parkin SR, Tschumper GS, Delcamp JH. Probing the Effects of Electron Deficient Aryl Substituents and a π‐System Extended NHC Ring on the Photocatalytic CO
2
Reduction Reaction with Re‐pyNHC‐Aryl Complexes**. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hunter Shirley
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| | - Thomas More Sexton
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| | - Nalaka P. Liyanage
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| | - Morgan A. Perkins
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| | - Shane A. Autry
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| | - Louis E. McNamara
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| | - Sean R. Parkin
- Department of Chemistry University of Kentucky 125 Chemistry/Physics Building Lexington KY 40506–0055 USA
| | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677–1848 USA
| |
Collapse
|
29
|
Wang Y, Zhang B, Guo S. Transition Metal Complexes Supported by N‐Heterocyclic Carbene‐Based Pincer Platforms: Synthesis, Reactivity and Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yidan Wang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Bo Zhang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Shuai Guo
- Department of Chemistry Capital Normal University Beijing 100048 China
| |
Collapse
|
30
|
Kynman AE, Lau S, Dowd SO, Krämer T, Chaplin AB. Oxidative Addition of Biphenylene and Chlorobenzene to a Rh(CNC) Complex. Eur J Inorg Chem 2020; 2020:3899-3906. [PMID: 33328794 PMCID: PMC7702176 DOI: 10.1002/ejic.202000780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 01/10/2023]
Abstract
The synthesis and organometallic chemistry of rhodium(I) complex [Rh(CNC-Me)(SOMe2)][BArF 4], featuring NHC-based pincer and labile dimethyl sulfoxide ligands, is reported. This complex reacts with biphenylene and chlorobenzene to afford products resulting from selective C-C and C-Cl bond activation, [Rh(CNC-Me)(2,2'-biphenyl)(OSMe2)][BArF 4] and [Rh(CNC-Me)(Ph)Cl(OSMe2)][BArF 4], respectively. A detailed DFT-based computational analysis indicates that C-H bond oxidative addition of these substrates is kinetically competitive, but in all cases endergonic: contrasting the large thermodynamic driving force calculated for insertion of the metal into the C-C and C-Cl bonds, respectively. Under equivalent conditions the substrates are not activated by the phosphine-based pincer complex [Rh(PNP-iPr)(SOMe2)][BArF 4].
Collapse
Affiliation(s)
- Amy E. Kynman
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Samantha Lau
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Sean O. Dowd
- Department of ChemistryMaynooth UniversityCo. KildareMaynoothIreland
| | - Tobias Krämer
- Department of ChemistryMaynooth UniversityCo. KildareMaynoothIreland
- Hamilton InstituteMaynooth UniversityCo. KildareMaynoothIreland
| | - Adrian B. Chaplin
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
31
|
Shirley H, Figgins MT, Boudreaux CM, Liyanage NP, Lamb RW, Webster CE, Papish ET, Delcamp JH. Impact of the Dissolved Anion on the Electrocatalytic Reduction of CO
2
to CO with Ruthenium CNC Pincer Complexes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hunter Shirley
- Department of Chemistry and Biochemistry Coulter Hall The University of Mississippi MS 38677 USA
| | - Matthew T. Figgins
- Department of Chemistry Hand Lab Mississippi State University Mississippi MS 39762 USA
| | - Chance M. Boudreaux
- Department of Chemistry and Biochemistry Shelby Hall The University of Alabama Tuscaloosa AL 35487 USA
| | - Nalaka P. Liyanage
- Department of Chemistry and Biochemistry Coulter Hall The University of Mississippi MS 38677 USA
| | - Robert W. Lamb
- Department of Chemistry Hand Lab Mississippi State University Mississippi MS 39762 USA
| | - Charles Edwin Webster
- Department of Chemistry Hand Lab Mississippi State University Mississippi MS 39762 USA
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry Shelby Hall The University of Alabama Tuscaloosa AL 35487 USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry Coulter Hall The University of Mississippi MS 38677 USA
| |
Collapse
|
32
|
Danopoulos AA, Braunstein P, Saßmannshausen J, Pugh D, Wright JA. “Pincer” Pyridine–Dicarbene–Iridium and ‐Ruthenium Complexes and Derivatives Thereof. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas A. Danopoulos
- Inorganic Chemistry Laboratory Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Zografou 15771 Athens Greece
| | - Pierre Braunstein
- CNRS, Chimie UMR 7177 Laboratoire de Chimie de Coordination Université de Strasbourg 4 rue Blaise Pascal 67081 Strasbourg Cedex France
| | - Jörg Saßmannshausen
- Guy's Hospital Guy's and St Thomas' NHS Foundation Trust and King's College London 16th Floor Tower Wing SE1 9RT London UK
| | - David Pugh
- Department of Chemistry King's College London Britannia House, 7 Trinity Street SE1 1DB London UK
| | - Joseph A. Wright
- Energy Materials Laboratory School of Chemistry University of East Anglia Norwich Research Park NR4 7TJ Norwich UK
| |
Collapse
|
33
|
Stratakes BM, Miller AJM. H 2 Evolution at an Electrochemical “Underpotential” with an Iridium-Based Molecular Photoelectrocatalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bethany M. Stratakes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
34
|
Das S, Nugegoda D, Qu F, Boudreaux CM, Burrow PE, Figgins MT, Lamb RW, Webster CE, Delcamp JH, Papish ET. Structure Function Relationships in Ruthenium Carbon Dioxide Reduction Catalysts with CNC Pincers Containing Donor Groups. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sanjit Das
- Department of Chemistry and Biochemistry, Shelby Hall The University of Alabama 35487 Tuscaloosa AL USA
| | - Dinesh Nugegoda
- Department of Chemistry and Biochemistry, Coulter Hall The University of Mississippi 38677 University MS USA
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, Shelby Hall The University of Alabama 35487 Tuscaloosa AL USA
| | - Chance M. Boudreaux
- Department of Chemistry and Biochemistry, Shelby Hall The University of Alabama 35487 Tuscaloosa AL USA
| | - Phillip E. Burrow
- Department of Chemistry and Biochemistry, Coulter Hall The University of Mississippi 38677 University MS USA
| | - Matthew T. Figgins
- Department of Chemistry, Hand Lab Mississippi State University 39762 Mississippi State MS USA
| | - Robert W. Lamb
- Department of Chemistry, Hand Lab Mississippi State University 39762 Mississippi State MS USA
| | - Charles Edwin Webster
- Department of Chemistry, Hand Lab Mississippi State University 39762 Mississippi State MS USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, Coulter Hall The University of Mississippi 38677 University MS USA
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, Shelby Hall The University of Alabama 35487 Tuscaloosa AL USA
| |
Collapse
|
35
|
Vukadinovic Y, Burkhardt L, Päpcke A, Miletic A, Fritsch L, Altenburger B, Schoch R, Neuba A, Lochbrunner S, Bauer M. When Donors Turn into Acceptors: Ground and Excited State Properties of FeII Complexes with Amine-Substituted Tridentate Bis-imidazole-2-ylidene Pyridine Ligands. Inorg Chem 2020; 59:8762-8774. [DOI: 10.1021/acs.inorgchem.0c00393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yannik Vukadinovic
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Ayla Päpcke
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Anabel Miletic
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lorena Fritsch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Björn Altenburger
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Adam Neuba
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
36
|
Manbeck GF, Polyansky DE, Fujita E. Comprehensive Mechanisms of Electrocatalytic CO2 Reduction by [Ir(bip)(ppy)(CH3CN)](PF6)2. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gerald F. Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dmitry E. Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
37
|
Kamada K, Jung J, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid. J Am Chem Soc 2020; 142:10261-10266. [DOI: 10.1021/jacs.0c03097] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Keita Sekizawa
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Shunsuke Sato
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Takeshi Morikawa
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Shunichi Fukuzumi
- Faculty of Science and Engineering, Meijo University, Nagoya 468-8502, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
38
|
Arikawa Y, Tabata I, Miura Y, Tajiri H, Seto Y, Horiuchi S, Sakuda E, Umakoshi K. Photocatalytic CO 2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes. Chemistry 2020; 26:5603-5606. [PMID: 32012368 DOI: 10.1002/chem.201905840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Indexed: 12/29/2022]
Abstract
Photocatalytic CO2 reduction using a ruthenium photosensitizer, a sacrificial reagent 1,3-dimethyl-2-(o-hydroxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole (BI(OH)H), and a ruthenium catalyst were carried out. The catalysts contain a pincer ligand, 2,6-bis(alkylimidazol-2-ylidene)pyridine (CNC) and a bipyridine (bpy). The photocatalytic reaction system resulted in HCOOH as a main product (selectivity 70-80 %), with a small amount of CO, and H2 . Comparative experiments (a coordinated ligand (NCMe vs. CO) and substituents (tBu vs. Me) of the CNC ligand in the catalyst) were performed. The turnover number (TONHCOOH ) of carbonyl-ligated catalysts are higher than those of acetonitrile-ligated catalysts, and the carbonyl catalyst with the smaller substituents (Me) reached TONHCOOH =5634 (24 h), which is the best performance among the experiments.
Collapse
Affiliation(s)
- Yasuhiro Arikawa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Itoe Tabata
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Yukari Miura
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Hiroki Tajiri
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Yudai Seto
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Shinnosuke Horiuchi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Eri Sakuda
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| |
Collapse
|
39
|
Shirley H, Sexton TM, Liyanage NP, Palmer CZ, McNamara LE, Hammer NI, Tschumper GS, Delcamp JH. Effect of “X” Ligands on the Photocatalytic Reduction of CO
2
to CO with Re(pyridylNHC‐CF
3
)(CO)
3
X Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hunter Shirley
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall 38677 University MS USA
| | - Thomas More Sexton
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall 38677 University MS USA
| | - Nalaka P. Liyanage
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall 38677 University MS USA
| | - C. Zachary Palmer
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall 38677 University MS USA
| | - Louis E. McNamara
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall 38677 University MS USA
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall 38677 University MS USA
| | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall 38677 University MS USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall 38677 University MS USA
| |
Collapse
|
40
|
Yao W, Das S, DeLucia NA, Qu F, Boudreaux CM, Vannucci AK, Papish ET. Determining the Catalyst Properties That Lead to High Activity and Selectivity for Catalytic Hydrodeoxygenation with Ruthenium Pincer Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wenzhi Yao
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Sanjit Das
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Nicholas A. DeLucia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Chance M. Boudreaux
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Aaron K. Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|