1
|
Charman RSC, Liptrot DJ. Synthesis, Structures, and Reactivity of Organostannanides and Organogermanides of Copper(I). Chempluschem 2024:e202400439. [PMID: 39140471 DOI: 10.1002/cplu.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Organogermane and organostannane compounds are valuable reagents in cross coupling reactions, and copper(I) germanide and stannanide complexes can provide convenient access to these compounds. This review presents the chemistry of copper(I) germanide and stannanide complexes, with a particular focus on systems at the frontier of organic and inorganic chemistry where structural characterisation of coordination complexes facilitates rationalisation of organic mechanisms. These species show both similarities to, and significant divergences from their lighter silanide congeners. For example, they are all viable sources of the relevant organotetranide anion, but in the cases of both germanium and tin, the tetranides can be accessed via direct deprotonation of the corresponding tetranes, a reaction unknown for silicon. Further divergences between copper(I) germanides and stannanides are highlighted; whilst both can be used in productive organic transformations to access organotetranes, catalytic reactions are only reported for germanium. The rather striking ability of triphenylstannanides to acts as sources of the phenyl anion are discussed; the mechanism of this reaction is still subject to discussion, but its absence in the chemistry of germanium and silicon is now well-rationalised. We conclude this review by considering potential research directions in the synthesis and exploitation of copper(I) germanides and stannanides.
Collapse
Affiliation(s)
- Rex S C Charman
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - David J Liptrot
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
2
|
Rutz PM, Kleeberg C. Copper Catalyzed Borylation of Alkynes: An Experimental Mechanistic Study. Chem Asian J 2024; 19:e202400286. [PMID: 38738792 DOI: 10.1002/asia.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
The copper catalyzed hydroboration of alkynes with B2pin2 was studied by in detail studies of individual relevant steps along the catalytic pathway. A number of reaction steps were retraced by in situ NMR spectroscopy as well as central intermediates and side-products were isolated and comprehensively characterized. A copper boryl complex is central to the catalytic process by inserting the terminal alkyne substrate into the B-Cu bond. The selectivity of this step - depending on the NHC auxiliary ligand - determines the α/β selectivity observed in the product. The latter complex is protonated by the auxiliary alcohol reagent resulting in hydroboration product formation and formation of a Cu alkoxido complex. Reaction of the latter with B2pin2 results in the regeneration of the central copper boryl complex. This alcoholysis step depends on the acidity of the alcohol, in particular on the relative acidity of the alcohol vs. the alkyne substrate. A number of side reactions leading to the hydrogenation product of the alkyne substrate and a bis hydroborated product were identified and studied in some detail. It is concluded that the performance of a particular catalytic system depends crucially on the relative acidities of the reagents and generalizations may be difficult.
Collapse
Affiliation(s)
- Philipp M Rutz
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
3
|
See M, Ríos P, Tilley TD. Diborane Reductions of CO 2 and CS 2 Mediated by Dicopper μ-Boryl Complexes of a Robust Bis(phosphino)-1,8-naphthyridine Ligand. Organometallics 2024; 43:1180-1189. [PMID: 38817536 PMCID: PMC11134609 DOI: 10.1021/acs.organomet.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
A dinucleating 1,8-naphthyridine ligand featuring fluorene-9,9-diyl-linked phosphino side arms (PNNPFlu) was synthesized and used to obtain the cationic dicopper complexes 2, [(PNNPFlu)Cu2(μ-Ph)][NTf2]; [NTf2] = bis(trifluoromethane)sulfonimide, 6, [(PNNPFlu)Cu2(μ-CCPh)][NTf2], and 3, [(PNNPFlu)Cu2(μ-OtBu)][NTf2]. Complex 3 reacted with diboranes to afford dicopper μ-boryl species (4, with μ-Bcat; cat = catecholate and 5, with μ-Bpin; pin = pinacolate) that are more reactive in C(sp)-H bond activations and toward activations of CO2 and CS2, compared to dicopper μ-boryl complexes supported by a 1,8-naphthyridine-based ligand with di(pyridyl) side arms. The solid-state structures and DFT analysis indicate that the higher reactivities of 4 and 5 relate to changes in the coordination sphere of copper, rather than to perturbations on the Cu-B bonding interactions. Addition of xylyl isocyanide (CNXyl) to 4 gave 7, [(PNNPFlu)Cu2(μ-Bcat)(CNXyl)][NTf2], demonstrating that the lower coordination number at copper is chemically significant. Reactions of 4 and 5 with CO2 yielded the corresponding dicopper borate complexes (8, [(PNNPFlu)Cu2(μ-OBcat)][NTf2]; 9, [(PNNPFlu)Cu2(μ-OBpin)][NTf2]), with 4 demonstrating catalytic reduction in the presence of excess diborane. Related reactions of 4 and 5 with CS2 provided insertion products 10, {[(PNNPFlu)Cu2]2[μ-S2C(Bcat)2]}[NTf2]2, and 11, [(PNNPFlu)Cu2(μ,κ2-S2CBpin)][NTf2], respectively. These products feature Cu-S-C-B linkages analogous to those of proposed CO2 insertion intermediate.
Collapse
Affiliation(s)
- Matthew
S. See
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Pablo Ríos
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO−CINQA), CSIC and Universidad
de Sevilla, Sevilla 41092, Spain
| | - T. Don Tilley
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Charman RSC, Hobson JA, Jackson RA, Mahon MF, Neale SE, Liptrot DJ. Acyclic Boryl Complexes of Copper(I). Chemistry 2024; 30:e202302704. [PMID: 37818674 DOI: 10.1002/chem.202302704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/12/2023]
Abstract
Reaction of (6-Dipp)CuOtBu (6-Dipp=C{NDippCH2 }2 CH2 , Dipp=2,6-iPr2 C6 H3 ) with B2 (OMe)4 provided access to (6-Dipp)CuB(OMe)2 via σ-bond metathesis. (6-Dipp)CuB(OMe)2 was characterised by NMR spectroscopy and X-ray crystallography and shown to be a monomeric acyclic boryl of copper. (6-Dipp)CuB(OMe)2 reacted with ethylene and diphenylacetylene to provide insertion compounds into the Cu-B bond which were characterised by NMR spectroscopy in both cases and X-ray crystallography in the latter. It was also competent in the rapid catalytic deoxygenation of CO2 in the presence of excess B2 (OMe)4 . Alongside π-insertion, (6-Dipp)CuB(OMe)2 reacted with LiNMe2 to provide a salt metathesis reaction at boron, giving (6-Dipp)CuB(OMe)NMe2 , a second monomeric acyclic boryl, which also cuproborated diphenylacetylene. Computational interrogation validated these acyclic boryl species to be electronically similar to (6-Dipp)CuBpin.
Collapse
Affiliation(s)
- Rex S C Charman
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Josie A Hobson
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Ross A Jackson
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Samuel E Neale
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David J Liptrot
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
5
|
Echeverría J, Alvarez S. The borderless world of chemical bonding across the van der Waals crust and the valence region. Chem Sci 2023; 14:11647-11688. [PMID: 37920358 PMCID: PMC10619631 DOI: 10.1039/d3sc02238b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/01/2023] [Indexed: 11/04/2023] Open
Abstract
The definition of the van der Waals crust as the spherical section between the atomic radius and the van der Waals radius of an element is discussed and a survey of the application of the penetration index between two interacting atoms in a wide variety of covalent, polar, coordinative or noncovalent bonding situations is presented. It is shown that this newly defined parameter permits the comparison of bonding between pairs of atoms in structural and computational studies independently of the atom sizes.
Collapse
Affiliation(s)
- Jorge Echeverría
- Instituto de Síntesis Química y Catalisis Homogénea (ISQCH) and Departmento de Química Inorgánica, Facultad de Ciencias, Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Santiago Alvarez
- Department de Química Inorgànica i Orgànica, Secció de Química Inorgànica, e Institut de Química Teòrica i Computacional, Universitat de Barcelona Martí i Franquès 1-11 08028 -Barcelona Spain
| |
Collapse
|
6
|
Tendera L, Fantuzzi F, Marder TB, Radius U. Nickel boryl complexes and nickel-catalyzed alkyne borylation. Chem Sci 2023; 14:2215-2228. [PMID: 36845942 PMCID: PMC9945561 DOI: 10.1039/d2sc04690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
The first nickel bis-boryl complexes cis-[Ni( i Pr2ImMe)2(Bcat)2], cis-[Ni( i Pr2ImMe)2(Bpin)2] and cis-[Ni( i Pr2ImMe)2(Beg)2] are reported, which were prepared via the reaction of a source of [Ni( i Pr2ImMe)2] with the diboron(4) compounds B2cat2, B2pin2 and B2eg2 ( i Pr2ImMe = 1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene; B2cat2 = bis(catecholato)diboron; B2pin2 = bis(pinacolato)diboron; B2eg2 = bis(ethylene glycolato)diboron). X-ray diffraction and DFT calculations strongly suggest that a delocalized, multicenter bonding scheme dictates the bonding situation of the NiB2 moiety in these square planar complexes, reminiscent of the bonding situation of "non-classical" H2 complexes. [Ni( i Pr2ImMe)2] also efficiently catalyzes the diboration of alkynes using B2cat2 as the boron source under mild conditions. In contrast to the known platinum-catalyzed diboration, the nickel system follows a different mechanistic pathway, which not only provides the 1,2-borylation product in excellent yields, but also provides an efficient approach to other products such as C-C coupled borylation products or rare tetra-borylated compounds. The mechanism of the nickel-catalyzed alkyne borylation was examined by means of stoichiometric reactions and DFT calculations. Oxidative addition of the diboron reagent to nickel is not dominant; the first steps of the catalytic cycle are coordination of the alkyne to [Ni( i Pr2ImMe)2] and subsequent borylation at the coordinated and, thus, activated alkyne to yield complexes of the type [Ni(NHC)2(η2-cis-(Bcat)(R)C[double bond, length as m-dash]C(R)(Bcat))], exemplified by the isolation and structural characterization of [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(Me)C[double bond, length as m-dash]C(Me)(Bcat))] and [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(H7C3)C[double bond, length as m-dash]C(C3H7)(Bcat))].
Collapse
Affiliation(s)
- Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of KentPark Wood RdCanterburyCT2 7NHUK
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
7
|
Li X, Chen Z, Chen W, Xie X, Zhou H, Liao Y, Yu F, Huang J. B 2pin 2-Mediated Cascade Cyclization/Aromatization Reaction: Facial Access to Functionalized Indolizines. Org Lett 2022; 24:7372-7377. [PMID: 36173232 DOI: 10.1021/acs.orglett.2c02905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, a B2pin2-mediated radical cascade cyclization/aromatization reaction of enaminone with pyridine is described. This strategy provides a practical way for the construction of valuable functionalized indolizines under metal-, external oxidant-, and base-free conditions, which could be compatible with various kinds of functional groups, such as halogen, π-system, heterocycle, ferrocenyl, etc. A preliminary mechanism investigation indicated that the pyridine-boryl radical formed in situ triggered the reaction to occur.
Collapse
Affiliation(s)
- Xiaoning Li
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Xin Xie
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Hui Zhou
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yingmei Liao
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiuzhong Huang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| |
Collapse
|
8
|
Ma HZ, Canty AJ, O'Hair RAJ. Electrospray Ionization Tandem Mass Spectrometry and DFT Survey of Copper(I) Ate Complexes Containing Coordinated Borohydride Anions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1443-1452. [PMID: 35749300 DOI: 10.1021/jasms.2c00103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Copper(I) borohydride ate complexes of the type Cat+[XCu(BH4)]- have been previously postulated as intermediates in the reactions of copper salts with borohydride. Negative ion electrospray ionization of an acetonitrile solution of copper(I) phenylacetylide with a 10-fold excess of sodium borohydride (NaBH4) revealed the formation of a diverse range of mononuclear, dinuclear and trinuclear cuprates with different numbers of BH4-, H- and CN- ligands, the latter likely being formed by abstraction of CN- from the acetonitrile solvent. Collision-induced dissociation was used to examine the fragmentation reactions of the following borohydride containing cuprates: [Cu(H)(BH4)]-, [Cu(BH4)2]-, [Cu(BH4)(CN)]-, [Cu2(H)(BH4)2]-, [Cu2(H)2(BH4)]-, [Cu2(BH4)2(CN)]-, [Cu2(H)(BH4)(CN)]-, [Cu3(H)(BH4)3]-, [Cu3(H)2(BH4)2]-, [Cu3(H)3(BH4)]-, [Cu3(BH4)2(CN)2]-, and [Cu3(H)(BH4)2(CN)]-. In all cases, BH3 loss is observed. For many of the dinuclear and trinuclear complexes cluster fragmentation by loss of CuH was also observed. In the case of [Cu2(H)2(BH4)]- and [Cu3(H)3(BH4)]-, loss of H2 was also observed. DFT calculations were used to explore potential structures of the various borohydride-containing cuprates and to predict the overall reaction energetics for the various fragmentation channels.
Collapse
Affiliation(s)
- Howard Z Ma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Zhang X, Friedrich A, Marder TB. Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds. Chemistry 2022; 28:e202201329. [PMID: 35510606 PMCID: PMC9400893 DOI: 10.1002/chem.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B2 pin2 ) or bis(neopentane glycolato)diboron (B2 neop2 ) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon-skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N-methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late-stage conversion of carboxylic acid-containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p-toluoyl chloride and an NHC-copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
10
|
Ríos P, See MS, Handford RC, Teat SJ, Tilley TD. Robust dicopper(i) μ-boryl complexes supported by a dinucleating naphthyridine-based ligand. Chem Sci 2022; 13:6619-6625. [PMID: 35756530 PMCID: PMC9172574 DOI: 10.1039/d2sc00848c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Copper boryl species have been widely invoked as reactive intermediates in Cu-catalysed C–H borylation reactions, but their isolation and study have been challenging. Use of the robust dinucleating ligand DPFN (2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine) allowed for the isolation of two very thermally stable dicopper(i) boryl complexes, [(DPFN)Cu2(μ-Bpin)][NTf2] (2) and [(DPFN)Cu2(μ-Bcat)][NTf2] (4) (pin = 2,3-dimethylbutane-2,3-diol; cat = benzene-1,2-diol). These complexes were prepared by cleavage of the corresponding diborane via reaction with the alkoxide [(DPFN)Cu2(μ-OtBu)][NTf2] (3). Reactivity studies illustrated the exceptional stability of these boryl complexes (thermal stability in solution up to 100 °C) and their role in the activation of C(sp)–H bonds. X-ray diffraction and computational studies provide a detailed description of the bonding and electronic structures in these complexes, and suggest that the dinucleating character of the naphthyridine-based ligand is largely responsible for their remarkable stability. Cu(i) boryl species have been widely invoked as reactive intermediates in Cu-catalysed C–H borylations, but their isolation has been challenging. In this work, thermally robust dicopper(I) boryl complexes have been synthesized and studied in detail.![]()
Collapse
Affiliation(s)
- Pablo Ríos
- Department of Chemistry, University of California Berkeley USA
| | - Matthew S See
- Department of Chemistry, University of California Berkeley USA
| | - Rex C Handford
- Department of Chemistry, University of California Berkeley USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - T Don Tilley
- Department of Chemistry, University of California Berkeley USA
| |
Collapse
|
11
|
Hu Y, Hu L, Gao H, Lv X, Wu Y, Lu G. Computational study of Cu-catalyzed 1,2-hydrocarboxylation of 1,3-dienes with CO2: Pauli repulsion-controlled regioselectivity of Cu–Bpin additions. Org Chem Front 2022. [DOI: 10.1039/d2qo00236a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and origin of regioselectivity of Cu-catalyzed 1,2-hydrocarboxylation of 1,3-dienes with CO2 were computationally investigated. The results show that CO2 not only acts as a carboxylation reagent, but also...
Collapse
|
12
|
Sinclair J, Medroa Del Pino W, Aku-Dominguez K, Minami Y, Kiran A, Ferguson MJ, Yasuda M, Rivard E. Access to metastable [GeH 2] n materials via a molecular "bottom-up" approach. Dalton Trans 2021; 50:17688-17696. [PMID: 34807204 DOI: 10.1039/d1dt02850b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the application of a mild, molecular-based, hydride metathesis protocol for the preparation of metastable germanium(II) dihydrides with compositions approaching [GeH2]n. The common starting material for this work [Ge(OtBu)2] was prepared in a high yield and shown to undergo OtBu/H exchange at Ge with the hydride sources pinacolborane (HBpin), catecholborane (HBcat), and diisobutylaluminum hydride (DIBAL-H) to give the [GeH2]n materials as yellow to orange solids. Heating one of these [GeH2]n materials to 200 °C affords a narrowing of the optical band gap (from 2.5 eV) and the generation of amorphous Ge. Reaction of [Ge(OtBu)2] with excess H3B·SMe2 in toluene at 70 °C provides a convenient route to thin films of amorphous Ge, including its deposition onto soft substrates, such as polyethyleneterephthalate (PET). Accompanying computations give insight into the energetics of OtBu/H exchange at Ge, and reveal a general thermodynamic preference for branched structures of [GeH2]n oligomers over linear forms as the Ge chain becomes longer. We also show that [Ge(OtBu)2] is a suitable pre-catalyst for the borylation of aldehydes.
Collapse
Affiliation(s)
- Jocelyn Sinclair
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, Canada T6G 2G2.
| | - William Medroa Del Pino
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, Canada T6G 2G2.
| | - Kwami Aku-Dominguez
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, Canada T6G 2G2.
| | - Yohei Minami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Anagha Kiran
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, Canada T6G 2G2.
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, Canada T6G 2G2.
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, Canada T6G 2G2.
| |
Collapse
|
13
|
Copper-Catalyzed Ring-Opening Reactions of Alkyl Aziridines with B 2pin 2: Experimental and Computational Studies. Molecules 2021; 26:molecules26237399. [PMID: 34885983 PMCID: PMC8659106 DOI: 10.3390/molecules26237399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
The possibility to form new C-B bonds with aziridines using diboron derivatives continues to be a particularly challenging field in view of the direct preparation of functionalized β-aminoboronates, which are important compounds in drug discovery, being a bioisostere of β-aminoacids. We now report experimental and computational data that allows the individuation of the structural requisites and of reaction conditions necessary to open alkyl aziridines using bis(pinacolate)diboron (B2pin2) in a regioselective nucleophilic addition reaction under copper catalysis.
Collapse
|
14
|
Horsley Downie TM, Charman RSC, Hall JW, Mahon MF, Lowe JP, Liptrot DJ. A stable ring-expanded NHC-supported copper boryl and its reactivity towards heterocumulenes. Dalton Trans 2021; 50:16336-16342. [PMID: 34734620 DOI: 10.1039/d1dt03540a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Reaction of bis(pinacolato)diboron with (6-Dipp)CuOtBu generates a ring-expanded N-heterocyclic carbene supported copper(I) boryl, (6-Dipp)CuBpin. This compound showed remarkable stability and was characterised by NMR spectroscopy and X-ray crystallography. (6-Dipp)CuBpin readily dechalcogenated a range of heterocumulenes such as CO2, isocyanates and isothiocyanates to yield (6-Dipp)CuXBpin (X = O, S). In the case of CO2 catalytic reduction to CO is viable in the presence of excess bis(pinacolato)diboron. In contrast, in the case of iso(thio)cyanates, the isocyanide byproduct of dechalcogenation reacted with (6-Dipp)CuBpin to generate a copper(I) borylimidinate, (6-Dipp)CuC(NR)Bpin, which went on to react with heterocumulenes. This off-cycle reactivity gives selective access to a range of novel boron-containing heterocycles bonded to copper, but precludes catalytic reactivity.
Collapse
Affiliation(s)
| | - Rex S C Charman
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - Jonathan W Hall
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - Mary F Mahon
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - John P Lowe
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - David J Liptrot
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
15
|
Drescher W, Kleeberg C. N-H deprotonation of a diaminodialkoxido diborane(4) - a structural study on bifunctional Lewis acids/bases and their dimerisation to B(sp 2) 2B(sp 3) 2N 2 six membered rings. Dalton Trans 2021; 50:13149-13157. [PMID: 34581355 DOI: 10.1039/d1dt02327f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-H deprotonation of the diaminodialkoxido diborane(4) pinB-Bdab (1) (pin: (OCMe2)2, dab: 1,2-(NH)2C6H4), is crucial for the electrophilic N-functionalisation towards unsymmetrical diborane(4) reagents. An N-H deprotonated diborane(4) comprises Lewis basic nitrogen atoms and at the same time Lewis acidic boron atoms. This bifunctionality governs its reactivity and structural chemistry. Whilst bases such as Na(hmds), tBuLi or Li(tmp) readily effect a single deprotonation of 1, the second deprotonation is less straightforward and cleanly only achieved with Li(tmp) as a strong but little nucleophilic base. The N-H deprotonated diborane(4) derivatives readily dimerise to give B(sp2)2B(sp3)2N2 six-membered ring Lewis base adducts. The structural chemistry of this class of compounds was studied in detail in the solid state by single crystal X-ray diffraction as well as in solution by NMR spectroscopy.
Collapse
Affiliation(s)
- Wiebke Drescher
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
16
|
Liu H, Schwamm RJ, Hill MS, Mahon MF, McMullin CL, Rajabi NA. Ambiphilic Al−Cu Bonding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Han‐Ying Liu
- Department of Chemistry University of Bath Bath BA2 7AY UK
| | | | | | - Mary F. Mahon
- Department of Chemistry University of Bath Bath BA2 7AY UK
| | | | | |
Collapse
|
17
|
Liu HY, Schwamm RJ, Hill MS, Mahon MF, McMullin CL, Rajabi NA. Ambiphilic Al-Cu Bonding. Angew Chem Int Ed Engl 2021; 60:14390-14393. [PMID: 33899319 PMCID: PMC8252794 DOI: 10.1002/anie.202104658] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Copper-alumanyl complexes, [LCu-Al(SiNDipp )], where L=carbene=NHCiPr (N,N'-diisopropyl-4,5-dimethyl-2-ylidene) and Me2 CAAC (1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) and featuring unsupported Al-Cu bonds, have been prepared. Divergent reactivity observed with carbodiimides and CO2 implies an ambiphilicity in the Cu-Al interaction that is dependent on the identity of the carbene co-ligand.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Ryan J Schwamm
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Michael S Hill
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | | | - Nasir A Rajabi
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
18
|
Guo X, Yang T, Sheong FK, Lin Z. Beyond the Nucleophilic Role of Metal–Boryl Complexes in Borylation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
19
|
Muñoz-Castro A, Wang G, Ponduru TT, Dias HVR. Synthesis and characterization of N-heterocyclic carbene-MOEt 2 complexes (M = Cu, Ag, Au). Analysis of solvated auxiliary-ligand free [(NHC)M] + species. Phys Chem Chem Phys 2021; 23:1577-1583. [PMID: 33406199 DOI: 10.1039/d0cp05222a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis, characterization and computational analysis of coinage metal-ether complexes supported by N-heterocyclic carbenes (NHC), SIPr and Et2CAAC. The related water adducts are also included. The [(NHC)M]+(M = Cu, Ag, Au) species show the noteworthy ability to bind Et2O and H2O. This interaction towards Et2O and H2O is partly ascribed to a σ-hole bonding with an almost linear disposition, taking advantage of the enhanced σ-hole potential evaluated for such [(NHC)M]+ species. This enhanced ability is larger than those found for non-covalent interactions involving main group species.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| | - Guocang Wang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Tharun Teja Ponduru
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
20
|
Drescher W, Borner C, Kleeberg C. Stability and decomposition of copper( i) boryl complexes: [(IDipp)Cu–Bneop], [(IDipp*)Cu–Bneop] and copper clusters. NEW J CHEM 2021. [DOI: 10.1039/d0nj03166f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and characterisation of NHC copper boryl complexes [(NHC)Cu–Bneop] and their decomposition to low-valent copper clusters.
Collapse
Affiliation(s)
- Wiebke Drescher
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Corinna Borner
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Copper-Catalyzed Triboration of Terminal Alkynes Using B 2 pin 2 : Efficient Synthesis of 1,1,2-Triborylalkenes. Angew Chem Int Ed Engl 2020; 59:304-309. [PMID: 31502712 PMCID: PMC6972586 DOI: 10.1002/anie.201908466] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/31/2019] [Indexed: 02/04/2023]
Abstract
We report herein the catalytic triboration of terminal alkynes with B2 pin2 (bis(pinacolato)diboron) using readily available Cu(OAc)2 and Pn Bu3 . Various 1,1,2-triborylalkenes, a class of compounds that have been demonstrated to be potential matrix metalloproteinase (MMP-2) inhibitors, were obtained directly in moderate to good yields. The process features mild reaction conditions, a broad substrate scope, and good functional group tolerance. This copper-catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2-triborylalkenes in modest yields. The utility of these products was demonstrated by further transformations of the C-B bonds to prepare gem-dihaloborylalkenes (F, Cl, Br), monohaloborylalkenes (Cl, Br), and trans-diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare.
Collapse
Affiliation(s)
- Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Kerner
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
22
|
Liu X, Ming W, Zhang Y, Friedrich A, Marder TB. Copper-Catalyzed Triboration: Straightforward, Atom-Economical Synthesis of 1,1,1-Triborylalkanes from Terminal Alkynes and HBpin. Angew Chem Int Ed Engl 2019; 58:18923-18927. [PMID: 31490606 PMCID: PMC6972527 DOI: 10.1002/anie.201909376] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Indexed: 02/06/2023]
Abstract
A convenient and efficient one-step synthesis of 1,1,1-triborylalkanes was achieved via sequential dehydrogenative borylation and double hydroborations of terminal alkynes with HBpin (HBpin=pinacolborane) catalyzed by inexpensive and readily available Cu(OAc)2 . This process proceeds under mild conditions, furnishing 1,1,1-tris(boronates) with wide substrate scope, excellent selectivity, and good functional-group tolerance, and is applicable to gram-scale synthesis without loss of yield. The 1,1,1-triborylalkanes can be used in the preparation of α-vinylboronates and borylated cyclic compounds, which are valuable but previously rare compounds. Different alkyl groups can be introduced stepwise via base-mediated deborylative alkylation to produce racemic tertiary alkyl boronates, which can be readily transformed into useful tertiary alcohols.
Collapse
Affiliation(s)
- Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Yixiao Zhang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
23
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Kupfer‐katalysierte Triborierung terminaler Alkine mit B
2
pin
2
: Effiziente Synthese von 1,1,2‐Triborylalkenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaocui Liu
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Wenbo Ming
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Alexandra Friedrich
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Florian Kerner
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Todd B. Marder
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
24
|
Liu X, Ming W, Zhang Y, Friedrich A, Marder TB. Kupferkatalysierte Triborierung: Einfache, atomökonomische Synthese von 1,1,1‐Triborylalkanen aus terminalen Alkinen und HBpin. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaocui Liu
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Wenbo Ming
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Yixiao Zhang
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Alexandra Friedrich
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Todd B. Marder
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|