1
|
Cotic A, Heinemann FW, Slep LD, Cadranel A. Influence of Donor-Acceptor Interactions on MLCT Hole Reconfiguration in {Ru(bpy)} Chromophores. Chemphyschem 2024; 25:e202400246. [PMID: 38656666 DOI: 10.1002/cphc.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
In MLCT chromophores, internal conversion (IC) in the form of hole reconfiguration pathways (HR) is a major source of dissipation of the absorbed photon energy. Therefore, it is desirable to minimize their impact in energy conversion schemes by slowing them down. According to previous findings on {Ru(bpy)} chromophores, donor-acceptor interactions between the Ru ion and the ligand scaffold might allow to control HR/IC rates. Here, a series of [Ru(tpm)(bpy)(R-py)]2+ chromophores, where tpm is tris(1-pyrazolyl)methane, bpy is 2,2'-bipyridine and R-py is a 4-substituted pyridine, were prepared and fully characterized employing electrochemistry, spectroelectrochemistry, steady-state absorption/emission spectroscopy and electronic structure computations based on DFT/TD-DFT. Their excited-state decay was monitored using nanosecond and femtosecond transient absorption spectroscopy. HR/IC lifetimes as slow as 568 ps were obtained in DMSO at room temperature, twice as slow as in the reference species [Ru(tpm)(bpy)(NCS)]+.
Collapse
Affiliation(s)
- Agustina Cotic
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Frank W Heinemann
- Department Chemie und Pharmazie, Anorganische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Leonardo D Slep
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alejandro Cadranel
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- Department Chemie und Pharmazie, Physikalische Chemie I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Šrut A, Krewald V. Vibrational Coherences of the Photoinduced Mixed-Valent Creutz-Taube Ion Revealed by Excited State Dynamics. J Phys Chem A 2023; 127:9911-9920. [PMID: 37883652 DOI: 10.1021/acs.jpca.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A recent study of photoinduced mixed-valency in the one-electron reduced form (μ-pz)[RuII(NH3)5]24+ of the Creutz-Taube ion used transient absorption spectroscopy with vis-NIR broadband detection to uncover a mixed-valent excited state with a typical intervalence charge transfer band and a nanosecond lifetime [Pieslinger et al. Angew. Chem., Int. Ed. 2022, 61, e202211747]. Herein, we use excited state dynamics simulations with implicit solvation to elucidate the electronic and vibrational evolution in the first 10 ps after the optical excitation. A manifold of excited states with weak interaction between the metal centers is populated already at time zero due to the breakdown of the Condon approximation and dominates the population of electronic states at short time scales (<0.5 ps). A long-lived vibrational wave packet mostly confined to oscillations of the metal center-bridge distances is observed. The oscillations are traced to the electronic structure properties of states with weak metal-metal coupling. The long-lived mixed-valent excited state of the Creutz-Taube ion analogue is formed vibrationally cold and has a more compact geometry. While experimentally, intersystem crossing and vibrational relaxation were deduced to be completed within 1 ps, our analysis indicates that both processes might persist at longer times.
Collapse
Affiliation(s)
- Adam Šrut
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Ramírez-Wierzbicki I, Pieslinger GE, Aramburu-Trošelj BM, Abate PO, Cadranel A. Ru Monoimines with Extended Excited-State Lifetimes and Geometrical Modulation of Photoinduced Mixed-Valence Interactions. Inorg Chem 2023; 62:3808-3816. [PMID: 36802519 DOI: 10.1021/acs.inorgchem.2c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The photophysical properties of monodentate-imine ruthenium complexes do not usually fulfil the requirements for supramolecular solar energy conversion schemes. Their short excited-state lifetimes, like the 5.2 ps metal-to-ligand charge transfer (MLCT) lifetime of [Ru(py)4Cl(L)]+ with L = pz (pyrazine), preclude bimolecular or long-range photoinduced energy or electron transfer reactions. Here, we explore two strategies to extend the excited-state lifetime, based on the chemical modification of the distal N atom of pyrazine. On one hand, we used L = pzH+, where protonation stabilized MLCT states, rendering thermal population of MC states less favorable. On the other hand, we prepared a symmetric bimetallic arrangement in which L = {(μ-pz)Ru(py)4Cl} to enable hole delocalization via photoinduced mixed-valence interactions. A lifetime extension of 2 orders of magnitude is accomplished, with charge transfer excited states living 580 ps and 1.6 ns, respectively, reaching compatibility with bimolecular or long-range photoinduced reactivity. These results are similar to those obtained with Ru pentaammine analogues, suggesting that the strategy employed is of general applicability. In this context, the photoinduced mixed-valence properties of the charge transfer excited states are analyzed and compared with those of different analogues of the Creutz-Taube ion, demonstrating a geometrical modulation of the photoinduced mixed-valence properties.
Collapse
Affiliation(s)
- Ivana Ramírez-Wierzbicki
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - German E Pieslinger
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Bruno M Aramburu-Trošelj
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Pedro O Abate
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alejandro Cadranel
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,Department Chemie und Pharmazie, Physikalische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany.,Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| |
Collapse
|
4
|
Ramírez‐Wierzbicki I, Cotic A, Cadranel A. Photoinduced Intervalence Charge Transfers: Spectroscopic Tools to Study Fundamental Phenomena and Applications. Chemphyschem 2022; 23:e202200384. [PMID: 35785464 PMCID: PMC9805035 DOI: 10.1002/cphc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Indexed: 01/09/2023]
Abstract
The exploitation of excited state chemistry for solar energy conversion or photocatalysis has been continuously increasing, and the needs of a transition to a sustainable human development indicate this trend will continue. In this scenario, the study of mixed valence systems in the excited state offers a unique opportunity to explore excited state electron transfer reactivity, and, in a broader sense, excited state chemistry. This Concept article analyzes recent contributions in the field of photoinduced mixed valence systems, i. e. those where the mixed valence core is absent in the ground state but created upon light absorption. The focus is on the utilization of photoinduced intervalence charge transfer bands, detected via transient absorption spectroscopy, as key tools to study fundamental phenomena like donor/acceptor inversion, hole delocalization, coexistence of excited states and excited state nature, together with applications in molecular electronics.
Collapse
Affiliation(s)
- Ivana Ramírez‐Wierzbicki
- Instituto de Química Física de MaterialesMedio Ambiente y Energía (INQUIMAE)CONICET – Universidad de Buenos AiresPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Departamento de Química InorgánicaAnalítica y Química FísicaUniversidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
| | - Agustina Cotic
- Instituto de Química Física de MaterialesMedio Ambiente y Energía (INQUIMAE)CONICET – Universidad de Buenos AiresPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Departamento de Química InorgánicaAnalítica y Química FísicaUniversidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
| | - Alejandro Cadranel
- Instituto de Química Física de MaterialesMedio Ambiente y Energía (INQUIMAE)CONICET – Universidad de Buenos AiresPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Departamento de Química InorgánicaAnalítica y Química FísicaUniversidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Department Chemie und PharmaziePhysikalische ChemieFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstraße 391058ErlangenGermany
| |
Collapse
|
5
|
Cadranel A, Gravogl L, Munz D, Meyer K. Intense Photoinduced Intervalence Charge Transfer in High-Valent Iron Mixed Phenolate/Carbene Complexes. Chemistry 2022; 28:e202200269. [PMID: 35302682 PMCID: PMC9401866 DOI: 10.1002/chem.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/09/2022]
Abstract
We report high-valent iron complexes supported by N-heterocyclic carbene (NHC)-anchored, bis-phenolate pincer ligands that undergo ligand-to-metal charge transfer (LMCT) upon photoexcitation. The resulting excited states - with a lifetime in the picosecond range - feature a ligand-based, mixed-valence system and intense intervalence charge transfer bands in the near-infrared region. Upon oxidation of the complex, corresponding intervalence charge transfer absorptions are also observed in the ground state. We suggest that the spectroscopic hallmarks of such LMCT states provide useful tools to decipher excited-state decay mechanisms in high-valent NHC complexes. Our observations further indicate that NHC-anchored, bis-phenolate pincer ligands are not sufficiently strong donors to prevent the population of excited metal-centered states in high-valent iron complexes.
Collapse
Affiliation(s)
- Alejandro Cadranel
- Department Chemie und PharmaziePhysikalische ChemieFriedrich-Alexander-Universität Erlangen–NürnbergEgerlandstraße 391058ErlangenGermany
- Departamento de Química InorgánicaAnalítica y Química FísicaUniversidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Instituto de Química Física de MaterialesMedio Ambiente y Energía (INQUIMAE)CONICET–Universidad de Buenos AiresPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
| | - Lisa Gravogl
- Department Chemie und PharmazieAnorganische ChemieFriedrich-Alexander-Universität Erlangen–NürnbergEgerlandstraße 191058ErlangenGermany
| | - Dominik Munz
- Department Chemie und PharmazieAnorganische ChemieFriedrich-Alexander-Universität Erlangen–NürnbergEgerlandstraße 191058ErlangenGermany
- Anorganische Chemie: KoordinationschemieUniversität des SaarlandesCampus C4.166123SaarbrückenGermany
| | - Karsten Meyer
- Department Chemie und PharmazieAnorganische ChemieFriedrich-Alexander-Universität Erlangen–NürnbergEgerlandstraße 191058ErlangenGermany
| |
Collapse
|
6
|
Cotic A, Cerfontaine S, Slep LD, Elias B, Troian-Gautier L, Cadranel A. A photoinduced mixed valence photoswitch. Phys Chem Chem Phys 2022; 24:15121-15128. [PMID: 35699139 DOI: 10.1039/d2cp01791a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ground state and photoinduced mixed valence states (GSMV and PIMV, respectively) of a dinuclear (Dp4+) ruthenium(II) complex bearing 2,2'-bipyridine ancillary ligands and a 2,2':4',4'':2'',2'''-quaterpyridine (Lp) bridging ligand were investigated using femtosecond and nanosecond transient absorption spectroscopy, electrochemistry and density functional theory. It was shown that the electronic coupling between the transiently light-generated Ru(II) and Ru(III) centers is HDA ∼ 450 cm-1 in the PIMV state, whereas the electrochemically generated GSMV state showed HDA ∼ 0 cm-1, despite virtually identical Ru-Ru distances. This stemmed from the changes in dihedral angles between the two bpy moieties of Lp, estimated at 30° and 4° for the GSMV and PIMV states, respectively, consistent with a through-bond rather than a through-space mechanism. Electronic coupling can be turned on by using visible light excitation, making Dp4+ a competitive candidate for photoswitching applications. A novel strategy to design photoinduced charge transfer molecular switches is proposed.
Collapse
Affiliation(s)
- Agustina Cotic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. .,CONICET - Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Simon Cerfontaine
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| | - Leonardo D Slep
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. .,CONICET - Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| | - Alejandro Cadranel
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. .,CONICET - Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Physical Chemistry I, Egerlandstr. 3, 91058, Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Interdisciplinary Center for Molecular Materials, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
7
|
Wang H, Shao JY, Duan R, Wang KZ, Zhong YW. Synthesis and electronic coupling studies of cyclometalated diruthenium complexes bridged by 3,3',5,5'-tetrakis(benzimidazol-2-yl)-biphenyl. Dalton Trans 2021; 50:4219-4230. [PMID: 33687405 DOI: 10.1039/d1dt00263e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three cyclometalated diruthenium complexes bridged by 3,3',5,5'-tetrakis(benzimidazol-2-yl)biphenyl (H-tbibp) and capped with different terminal ligands have been synthesized and examined. In addition, two monoruthenium complexes with H-tbibp have been prepared for the purpose of comparison studies. The degree of Ru-Ru electronic coupling of these diruthenium complexes has been investigated by electrochemical and intervalence charge-transfer (IVCT) analyses. These results suggest that when the same or similar terminal ligands are used, the strength of H-tbibp in mediating the Ru-Ru coupling is enhanced with respect to that of the previously reported bridging ligand 3,3',5,5'-tetrakis(N-methylbenzimidazol-2-yl)biphenyl, but it is slightly inferior to that of the classical bridging ligand 3,3',5,5'-tetrakis(pyrid-2-yl)biphenyl. This trend is also supported by CNS analyses based on the hole-superexchange mechanism. In addition, DFT calculations have been performed to probe the spin density distributions of the singly-oxidized diruthenium complexes with H-tbibp and TDDFT calculations are used to reproduce the IVCT transitions.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | |
Collapse
|
8
|
Bifurcation of excited state trajectories toward energy transfer or electron transfer directed by wave function symmetry. Proc Natl Acad Sci U S A 2021; 118:2018521118. [PMID: 33468650 DOI: 10.1073/pnas.2018521118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work explores the concept that differential wave function overlap between excited states can be engineered within a molecular chromophore. The aim is to control excited state wave function symmetries, so that symmetry matches or mismatches result in differential orbital overlap and define low-energy trajectories or kinetic barriers within the excited state surface, that drive excited state population toward different reaction pathways. Two donor-acceptor assemblies were explored, where visible light absorption prepares excited states of different wave function symmetry. These states could be resolved using transient absorption spectroscopy, thanks to wave function symmetry-specific photoinduced optical transitions. One of these excited states undergoes energy transfer to the acceptor, while another undertakes a back-electron transfer to restate the ground state. This differential behavior is possible thanks to the presence of kinetic barriers that prevent excited state equilibration. This strategy can be exploited to avoid energy dissipation in energy conversion or photoredox catalytic schemes.
Collapse
|
9
|
Aramburu-Trošelj BM, Ramírez-Wierzbicki I, Scarcasale F, Oviedo PS, Baraldo LM, Cadranel A. Wave-Function Symmetry Control of Electron-Transfer Pathways within a Charge-Transfer Chromophore. J Phys Chem Lett 2020; 11:8399-8405. [PMID: 32924492 DOI: 10.1021/acs.jpclett.0c02167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite a diverse manifold of excited states available, it is generally accepted that the photoinduced reactivity of charge-transfer chromophores involves only the lowest-energy excited state. Shining a visible-light laser pulse on an aqueous solution of the chromophore-quencher [Ru(tpy)(bpy)(μNC)OsIII(CN)5]- assembly (tpy = 2,2';6,2''-terpyridine and bpy = 2,2'-bipyridine), we prepared a mixture of two charge-transfer excited states with different wave-function symmetry. We were able to follow, in real time, how these states undergo separate electron-transfer reaction pathways. As a consequence, their lifetimes differ in 3 orders of magnitude. Implicit are energy barriers high enough to prevent internal conversion within early excited-state populations, shaping isolated electron-transfer channels in the excited-state potential energy surface. This is relevant not only for supramolecular donor/acceptor chemistry with restricted donor/acceptor relative orientations. These energy barriers provide a means to avoid chemical potential dissipation upon light absorption in any molecular energy conversion scheme, and our observations invite to explore wave-function symmetry-based strategies to engineer these barriers.
Collapse
Affiliation(s)
- Bruno M Aramburu-Trošelj
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ivana Ramírez-Wierzbicki
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Franco Scarcasale
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Paola S Oviedo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Luis M Baraldo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alejandro Cadranel
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|