1
|
Meskaldji S, Belkhiri L, Maurice R, Costuas K, Le Guennic B, Boucekkine A, Ephritikhine M. Electronic Structure and Magneto-Structural Correlations Study of Cu 2UL Trinuclear Schiff Base Complexes: A 3d-5f-3d Case. J Phys Chem A 2023; 127:1475-1490. [PMID: 36749943 DOI: 10.1021/acs.jpca.2c08755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The magnetic properties of trinuclear Schiff base complexes M2AnLi (MII = Zn, Cu; AnIV = Th, U; Li = Schiff base; i = 1-4, 6, 7, 9), exhibiting the [M(μ-O)2]2U core structure with adjacent M1···U and M2···U and next-adjacent M1···M2 interactions, featuring 3d-5f-3d subsystems, have been investigated theoretically using relativistic ZORA/B3LYP computations combined with the broken symmetry (BS) approach. Bond order and natural population analyses reveal that the covalent contribution to the bonding within the Cu-O-U coordination is important thus favoring superexchange coupling between the transition metal and the uranium magnetic centers. The calculated coupling constants JCuU between the Cu and U atoms, agree with the observed shift from the antiferromagnetic (AF) character of the L1,2,3,4 complexes to the ferromagnetic (ferro) of the L6,7,9 ones. The structural parameters, i.e., the Cu···U distances and the Cu-O-U angles, as well as the electronic factors driving the magnetic couplings are discussed. The analyses are supported by the study of the mixed ZnCuULi and Cu2ThLi systems, where in the first complex the CuII (3d9) ion is replaced by the diamagnetic ZnII (3d10) one, whereas in the second complex the UIV (5f2) paramagnetic center is replaced by the diamagnetic ThIV (5f0) one.
Collapse
Affiliation(s)
- Samir Meskaldji
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri, 25017 Constantine, Algeria.,Ecole Normale Supérieure de l'Enseignement Technologique ENSET, 21000 Skikda, Algeria
| | - Lotfi Belkhiri
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri, 25017 Constantine, Algeria.,Centre de Recherche en Sciences Pharmaceutiques CRSP, Ali Mendjeli, 25000 Constantine, Algeria
| | - Rémi Maurice
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Karine Costuas
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Boris Le Guennic
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Abdou Boucekkine
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michel Ephritikhine
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Vinod S, Ebenezer C, Solomon RV. Do mono- or diphenol substitutions in phenanthroline-based ligands serve in effective separation of Am 3+/Eu 3+ ions?- Insights from DFT calculations. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2160352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shruti Vinod
- Department of Chemistry, Madras Christian College (Autonomous), Chennai, India
| | - Cheriyan Ebenezer
- Department of Chemistry, Madras Christian College (Autonomous), Chennai, India
| | | |
Collapse
|
3
|
Ebenezer C, Solomon RV. Complexation of N‐Heterocyclic Substituted 1,10‐Phenanthroline‐2,9‐diamide with Am
3+
/Eu
3+
Ions for Nuclear Waste Water Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202203535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) [Affiliated to the University of Madras Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) [Affiliated to the University of Madras Chennai 600 059 Tamil Nadu India
| |
Collapse
|
4
|
Jennifer SJ, Razak IA, Ebenezer C, Solomon RV. Role of Cl• • •Cl halogen bonds in tuning the crystals of Uranyl-Dicholorothiophene carboxylate based hybrid cluster materials through N-donor counter ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Vitova T, Faizova R, Amaro-Estrada JI, Maron L, Pruessmann T, Neill T, Beck A, Schacherl B, Tirani FF, Mazzanti M. The mechanism of Fe induced bond stability of uranyl(v). Chem Sci 2022; 13:11038-11047. [PMID: 36320468 PMCID: PMC9517057 DOI: 10.1039/d2sc03416f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 08/02/2023] Open
Abstract
The stabilization of uranyl(v) (UO2 1 + ) by Fe(ii) in natural systems remains an open question in uranium chemistry. Stabilization of UVO2 1+ by Fe(ii) against disproportionation was also demonstrated in molecular complexes. However, the relation between the Fe(ii) induced stability and the change of the bonding properties have not been elucidated up to date. We demonstrate that U(v) - oaxial bond covalency decreases upon binding to Fe(ii) inducing redirection of electron density from the U(v) - oaxial bond towards the U(v) - equatorial bonds thereby increasing bond covalency. Our results indicate that such increased covalent interaction of U(v) with the equatorial ligands resulting from iron binding lead to higher stability of uranyl(v). For the first time a combination of U M4,5 high energy resolution X-ray absorption near edge structure (HR-XANES) and valence band resonant inelastic X-ray scattering (VB-RIXS) and ab initio multireference CASSCF and DFT based computations were applied to establish the electronic structure of iron-bound uranyl(v).
Collapse
Affiliation(s)
- Tonya Vitova
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Radmila Faizova
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jorge I Amaro-Estrada
- LPCNO, University of Toulouse INSA Toulouse 135, Avenue de Rangueil Toulouse Cedex 31077 France
| | - Laurent Maron
- LPCNO, University of Toulouse INSA Toulouse 135, Avenue de Rangueil Toulouse Cedex 31077 France
| | - Tim Pruessmann
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Thomas Neill
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Aaron Beck
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Bianca Schacherl
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Farzaneh Fadaei Tirani
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
6
|
Hu SX, You XX, Zou WL, Lu E, Gao X, Zhang P. Electronic Structures and Unusual Chemical Bonding in Actinyl Peroxide Dimers [An 2O 6] 2+ and [(An 2O 6)(12-crown-4 ether) 2] 2+ (An = U, Np, and Pu). Inorg Chem 2022; 61:15589-15599. [DOI: 10.1021/acs.inorgchem.2c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Xiao-Xia You
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Wen-Li Zou
- Institute of Modern Physics, Northwest University, Xi’an, 710127, China
| | - Erli Lu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - Xiang Gao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
7
|
Kwon Y, Kim HK, Jeong K. Assessment of Various Density Functional Theory Methods for Finding Accurate Structures of Actinide Complexes. Molecules 2022; 27:molecules27051500. [PMID: 35268601 PMCID: PMC8911565 DOI: 10.3390/molecules27051500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Density functional theory (DFT) is a widely used computational method for predicting the physical and chemical properties of metals and organometals. As the number of electrons and orbitals in an atom increases, DFT calculations for actinide complexes become more demanding due to increased complexity. Moreover, reasonable levels of theory for calculating the structures of actinide complexes are not extensively studied. In this study, 38 calculations, based on various combinations, were performed on molecules containing two representative actinides to determine the optimal combination for predicting the geometries of actinide complexes. Among the 38 calculations, four optimal combinations were identified and compared with experimental data. The optimal combinations were applied to a more complicated and practical actinide compound, the uranyl complex (UO2(2,2′-(1E,1′E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene)(CH3OH)), for further confirmation. The corresponding optimal calculation combination provides a reasonable level of theory for accurately optimizing the structure of actinide complexes using DFT.
Collapse
Affiliation(s)
- Youngjin Kwon
- Department of Mechanical System Engineering, Korea Military Academy, Seoul 01805, Korea;
| | - Hee-Kyung Kim
- Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute, Daejeon 34057, Korea;
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, Korea
- Correspondence: or or ; Tel.: +82-2-2197-2823
| |
Collapse
|
8
|
Does the length of the alkyl chain affect the complexation and selectivity of phenanthroline-derived phosphonate ligands? – Answers from DFT calculations. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hou X, McLachlan JR, Dares CJ. Electrochemical behaviour of uranium at a tripolyphosphate modified ITO electrode. Chem Commun (Camb) 2021; 57:10891-10894. [PMID: 34604881 DOI: 10.1039/d1cc03877j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UO22+ binds to the surface of a tripolyphosphate modified mesoporous indium tin-doped oxide electrode (nanoITO|P3). Electrochemical studies reveal that nITO|P3 electrodes catalyze the 2-electron interconversion between UO22+ and U4+ with the P3-ligand assisting in the rate-limiting proton-coupled reduction of U(V) to U(IV), based on the kinetic isotope effect (1.8). Product composition between nITO|P3(U4+) and surface adsorbed UO2 can be controlled by adjusting the proton concentration and/or scan rate in voltammograms. These studies with uranium suggest that nITO|P3 electrodes are good candidates for redox transformations with other actinides including neptunium, plutonium, and americium.
Collapse
Affiliation(s)
- Xiangyang Hou
- Florida International University, Department of Chemistry and Biochemistry, 11200 SW 8th St., Miami, FL 33199, USA.
| | - Jeffrey R McLachlan
- Florida International University, Department of Chemistry and Biochemistry, 11200 SW 8th St., Miami, FL 33199, USA.
| | - Christopher J Dares
- Florida International University, Department of Chemistry and Biochemistry, 11200 SW 8th St., Miami, FL 33199, USA.
| |
Collapse
|
10
|
George Thomas M, Ebenezer C, Solomon RV. Tuning the structure of disulfonated phenanthroline based ligands for effective separation of Am(III)/Eu(III) ions : A DFT investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Zhang P, Zou W, Zhang P, Hu S. Electronic Structures and Properties of Actinide‐Bimetal Compounds An
2
O
2
(An=Th to Cf) and U
2
E
2
(E=N, F, S). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Zhang
- School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083 China
| | - Wen‐Li Zou
- Institute of Modern Physics Northwest University Xi'an 710127 China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics Haidian Beijing 100088 China
| | - Shu‐Xian Hu
- School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083 China
- Beijing Computational Science Research Center Haidian Beijing 100193 China
| |
Collapse
|
12
|
Bharali SJ, Das BK. A Synthetic Approach to Trinuclear Cluster with [Co
3
(μ
3
‐O)(μ‐OH)] Core: A Comparative Study on Cluster having [Co
3
(μ
3
‐O)(μ‐OH)] and [Co
4
(μ
3
‐O)
4
] Core. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sourav J. Bharali
- Department of Chemistry Rajiv Gandhi University Arunachal Pradesh India- 791112
| | - Birinchi K. Das
- Department of Chemistry Gauhati University Guwahati 781014 India
- Vice Chancellor Bhattadev University Pathsala India
| |
Collapse
|
13
|
Electronic structure and magnetic properties of naphthalene- and stilbene-diimide-bridged diuranium(V) complexes: a theoretical study. J Mol Model 2020; 26:282. [DOI: 10.1007/s00894-020-04552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
|