1
|
Kunert R, Martelino D, Mahato S, Hein NM, Pulfer J, Philouze C, Jarjayes O, Thomas F, Storr T. Investigating the formation of metal nitride complexes employing a tetradentate bis-carbene bis-phenolate ligand. Dalton Trans 2025; 54:616-630. [PMID: 39560135 DOI: 10.1039/d4dt01765j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The synthesis of MnV and CrV nitride complexes of a pro-radical tetradentate bis-phenol bis-N-heterocyclic carbene ligand H2LC2O2 was investigated. Employing either azide photolysis of the MnIII precursor complex MnLC2O2(N3) or a nitride exchange reaction between MnLC2O2(Br) and the nitride exchange reagent Mnsalen(N) failed to provide a useful route to the target nitride MnLC2O2(N). Experimental results support initial formation of the target nitride MnLC2O2(N), however, the nitride rapidly inserts into a Mn-CNHC bond. A second insertion reaction results in the isolation of the doubly inserted ligand product [H2LC2O2(N)]+ in good yield. In contrast, the Cr analogue CrLC2O2(N) was readily prepared and characterized by a number of experimental methods, including X-ray crystallography. Theoretical calculations predict a lower transition state energy for nitride insertion into the M-CNHC bond for Mn in comparison to Cr, and in addition the N-inserted product is stabilized for Mn while destabilized for Cr. Natural bond order (NBO) analysis predicts that the major bonding interaction (π MN → σ* M-CNHC) promotes nucleophilic attack of the nitride on the carbene as the major reaction pathway. Finally, one-electron oxidation of CrLC2O2(N) affords a relatively stable cation that is characterized by experimental and theoretical analysis to be a metal-oxidized d0 CrVI species.
Collapse
Affiliation(s)
- Romain Kunert
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Jason Pulfer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
2
|
Almquist CC, Rajeshkumar T, Jayaweera HDAC, Removski N, Zhou W, Gelfand BS, Maron L, Piers WE. Oxidation-induced ambiphilicity triggers N-N bond formation and dinitrogen release in octahedral terminal molybdenum(v) nitrido complexes. Chem Sci 2024; 15:5152-5162. [PMID: 38577349 PMCID: PMC10988598 DOI: 10.1039/d4sc00090k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Coupling of octahedral, terminal d1 molybdenum(v) nitrido complexes supported by a dianionic pentadentate ligand via N-N bond formation to give μ-dinitrogen complexes was found to be thermodynamically feasible but faces significant kinetic barriers. However, upon oxidation, a kinetically favored nucleophilic/electrophilic N-N bond forming mechanism was enabled to give monocationic μ-dinitrogen dimers. Computational and experimental evidence for this "oxidation-induced ambiphilic nitrido coupling" mechanism is presented. The factors influencing release of dinitrogen from the resulting μ-dinitrogen dimers were also probed and it was found that further oxidation to a dicationic species is required to induce (very rapid) loss of dinitrogen. The mechanistic path discovered for N-N bond formation and dinitrogen release follows an ECECC sequence (E = "electrochemical step"; C = "chemical step"). Experimental evidence for the intermediacy of a highly electrophilic, cationic d0 molybdenum(vi) nitrido in the N-N bond forming mechanism via trapping with an isonitrile reagent is also discussed. Together these results are relevant to the development of molecular catalysts capable of mediating ammonia oxidation to dihydrogen and dinitrogen.
Collapse
Affiliation(s)
- C Christopher Almquist
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | | | - H D A Chathumal Jayaweera
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Nicole Removski
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Wen Zhou
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA UPS Toulouse France
| | - Warren E Piers
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
3
|
Morris RH. Reactivity umpolung (reversal) of ligands in transition metal complexes. Chem Soc Rev 2024; 53:2808-2827. [PMID: 38353155 DOI: 10.1039/d3cs00979c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The success and power of homogeneous catalysis derives in large part from the wide choice of transition metal ions and their ligands. This tutorial review introduces examples where the reactivity of a ligand is completely reversed (umpolung) from Lewis basic/nucleophilic to acidic/electrophilic or vice versa on changing the metal and co-ligands. Understanding this phenomenon will assist in the rational design of catalysts and the understanding of metalloenzyme mechanisms. Labelling a metal and ligand with Seebach donor and acceptor labels helps to identify whether a reaction involving the intermolecular attack on the ligand is displaying native reactivity or reactivity umpolung. This has been done for complexes of nitriles, carbonyls, isonitriles, dinitrogen, Fischer carbenes, alkenes, alkynes, hydrides, methyls, methylidenes and alkylidenes, silylenes, oxides, imides/nitrenes, alkylidynes, methylidynes, and nitrides. The electronic influence of the metal and co-ligands is discussed in terms of the energy of (HOMO) d electrons. The energy can be related to the pKLACa (LAC is ligand acidity constant) of the theoretical hydride complexes [H-[M]-L]+ formed by the protonation of pair of valence d electrons on the metal in the [M-L] complex. Preliminary findings indicate that a negative pKLACa indicates that nucleophilic attack by a carbanion or amine on the ligand will likely occur while a positive pKLACa indicates that electrophilic attack by strong acids on the ligand will usually occur when the ligand is nitrile, carbonyl, isonitrile, alkene and η6-arene.
Collapse
Affiliation(s)
- Robert H Morris
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada, M5S3H6.
| |
Collapse
|
4
|
Mahato S, VandeVen W, MacNeil GA, Pulfer JM, Storr T. Untangling ancillary ligand donation versus locus of oxidation effects on metal nitride reactivity. Chem Sci 2024; 15:2211-2220. [PMID: 38332824 PMCID: PMC10848731 DOI: 10.1039/d3sc05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024] Open
Abstract
We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned via the para-phenolate substituent (R = CF3, H, tBu, OiPr, NMe2, NEt2) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [MnVI(SalR)N]+ occurs for R = CF3, H, tBu, OiPr, while ligand radical formation to [MnV(SalR)N]+˙ occurs with the more electron-donating substituents R = NMe2, NEt2. We next investigated the reactivity of the electrophilic nitride with triarylphosphines to form a MnIV phosphoraneiminato adduct and determined that the rate of reaction decreases as the electron-donating ability of the salen para-phenolate substituent is increased. Using a Hammett plot, we find a break in the Hammett relation between R = OiPr and R = NMe2, without a change in mechanism, consistent with the locus of oxidation exhibiting a dominant effect on nitride reactivity, and not the overall donating ability of the ancillary salen ligand. This work differentiates between the subtle and interconnected effects of ancillary ligand electron-donating ability, and locus of oxidation, on electrophilic nitride reactivity.
Collapse
Affiliation(s)
- Samyadeb Mahato
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Jason M Pulfer
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
5
|
Miyamoto S, Nagata K, Yoshimura T. Luminescence Color and Intensity Changes of Nitridorhenium(V) Complexes Induced by Protonation/Deprotonation on the Bidentate Azolylpyridine Ligands. Inorg Chem 2023; 62:17641-17653. [PMID: 37844419 DOI: 10.1021/acs.inorgchem.3c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Tricyanidonitridorhenium(V) complexes with azolylpyridines, namely, [ReN(CN)3(H-N2py)]- (1-H, H-N2py = 2-(3-pyrazolyl)pyridine) and [ReN(CN)3(L)]2- (2-a, L = 2-[1,2,3]-triazol-4-yl-pyridine anion (N3py-), and 3-a, that is, L = 2-(tetrazol-5-yl)-pyridine anion (N4py-)), were newly synthesized and characterized. The structures of the new complexes were determined by single-crystal X-ray analysis. The 1-H complex includes two geometrical isomers in which an isomer is the conformation with the pyridyl (py) and pyrazolyl (pyrz) moieties of H-N2py occupying the trans site to the nitrido (the ax site) and the trans site to the cyanido (the eq site), respectively, in a bidentate fashion; the other isomer is the py and pyrz moieties coordinated to the eq and ax sites. In 2-a and 3-a, the triazolyl (trz) and tetrazoly (tetrz) moieties in N3py- and N4py- occupy the eq site, and the py moieties in N3py- and N4py- coordinate to the ax site. The complex 1-H is deprotonated upon the addition of 1,8-diazabicyclo[5.4.0]undec-7-one or NaOH to produce [ReN(CN)3(N2py)]2- (1-a), and 2-a is protonated upon the addition of p-toluene sulfonic acid (TsOH) to give [ReN(CN)3(H-N3py)]- (2-H) in DMSO. The protonation reaction does not occur for 3-a with TsOH in DMSO. All the complexes show one-electron redox waves of the Re(VI)/Re(V) and azolylpyridine ligand-centered processes in 0.1 M (n-C4H9)4NPF6-DMSO. All the complexes exhibit photoluminescence in DMSO and in the crystalline phase at 296 K. The emissive excited states of the complexes in DMSO were assigned to MLCT with a spin triplet nature. The emission band shifts to shorter and longer wavelengths upon protonation and deprotonation of the coordinated azolylpyridines, respectively. The emission color and intensity changes of 2-H and 2-a in the presence of acidic and basic vapors were investigated.
Collapse
Affiliation(s)
- Sodai Miyamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Kojiro Nagata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takashi Yoshimura
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
6
|
van Alten RS, Wieser PA, Finger M, Abbenseth J, Demeshko S, Würtele C, Siewert I, Schneider S. Halide Effects in Reductive Splitting of Dinitrogen with Rhenium Pincer Complexes. Inorg Chem 2022; 61:11581-11591. [PMID: 35861586 DOI: 10.1021/acs.inorgchem.2c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metal halide complexes are used as precursors for reductive N2 activation up to full splitting into nitride complexes. Distinct halide effects on the redox properties and yields are frequently observed yet not well understood. Here, an electrochemical and computational examination of reductive N2 splitting with the rhenium(III) complexes [ReX2(PNP)] (PNP = N(CH2CH2PtBu2)2 and X = Cl, Br, I) is presented. As previously reported for the chloride precursor ( J. Am. Chem. Soc. 2018, 140, 7922), the heavier halides give rhenium(V) nitrides upon (electro-)chemical reduction in good yields yet with significantly anodically shifted electrolysis potentials along the halide series. Dinuclear, end-on N2-bridged complexes, [{ReX(PNP)}2(μ-N2)], were identified as key intermediates in all cases. However, while the chloride complex is exclusively formed via 2-electron reduction and ReIII/ReI comproportionation, the iodide system also reacts via an alternative ReII/ReII-dimerization mechanism at less negative potentials. This alternative pathway relies on the absence of the potential inversion after reduction and N2 activation that was observed for the chloride precursor. Computational analysis of the relevant ReIII/II and ReII/I redox couples by energy decomposition analysis attributes the halide-induced trends of the potentials to the dominating electrostatic Re-X bonding interactions over contributions from charge transfer.
Collapse
Affiliation(s)
- Richt S van Alten
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Philipp A Wieser
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Markus Finger
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Josh Abbenseth
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Christian Würtele
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Inke Siewert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion, University of Göttingen, 37077 Göttingen, Germany
| | - Sven Schneider
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Martelino D, Mahato S, VandeVen W, Hein NM, Clarke RM, MacNeil GA, Thomas F, Storr T. Chromium Nitride Umpolung Tuned by the Locus of Oxidation. J Am Chem Soc 2022; 144:11594-11607. [PMID: 35749669 DOI: 10.1021/jacs.2c01840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation of a series of CrV nitride salen complexes (CrVNSalR) with different para-phenolate substituents (R = CF3, tBu, NMe2) was investigated to determine how the locus of oxidation (either metal or ligand) dictates reactivity at the nitride. Para-phenolate substituents were chosen to provide maximum variation in the electron-donating ability of the tetradentate ligand at a site remote from the metal coordination sphere. We show that one-electron oxidation affords CrVI nitrides ([CrVINSalR]+; R = CF3, tBu) and a localized CrV nitride phenoxyl radical for the more electron-donating NMe2 substituent ([CrVNSalNMe2]•+). The facile nitride homocoupling observed for the MnVI analogues was significantly attenuated for the CrVI complexes due to a smaller increase in nitride character in the M≡N π* orbitals for Cr relative to Mn. Upon oxidation, both the calculated nitride natural population analysis (NPA) charge and energy of molecular orbitals associated with the {Cr≡N} unit change to a lesser extent for the CrV ligand radical derivative ([CrVNSalNMe2]•+) in comparison to the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu). As a result, [CrVNSalNMe2]•+ reacts with B(C6F5)3, thus exhibiting similar nucleophilic reactivity to the neutral CrV nitride derivatives. In contrast, the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu) act as electrophiles, displaying facile reactivity with PPh3 and no reaction with B(C6F5)3. Thus, while oxidation to the ligand radical does not change the reactivity profile, metal-based oxidation to CrVI results in umpolung, a switch from nucleophilic to electrophilic reactivity at the terminal nitride.
Collapse
Affiliation(s)
- Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ryan M Clarke
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
8
|
Connor GP, Delony D, Weber JE, Mercado BQ, Curley JB, Schneider S, Mayer JM, Holland PL. Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chem Sci 2022; 13:4010-4018. [PMID: 35440977 PMCID: PMC8985503 DOI: 10.1039/d1sc04503b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium(iii) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH2)2Cl]+, or results in dehydrohalogenation to the rhenium(iii) amido complex, (PNP)Re(NH2)Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol−1, while DFT computations indicate a substantially weaker N–H bond of the putative rhenium(iv)-imide intermediate (BDE = 38 kcal mol−1). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH3 generation. Rhenium–PNP complexes split N2 to nitrides, but the nitrides do not give ammonia. Here, the thermodynamics of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, showing that the first H addition is the bottleneck.![]()
Collapse
Affiliation(s)
- Gannon P Connor
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Daniel Delony
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen Göttingen Germany
| | - Jeremy E Weber
- Department of Chemistry, Yale University New Haven Connecticut USA
| | | | - Julia B Curley
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Sven Schneider
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen Göttingen Germany
| | - James M Mayer
- Department of Chemistry, Yale University New Haven Connecticut USA
| | | |
Collapse
|
9
|
Zhang G, Liu T, Song J, Quan Y, Jin L, Si M, Liao Q. N 2 Cleavage on d 4/d 4 Molybdenum Centers and Its Further Conversion into Iminophosphorane under Mild Conditions. J Am Chem Soc 2022; 144:2444-2449. [PMID: 35014788 DOI: 10.1021/jacs.1c11134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of N-containing organophosphine compounds using N2 as the nitrogen source under mild conditions has attracted much attention. Herein, the conversion of N2 into iminophosphorane was reported. By visible light irradiation, N2 was split on a MoII complex bearing a PNCNP ligand, directly forming the MoV nitride. After the N-P bond formation on the terminal nitride, the N atom from N2 was ultimately transferred into iminophosphorane. Key intermediates were characterized.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Tanggao Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Yingyu Quan
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Mengyue Si
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| |
Collapse
|
10
|
Alig L, Eisenlohr KA, Zelenkova Y, Rosendahl S, Herbst‐Irmer R, Demeshko S, Holthausen MC, Schneider S. Rhenium‐Mediated Conversion of Dinitrogen and Nitric Oxide to Nitrous Oxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Alig
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Kim A. Eisenlohr
- Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Yaroslava Zelenkova
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Sven Rosendahl
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst‐Irmer
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Max C. Holthausen
- Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Sven Schneider
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
11
|
Alig L, Eisenlohr KA, Zelenkova Y, Rosendahl S, Herbst-Irmer R, Demeshko S, Holthausen MC, Schneider S. Rhenium-Mediated Conversion of Dinitrogen and Nitric Oxide to Nitrous Oxide. Angew Chem Int Ed Engl 2021; 61:e202113340. [PMID: 34714956 PMCID: PMC9299976 DOI: 10.1002/anie.202113340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Reductive splitting of N2 is an attractive strategy towards nitrogen fixation beyond ammonia at ambient conditions. However, the resulting nitride complexes often suffer from thermodynamic overstabilization hampering functionalization. Furthermore, oxidative nitrogen atom transfer of N2 derived nitrides remains unknown. We here report a ReIV pincer platform that mediates N2 splitting upon chemical reduction or electrolysis with unprecedented yield. The N2 derived ReV nitrides undergo facile nitrogen atom transfer to nitric oxide, giving nitrous oxide nearly quantitatively. Experimental and computational results indicate that outer‐sphere ReN/NO radical coupling is facilitated by the activation of the nitride via initial coordination of NO.
Collapse
Affiliation(s)
- Lukas Alig
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Kim A Eisenlohr
- Goethe-Universität Frankfurt, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Yaroslava Zelenkova
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Sven Rosendahl
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Max C Holthausen
- Goethe-Universität Frankfurt, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Sven Schneider
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Forrest SJK, Schluschaß B, Yuzik-Klimova EY, Schneider S. Nitrogen Fixation via Splitting into Nitrido Complexes. Chem Rev 2021; 121:6522-6587. [DOI: 10.1021/acs.chemrev.0c00958] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian J. K. Forrest
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Sven Schneider
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
13
|
Weber JE, Hasanayn F, Fataftah M, Mercado BQ, Crabtree RH, Holland PL. Electronic and Spin-State Effects on Dinitrogen Splitting to Nitrides in a Rhenium Pincer System. Inorg Chem 2021; 60:6115-6124. [PMID: 33847125 DOI: 10.1021/acs.inorgchem.0c03778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bimetallic nitrogen (N2) splitting to form metal nitrides is an attractive method for N2 fixation. Although a growing number of pincer-supported systems can bind and split N2, the precise relationship between the ligand properties and N2 binding/splitting remains elusive. Here we report the first example of an N2-bridged rhenium(III) complex, [(trans-P2tBuPyrr)ReCl2]2(μ-η1:η1-N2) (P2tBuPyrr = [2,5-(CH2PtBu2)2C4H2N]-). In this case, N2 binding occurs at a higher oxidation level than that in other reported pincer analogues. Analysis of the electronic structure through computational studies shows that the weakly π-donor pincer ligand stabilizes an open-shell electronic configuration that leads to enhanced binding of N2 in the bridged complex. Utilizing SQUID magnetometry, we demonstrate a singlet ground state for this Re-N-N-Re complex, and we offer tentative explanations for antiferromagnetic coupling of the two local S = 1 sites. Reduction and subsequent heating of the rhenium(III)-dinitrogen complex leads to chloride loss and cleavage of the N-N bond with isolation of the terminal rhenium(V) nitride complex (P2tBuPyrr)ReNCl.
Collapse
Affiliation(s)
- Jeremy E Weber
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Majed Fataftah
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
14
|
|
15
|
Besmer ML, Braband H, Schneider S, Spingler B, Alberto R. Exploring the Coordination Chemistry of N2 with Technetium PNP Pincer-Type Complexes. Inorg Chem 2021; 60:6696-6701. [DOI: 10.1021/acs.inorgchem.1c00503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Manuel Luca Besmer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Henrik Braband
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sven Schneider
- Institute for Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse 4, DE-37077 Göttingen, Germany
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
16
|
Park SV, Fry CG, Bill E, Berry JF. A metastable Ru III azido complex with metallo-Staudinger reactivity. Chem Commun (Camb) 2020; 56:10738-10741. [PMID: 32789338 DOI: 10.1039/d0cc04426a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metastable purple [(Py5Me2)RuIII(N3)]2+ ion reacts with PPh3 at room temperature to form the phosphinimine complex [(Py5Me2)RuII(N(H)PPh3)]2+ and free [H2NPPh3]+ in a combined 23% conversion. Mechanistic studies suggest that this is the first metallo-Staudinger reaction of a late transition metal that bypasses the nitrido mechanism and instead utilizes a Ru-N[double bond, length as m-dash]N[double bond, length as m-dash]N-PPh3 phosphazide intermediate.
Collapse
Affiliation(s)
- Sungho V Park
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
17
|
Bruch QJ, Connor GP, McMillion ND, Goldman AS, Hasanayn F, Holland PL, Miller AJM. Considering Electrocatalytic Ammonia Synthesis via Bimetallic Dinitrogen Cleavage. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02606] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Noah D. McMillion
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
18
|
van Alten RS, Wätjen F, Demeshko S, Miller AJM, Würtele C, Siewert I, Schneider S. (Electro-)chemical Splitting of Dinitrogen with a Rhenium Pincer Complex. Eur J Inorg Chem 2020; 2020:1402-1410. [PMID: 32421038 PMCID: PMC7217231 DOI: 10.1002/ejic.201901278] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/25/2022]
Abstract
The splitting of N2 into well‐defined terminal nitride complexes is a key reaction for nitrogen fixation at ambient conditions. In continuation of our previous work on rhenium pincer mediated N2 splitting, nitrogen activation and cleavage upon (electro)chemical reduction of [ReCl2(L2)] {L2 = N(CHCHPtBu2)2–} is reported. The electrochemical characterization of [ReCl2(L2)] and comparison with our previously reported platform [ReCl2(L1)] {L1 = N(CH2CH2PtBu2)2–} provides mechanistic insight to rationalize the dependence of nitride yield on the reductant. Furthermore, the reactivity of N2 derived nitride complex [Re(N)Cl(L2)] with electrophiles is presented.
Collapse
Affiliation(s)
- Richt S van Alten
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Florian Wätjen
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Alexander J M Miller
- Department of Chemistry University of North Carolina at Chapel Hill 27599-3290 Chapel Hill NC USA
| | - Christian Würtele
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Inke Siewert
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany.,International Center for Advanced Studies of Energy Conversion University of Goettingen Tammannstraße 6 37077 Goettingen Germany
| | - Sven Schneider
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany.,International Center for Advanced Studies of Energy Conversion University of Goettingen Tammannstraße 6 37077 Goettingen Germany
| |
Collapse
|
19
|
Nagata K, Otsuji N, Akagi S, Fujii S, Kitamura N, Yoshimura T. Synthesis, Structures, and Photoluminescent Properties of Tricyanidonitridorhenium(V) Complexes with Bipyridine-Type Ligands. Inorg Chem 2020; 59:5497-5508. [PMID: 32271014 DOI: 10.1021/acs.inorgchem.0c00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tricyanidonitridorhenium(V) complexes with 2,2'-bipyridine (bpy) derivatives in which the 4 and 4' positions were substituted by X, [ReN(CN)3(X2bpy)]- (X = NMe2, NH2, OMe, Me, Cl, and Br), were newly synthesized and characterized. The structures of the new complexes were determined by single-crystal X-ray analysis. UV-vis spectra of the complexes in dimethyl sulfoxide (DMSO) showed that the peak maximum wavelengths of rhenium-to-π* bpy-type-ligand charge transfer were in the range of 474-542 nm. Cyclic voltammograms in n-(C4H9)4NPF6-DMSO showed one-electron oxidation and reduction waves corresponding to the Re(VI/V) and X2bpy0/- processes, respectively. The new complexes and [ReN(CN)3bpy]- showed photoluminescence in the crystalline phase at 295 and 80 K and in DMSO at 295 K. The origin of the emission in DMSO was attributed to the triplet nature of the rhenium-to-π* bpy-type-ligand charge-transfer transition. Density functional theory calculations showed that the highest occupied and lowest unoccupied molecular orbitals were primarily localized on the dxy orbital of the rhenium and π* orbitals of the bpy-type ligand, respectively.
Collapse
Affiliation(s)
- Kojiro Nagata
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Naoko Otsuji
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Soichiro Akagi
- Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Sho Fujii
- Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Noboru Kitamura
- Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Yoshimura
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|