1
|
Hara M, Hirooka Y, Iwasaki T, Nozaki K. Synthesis, Structure, and Optical Property of Tris(biaryldiyl)metal Complexes Consisting of Group 9 Elements. Inorg Chem 2024. [PMID: 39465498 DOI: 10.1021/acs.inorgchem.4c03514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We report the synthesis and characterization of tris(biphenyl-2,2'-diyl)metal complexes of trivalent group 9 elements (1M, M = Co, Rh, Ir) and their nonplanarly π-extended analogs, tris(1,1'-binaphthyl-2,2'-diyl)metal complexes (2M, M = Rh, Ir). Single crystal X-ray crystallography reveals the distorted octahedral geometry with an approximate C3 symmetry of trianionic complexes 1M (M = Co, Rh, Ir) and 2M (M = Rh, Ir), which are contacted by three Li+ ions in the crystal. Complex 1Ir exhibits yellow luminescence in THF with a photoluminescence quantum yield (ΦPL) of up to 0.73, along with a distinctive photophysical property, namely, a concentration dependence of the emission wavelength from 530 to 580 nm. This is a characteristic property of 1Ir and has not been observed in its isoelectronic analog, tris(2-phenylpyridinato)iridium(III) (Ir(ppy)3). The concentration-dependent optical properties originate from the dissociation equilibria of Li+ ions from the anionic chromophore. Complex 2Ir also exhibits luminescence at 715 nm in THF, with a notable bathochromic shift from 1Ir through the π-extension. The findings offer insights into the photophysical properties of homoleptic organo-transition metal complexes, providing the foundation for the design of related transition metal complexes.
Collapse
Affiliation(s)
- Masaki Hara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuko Hirooka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takanori Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Tatarin SV, Bezzubov SI. Synthesis, Structure, and Properties of Nontrivial Iridium(III) Complexes Based on Anthracene-Decorated Benzimidazole Ligand. Inorg Chem 2024; 63:18642-18654. [PMID: 39321335 DOI: 10.1021/acs.inorgchem.4c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Reactions of iridium trichloride hydrate with bulky 2-(9-anthracenyl)-1-phenyl-benzimidazole (anbi) in the presence of N-donor ligands afforded a number of unique noncyclometalated complexes, while attempts to prepare a common μ-chloro-bridged bis-cyclometalated dimer systematically gave a monocyclometalated complex cis-[Ir(C,N-anbi)(N-anbi)Cl2] instead. The obtained complexes were characterized by 1H NMR, high-resolution mass spectrometry, single-crystal and powder X-ray diffraction, UV-vis spectroscopy, and cyclic voltammetry. The noncyclometalated complexes fac-[Ir(N-anbi)(N^N)Cl3)], where N^N are 4,4'-disubstituted 2,2'-bipyridines, are octahedral and contain the anthracene and 2,2'-bipyridine units in a close cofacial arrangement. These complexes were found to be exceptionally inert to the chloride ligand exchange even in the presence of silver triflate, forming a rare trinuclear Ir-μ-Cl3-Ag-μ-Cl3-Ir structure instead. In the monocyclometalated complex, the Ir(III) ion is pentacoordinated in a rare square-pyramidal geometry, where the bulky anthracene fragment is involved in the steric shielding of the metal center. This is in line with the results of gas-phase density functional theory calculations, demonstrating that the experimentally observed structure is energetically most preferable. The monocyclometalated complex is deeply colored due to intense charge-transfer absorption bands in the range 450-650 nm with ε = 2000-5000 M-1 cm-1, superior to the noncyclometalated complexes. The synthesis, structures, and properties of the new complexes are discussed in the context of the related mono-, bis-, and noncyclometalated iridium(III) compounds.
Collapse
Affiliation(s)
- Sergei V Tatarin
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Stanislav I Bezzubov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
3
|
Lee B, Pabst TP, Hierlmeier G, Chirik PJ. Exploring the Effect of Pincer Rigidity on Oxidative Addition Reactions with Cobalt(I) Complexes. Organometallics 2023; 42:708-718. [PMID: 37223209 PMCID: PMC10201995 DOI: 10.1021/acs.organomet.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Cobalt complexes containing the 2,6-diaminopyridine-substituted PNP pincer (iPrPNMeNP = 2,6-(iPr2PNMe)2(C5H3N)) were synthesized. A combination of solid-state structures and investigation of the cobalt(I)/(II) redox potential established a relatively rigid and electron-donating chelating ligand as compared to iPrPNP (iPrPNP = 2,6-(iPr2PCH2)2(C5H3N)). Based on a buried volume analysis, the two pincer ligands are sterically indistinguishable. Nearly planar, diamagnetic, four-coordinate complexes were observed independent of the field strength (chloride, alkyl, aryl) of the fourth ligand completing the coordination sphere of the metal. Computational studies supported a higher barrier for C-H oxidative addition, largely a result of the increased rigidity of the pincer. The increased oxidative addition barrier resulted in stabilization of (iPrPNMeNP)Co(I) complexes, enabling the characterization of the cobalt boryl and the cobalt hydride dimer by X-ray crystallography. Moreover, (iPrPNMeNP)CoMe served as an efficient precatalyst for alkene hydroboration likely because of the reduced propensity to undergo oxidative addition, demonstrating that reactivity and catalytic performance can be tuned by rigidity of pincer ligands.
Collapse
Affiliation(s)
- Boran Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Emerson-King J, Pan S, Gyton MR, Tonner-Zech R, Chaplin AB. Synthesis of a rhodium(III) dinitrogen complex using a calix[4]arene-based diphosphine ligand. Chem Commun (Camb) 2023; 59:2150-2152. [PMID: 36727440 PMCID: PMC9933454 DOI: 10.1039/d2cc06837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis and characterisation of the rhodium(III) dinitrogen complex [Rh(2,2'-biphenyl)(CxP2)(N2)]+ are described, where CxP2 is a trans-spanning calix[4]arene-based diphosphine and the dinitrogen ligand is projected into the cavity of the macrocycle.
Collapse
Affiliation(s)
- Jack Emerson-King
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Sudip Pan
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität LeipzigLinnéstraße 2LeipzigD-04103Germany
| | - Matthew R. Gyton
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Ralf Tonner-Zech
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität LeipzigLinnéstraße 2LeipzigD-04103Germany
| | - Adrian B. Chaplin
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
5
|
Poole EW, Bustos I, Hood TM, Smart JE, Chaplin AB. Iridium complexes of an ortho-trifluoromethylphenyl substituted PONOP pincer ligand. Dalton Trans 2023; 52:1096-1104. [PMID: 36602231 PMCID: PMC9872493 DOI: 10.1039/d2dt03608h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis and iridium coordination chemistry of a new pyridine-based phosphinito pincer ligand 2,6-(ArF2PO)2C5H3N (PONOP-ArF; ArF = 2-(CF3)C6H4) are described, where the P-donors have ortho-trifluoromethylphenyl substituents. The iridium(III) 2,2'-biphenyl (biph) derivative [Ir(PONOP-ArF)(biph)Cl] was obtained by reaction with [Ir(biph)(COD)Cl]2 (COD = 1,5-cyclooctadiene) and subsequent halide ion abstraction enabled isolation of [Ir(PONOP-ArF)(biph)]+ which features an Ir ← F-C bonding interaction in the solid state. Hydrogenolysis of the biphenyl ligand and formation of [Ir(PONOP-ArF)(H)2]+ was achieved by prolonged reaction of [Ir(PONOP-ArF)(biph)]+ with dihydrogen. This transformation paved the way for isolation and crystallographic characterisation of low valent iridium derivatives through treatment of the dihydride with tert-butylethylene (TBE). The iridium(I) π-complex [Ir(PONOP-ArF)(TBE)]+ is thermally stable but substitution of TBE can be achieved by reaction with carbon monoxide. The solid-state structure of the mono-carbonyl product [Ir(PONOP-ArF)(CO)]+ is notable for an intermolecular anagostic interaction between the metal centre and a pentane molecule which co-crystallises within a cleft defined by two aryl phosphine substituents.
Collapse
Affiliation(s)
- Ethan W. Poole
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventry CV4 7ALUK
| | - Itxaso Bustos
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventry CV4 7ALUK,Facultad de Química de San Sebastián, Universidad del País Vasco (UPV/EHU)Apdo. 107220080 San SebastiánSpain
| | - Thomas M. Hood
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventry CV4 7ALUK
| | - Jennifer E. Smart
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventry CV4 7ALUK
| | - Adrian B. Chaplin
- Department of Chemistry, University of WarwickGibbet Hill RoadCoventry CV4 7ALUK
| |
Collapse
|
6
|
Carpenter SH, Billow BS, Tondreau AM. Diastereoselective Template Synthesis on Iron and Uranium. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Brennan S. Billow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Aaron M. Tondreau
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
7
|
Hood TM, Chaplin AB. Synthesis and reactivity of iridium complexes of a macrocyclic PNP pincer ligand. Dalton Trans 2021; 50:2472-2482. [PMID: 33511383 DOI: 10.1039/d0dt04303f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Having recently reported on the synthesis and rhodium complexes of the novel macrocyclic pincer ligand PNP-14, which is derived from lutidine and features terminal phosphine donors trans-substituted with a tetradecamethylene linker (Dalton Trans., 2020, 49, 2077-2086 and Dalton Trans., 2020, 49, 16649-16652), we herein describe our findings critically examining the chemistry of iridium homologues. The five-coordinate iridium(i) and iridium(iii) complexes [Ir(PNP-14)(η2:η2-cyclooctadiene)][BArF4] and [Ir(PNP-14)(2,2'-biphenyl)][BArF4] are readily prepared and shown to be effective precursors for the generation of iridium(iii) dihydride dihydrogen, iridium(i) bis(ethylene), and iridium(i) carbonyl derivatives that highlight important periodic trends by comparison to rhodium counterparts. Reaction of [Ir(PNP-14)H2(H2)][BArF4] with 3,3-dimethylbutene induced triple C-H bond activation of the methylene chain, yielding an iridium(iii) allyl hydride derivative [Ir(PNP-14*)H][BArF4], whilst catalytic homocoupling of 3,3-dimethylbutyne into Z-tBuC[triple bond, length as m-dash]CCHCHtBu could be promoted at RT by [Ir(PNP-14)(η2:η2-cyclooctadiene)][BArF4] (TOFinitial = 28 h-1). The mechanism of the latter is proposed to involve formation and direct reaction of a vinylidene derivative with HC[triple bond, length as m-dash]CtBu outside of the macrocyclic ring and this suggestion is supported experimentally by isolation and crystallographic characterisation of a catalyst deactivation product.
Collapse
Affiliation(s)
- Thomas M Hood
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Adrian B Chaplin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
8
|
Kynman AE, Lau S, Dowd SO, Krämer T, Chaplin AB. Oxidative Addition of Biphenylene and Chlorobenzene to a Rh(CNC) Complex. Eur J Inorg Chem 2020; 2020:3899-3906. [PMID: 33328794 PMCID: PMC7702176 DOI: 10.1002/ejic.202000780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 01/10/2023]
Abstract
The synthesis and organometallic chemistry of rhodium(I) complex [Rh(CNC-Me)(SOMe2)][BArF 4], featuring NHC-based pincer and labile dimethyl sulfoxide ligands, is reported. This complex reacts with biphenylene and chlorobenzene to afford products resulting from selective C-C and C-Cl bond activation, [Rh(CNC-Me)(2,2'-biphenyl)(OSMe2)][BArF 4] and [Rh(CNC-Me)(Ph)Cl(OSMe2)][BArF 4], respectively. A detailed DFT-based computational analysis indicates that C-H bond oxidative addition of these substrates is kinetically competitive, but in all cases endergonic: contrasting the large thermodynamic driving force calculated for insertion of the metal into the C-C and C-Cl bonds, respectively. Under equivalent conditions the substrates are not activated by the phosphine-based pincer complex [Rh(PNP-iPr)(SOMe2)][BArF 4].
Collapse
Affiliation(s)
- Amy E. Kynman
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Samantha Lau
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Sean O. Dowd
- Department of ChemistryMaynooth UniversityCo. KildareMaynoothIreland
| | - Tobias Krämer
- Department of ChemistryMaynooth UniversityCo. KildareMaynoothIreland
- Hamilton InstituteMaynooth UniversityCo. KildareMaynoothIreland
| | - Adrian B. Chaplin
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
9
|
Li N, Zhu WJ, Huang JJ, Hao XQ, Gong JF, Song MP. Chiral NCN Pincer Iridium(III) Complexes with Bis(imidazolinyl)phenyl Ligands: Synthesis and Application in Enantioselective C–H Functionalization of Indoles with α-Aryl-α-diazoacetates. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nan Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Wen-Jing Zhu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Juan-Juan Huang
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Xin-Qi Hao
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jun-Fang Gong
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Mao-Ping Song
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
10
|
Gyton MR, Kynman AE, Leforestier B, Gallo A, Lewandowski JR, Chaplin AB. Isolation and structural characterisation of rhodium(iii) η 2-fluoroarene complexes: experimental verification of predicted regioselectivity. Dalton Trans 2020; 49:5791-5793. [PMID: 32314773 DOI: 10.1039/d0dt01137a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isolation and solid-state characterisation of complexes featuring partially coordinated benzene, fluorobenzene and all three isomers of difluorobenzene are described. Supported by a DFT analysis, this well-defined homologous series demonstrates the preference for η2-coordination of fluoroarenes via the HC[double bond, length as m-dash]CH sites adjacent to a fluorine substituent.
Collapse
Affiliation(s)
- Matthew R Gyton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Storey CM, Kalpokas A, Gyton MR, Krämer T, Chaplin AB. A shape changing tandem Rh(CNC) catalyst: preparation of bicyclo[4.2.0]octa-1,5,7-trienes from terminal aryl alkynes. Chem Sci 2020; 11:2051-2057. [PMID: 32180927 PMCID: PMC7053420 DOI: 10.1039/c9sc06153c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
The preparation of a range of tetraaryl-substituted bicyclo[4.2.0]octa-1,5,7-trienes using a one-pot procedure starting from terminal aryl alkynes and catalysed by a rhodium(i) complex is reported. This synthesis proceeds by a reaction sequence involving head-to-tail homocoupling of the terminal alkyne and zipper annulation of the resulting gem-enyne. The rhodium catalyst employed is notable for the incorporation of a flexible NHC-based pincer ligand, which is suggested to interconvert between mer- and fac-coordination modes to fulfil the orthogonal mechanistic demands of the two transformations. Evidence for this interesting auto-tandem action of the catalyst is provided by reactions of the precatalyst with model substrates, corroborating proposed intermediates in both component cycles, and norbornadiene, which reversibly captures the change in pincer ligand coordination mode, along with a DFT-based computational analysis.
Collapse
Affiliation(s)
- Caroline M Storey
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Audrius Kalpokas
- Department of Chemistry , Maynooth University , Maynooth , Co. Kildare , Ireland .
| | - Matthew R Gyton
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Tobias Krämer
- Department of Chemistry , Maynooth University , Maynooth , Co. Kildare , Ireland .
- Hamilton Institute , Maynooth University , Maynooth , Co. Kildare , Ireland
| | - Adrian B Chaplin
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| |
Collapse
|
12
|
Hood TM, Gyton MR, Chaplin AB. Synthesis and rhodium complexes of macrocyclic PNP and PONOP pincer ligands. Dalton Trans 2020; 49:2077-2086. [PMID: 31912067 DOI: 10.1039/c9dt04474d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of macrocyclic variants of commonly employed phosphine-based pincer ligands derived from lutidine (PNP-14) and 2,6-dihydroxypyridine (PONOP-14) is described, where the P-donors are trans-substituted with a tetradecamethylene linker. This was accomplished using an eight-step procedure involving borane protection, ring-closing olefin metathesis, chromatographic separation from the cis-substituted diastereomers, and borane deprotection. The rhodium coordination chemistry of these ligands has been explored, aided by the facile synthesis of 2,2'-biphenyl (biph) adducts [Rh(PNP-14)(biph)][BArF4] and [Rh(PONOP-14)(biph)][BArF4] (ArF = 3,5-(CF3)2C6H3). Subsequent hydrogenolysis enabled generation of dihydrogen, ethylene and carbonyl derivatives; notably the ν(CO) bands of the carbonyl complexes provide a means to compare the donor properties of the new pincer ligands with established acyclic congeners.
Collapse
Affiliation(s)
- Thomas M Hood
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
13
|
Hood TM, Chaplin AB. Reactions of Rh(PNP) pincer complexes with terminal alkynes: homocoupling through a ring or not at all. Dalton Trans 2020; 49:16649-16652. [DOI: 10.1039/d0dt03550e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
“Switching on” a metal's capacity to promote terminal alkyne coupling reactions using a macrocyclic pincer ligand.
Collapse
Affiliation(s)
- Thomas M. Hood
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | | |
Collapse
|
14
|
Cui Y, Ge Y, Li Y, Tao J, Yao J, Dong Y. Single-ion magnet behavior of two pentacoordinate CoII complexes with a pincer ligand 2,6-bis(imidazo[1,5-a] pyridin-3-yl)pyridine. Struct Chem 2019. [DOI: 10.1007/s11224-019-01429-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Gyton MR, Leforestier B, Chaplin AB. Rhodium(I) Pincer Complexes of Nitrous Oxide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew R. Gyton
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Baptiste Leforestier
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Adrian B. Chaplin
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
16
|
Gyton MR, Leforestier B, Chaplin AB. Rhodium(I) Pincer Complexes of Nitrous Oxide. Angew Chem Int Ed Engl 2019; 58:15295-15298. [PMID: 31513331 PMCID: PMC6856677 DOI: 10.1002/anie.201908333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 12/04/2022]
Abstract
The synthesis of two well-defined rhodium(I) complexes of nitrous oxide (N2 O) is reported. These normally elusive adducts are stable in the solid state and persist in solution at ambient temperature, enabling comprehensive structural interrogation by 15 N NMR and IR spectroscopy, and single-crystal X-ray diffraction. These methods evidence coordination of N2 O through the terminal nitrogen atom in a linear fashion and are supplemented by a computational energy decomposition analysis, which provides further insights into the nature of the Rh-N2 O interaction.
Collapse
Affiliation(s)
- Matthew R. Gyton
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | - Adrian B. Chaplin
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|