1
|
Udhayakumari D. A review on polycyclic aromatic compounds based chemosensors for toxic ions detection - Present and future perspective. Talanta 2024; 278:126536. [PMID: 39003838 DOI: 10.1016/j.talanta.2024.126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
This comprehensive review delves into the current landscape and future outlook of chemosensors constructed from polycyclic aromatic compounds (PACs) for the detection of toxic ions. PACs, known for their unique molecular properties, have emerged as key building blocks for the development of chemosensors due to their sensitivity, selectivity, and versatility. The review begins by providing an overview of the existing literature on PAC-based chemosensors, detailing their design principles, structural modifications, and mechanisms of ion recognition. The discussion encompasses various toxic ions, including heavy metals, anions, and other environmental pollutants, showcasing the broad applicability of PAC-based chemosensors in diverse analytical contexts. The review also highlights recent advancements in the field, exploring novel strategies and materials for enhancing the performance of PAC-based chemosensors. Furthermore, the review critically evaluates the current challenges and limitations associated with PAC-based chemosensors, offering insights into potential avenues for future research and technological development.
Collapse
|
2
|
Lee S, Lee JJ, Jung S, Choi B, Lee HS, Kim KT, Kim C. Fast and easy detection of hypochlorite by a smartphone-based fluorescent turn-on probe: Applications to water samples, zebrafish and plant imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124418. [PMID: 38749200 DOI: 10.1016/j.saa.2024.124418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
We have developed a fluorescent probe DBT-Cl ((E)-2-(2-(4-(diphenylamino)benzylidene) hydrazinyl)-N,N,N-trimethyl-2-oxoethan-1-aminium chloride) for ClO- with an aggregation-induced emission (AIE) strategy depending on solvent polarity. DBT-Cl possessed a prominent solvatochromic emission property with intramolecular charge transfer (ICT) from the TPA (triphenylamine) to the amide group, which was studied by spectroscopic analysis and DFT calculations. These unique AIE properties of DBT-Cl led to the recognition of ClO- with high fluorescent selectivity. DBT-Cl quickly detected ClO- in less than 1 sec with a fluorescent color change from green to cyan. DBT-Cl had a low detection limit of 9.67 μM to ClO-. Detection mechanism of DBT-Cl toward ClO- was illustrated to be oxidative cleavage of DBT-Cl by 1H NMR titrations, ESI-mass, and DFT calculations. We established the viability for dependable detection of ClO- in actual water samples, as well as zebrafish and plant imaging. In particular, DBT-Cl was capable of easily monitoring ClO- through a smartphone application. Therefore, DBT-Cl assured a promising approach for a fast-responsive and multi-applicable ClO- probe in environmental and living organism systems.
Collapse
Affiliation(s)
- Sooseong Lee
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea
| | - Jae Jun Lee
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea
| | - Sumin Jung
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea
| | - Boeun Choi
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea
| | - Han-Seul Lee
- Department of Environmental Engineering, SNUT (Seoul National University of Science and Technology), Seoul 01811, South Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, SNUT (Seoul National University of Science and Technology), Seoul 01811, South Korea.
| | - Cheal Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea.
| |
Collapse
|
3
|
Kim S, Jung S, Lee JJ, Kim C. A water-soluble colorimetric chemosensor for sequential probing of Cu 2+ and S 2- and its practical applications to test strips, reversible test, and water samples. J Inorg Biochem 2024; 256:112568. [PMID: 38678914 DOI: 10.1016/j.jinorgbio.2024.112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
A water-soluble colorimetric chemosensor NHOP ((E)-1-(2-(2-(2-hydroxy-5-nitrobenzylidene)hydrazineyl)-2-oxoethyl)pyridin-1-ium) chloride) was developed for the sequential probing of Cu2+ and S2-. NHOP underwent a color change from pale yellow to colorless in the presence of Cu2+ in pure water. The binding ratio between NHOP and Cu2+ was confirmed to be 1:1 by the Job plot and ESI-MS (electrospray ionization mass spectrometry). The detection limit of NHOP for Cu2+ was calculated as 0.15 μM, which was far below the EPA (Environmental Protection Agency) standard (20 μM). The NHOP-coated test strip was able to easily monitor Cu2+ in real-time. Meanwhile, the NHOP-Cu2+ complex reverted from colorless to pale yellow in the presence of S2- through the demetallation. The stoichiometric ratio between NHOP-Cu2+ and S2- was determined to be 1:1 by analyzing the Job plot and ESI-MS. The detection limit of NHOP-Cu2+ for S2- was calculated as 0.29 μM, which was very below the WHO (World Health Organization) guideline (14.7 μM). NHOP successfully achieved the quantification for Cu2+ and S2- in water samples. NHOP could work as a sequential probe for Cu2+ and S2- at the biological pH range (7.0-8.4). Moreover, NHOP could successively probe Cu2+ and S2- at least three cycles because of its reversible property. The detection mechanisms of NHOP for Cu2+ and NHOP-Cu2+ for S2- were demonstrated with Job plot, ESI-MS, and DFT (density functional theory) calculations. Therefore, NHOP could work as an efficient sequential probe for Cu2+ and S2- in environmental systems.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 139-743, Republic of Korea
| | - Sumin Jung
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 139-743, Republic of Korea.
| | - Jae Jun Lee
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 139-743, Republic of Korea
| | - Cheal Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 139-743, Republic of Korea.
| |
Collapse
|
4
|
Zhang D, Gil D, Kim C. A Dual-target Fluorescent Chemosensor for Detecting Indium (III) and Hypochlorite with High Selectivity. J Fluoresc 2024; 34:743-753. [PMID: 37358760 DOI: 10.1007/s10895-023-03326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
A dual-target fluorescent chemosensor BQC (((E)-N-benzhydryl-2-(quinolin-2-ylmethylene)hydrazine-1-carbothioamide) was synthesized for detecting In3+ and ClO-. BQC displayed green and blue fluorescence responses to In3+ and ClO- with low detection limits (0.83 µM for In3+ and 2.50 µM for ClO-), respectively. Importantly, BQC is the first fluorescent chemosensor capable of detecting In3+ and ClO-. The binding ratio between BQC and In3+ was determined to be a 2:1 through Job plot and ESI-MS analysis. BQC could be successfully utilized as a visible test kit to detect In3+. Meanwhile, BQC showed a selective turn-on response to ClO- even in the presence of anions or reactive oxygen species. The sensing mechanisms of BQC for In3+ and ClO- were demonstrated by 1 H NMR titration, ESI-MS and theoretical calculations.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Fine Chemistry, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, 01811, Korea
| | - Dongkyun Gil
- Department of Fine Chemistry, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, 01811, Korea.
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, 01811, Korea.
| |
Collapse
|
5
|
Prajapati S, Sinha P, Hindore S, Jana S. Selective turn-on fluorescence sensing of Fe 2+ in real water samples by chalcones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122107. [PMID: 36410175 DOI: 10.1016/j.saa.2022.122107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The design of fluorescence sensor for selective detection of Fe2+ is very important as it is part of different biochemical redox system related to a number of diseases. In many occasion sensors are unable to distinguish Fe2+ from Fe3+ ions. In the present work, we report simple chalcone type sensors for sensing Fe2+ ions in semi aqueous system. The receptors R1 and R2 have showed excellent sensing properties at pH 7 in CH3OH-H2O (1:1, v/v) solvent system. The fluorescence emission intensity of the complexes between hosts and Fe2+ is least affected by the other competitive metal ions leading to the formation of very tight host-guest complex. The LOD for the R1 and R2 for Fe2+ are 1.91 μM and 3.54 μM respectively, which is quite low in compared to the many other reported sensors. The practical applicability of these sensors is determined by the detection of Fe2+ in real water samples. So chalcones would be cost effective PET inhibited fluorescence sensor for Fe2+.
Collapse
Affiliation(s)
- Sunita Prajapati
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India
| | - Sandeep Hindore
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India.
| |
Collapse
|
6
|
Mujthaba Aatif A, Selva Kumar R, Joseph S, Vetriarasu V, Abdul Majeed S, Ashok Kumar S. Pyridinecarbohydrazide-based fluorescent chemosensor for In3+ ions and its applications in water samples, live cells, and zebrafish imaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
AIE active quinazoline based probes for selective detection of Fe3+ and acidochromism. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Man LL, Dou L, Li WD, La YT, Dong WK. A dual-signal half-salamo-based sensing platform for simultaneous colorimetric and fluoremetric detection of Fe3+ and reversible recognition of OH− ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Li M, Feng LC, Feng SS, Dong WK. A nonsymmetric salamo-based turn-off fluorescent probe for the detection of Cu2+ and its structurally rare dinuclear Cu(II) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Singh G, Pawan, Sharma S, Mohit, Satija P, Diksha, Priyanka, Thakur Y, Kaur A. Copper(II) Ion Promoted Reverse Solvatochromic Response of the Silatrane Probe to Spectral Shifts: Preferential Solvation and Computational Approach. Inorg Chem 2022; 61:12043-12061. [PMID: 35861652 DOI: 10.1021/acs.inorgchem.2c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique solvatochromic attitude of an analyte owing to its coordination with metal ions in solvents of different polarities is challenging. Herein, we introduce two new solvatochromic 4-(pentan-3-yl) benzaldehyde-based triazolyl silatrane probes (5 and 6). The solvatochromic behavior of both probes 5 and 6 was studied using Reichardt's E (30) and the Kamlet-Taft empirical scale by UV-visible spectra in 14 solvents (hydrogen-bond donor (HBD) and non-HBD), and the results show that probes 5 and 6 exhibit reverse solvatochromism. Probe 5 witnessed an enhancement in this behavior upon coordination with the Cu2+ ion in MeCN/MeOH solvents due to the intramolecular charge transfer (ICT) process. Interestingly, the binding of probe 5 with Cu2+ ions resulted in an instant color change in MeCN and MeOH from pale yellow to light blue and brown-red, respectively, which can be easily detected by the "naked eye". A solvatochromic study of the complex 5-Cu2+ in binary mixtures of polar aprotic and polar protic solvents (MeCN/MeOH) discloses that the latter are more preferred over polar aprotic solvents in the solvation microsphere. The entire metal coordination process of probe 5 toward the Cu2+ ion can be visualized and was further evaluated by UV-vis/fluorescence spectral titrations, Fourier transform infrared (FT-IR) spectroscopy, and theoretical calculations employing density functional theory (DFT) and time-dependent-DFT (TD-DFT). The proposed analytical approach is believed to play a crucial role in the solvatochromic study of higher coordinated silicon compounds, which may be utilized to develop a solvent-dependent sensor.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Pawan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sanjay Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Mohit
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Pinky Satija
- School of Advanced Chemical Sciences, Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Diksha
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Priyanka
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Yamini Thakur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Amarjit Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
11
|
Vhanale B, Kadam D, Shinde A. Synthesis, spectral studies, antioxidant and antibacterial evaluation of aromatic nitro and halogenated tetradentate Schiff bases. Heliyon 2022; 8:e09650. [PMID: 35711981 PMCID: PMC9192811 DOI: 10.1016/j.heliyon.2022.e09650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/07/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, we report the synthesis, characterization, and biological properties of eleven (3a-3k) novel Schiff bases. The spectral data of FT-IR, 1H NMR, 13C NMR, and LC-MS are associated with these synthesized compounds. From the FT-IR analysis, we confirmed the azomethine (-C=N-) group and from 1H NMR data, the phenolic –OH proton is appeared at range δ 13.92–14.09ppm due to hydrogen bonding. The LC-MS analysis agreed with molecular ion peaks of synthesized Schiff bases. To evaluate the antibacterial activity of newly synthesized compounds were screened against b. licheniformis, b. species, e. coli, and s. aureus. Furthermore, the antioxidant activity was investigated by two methods 2,2-diphenyl-1-picryl hydrazyl (DPPH) and hydroxyl radical scavenging methods. The (-NO2,-Cl,-Br,-I) substituted compounds have shown good antibacterial activity against tested organisms. Also, these compounds were exhibited higher antioxidant activity by given methods.
Collapse
Affiliation(s)
- Bhagwat Vhanale
- P.G. Department of Chemistry, S.C.S.College, Omerga, Maharashtra, 413606, India
| | - Digambar Kadam
- Department of Chemistry, Indira Gandhi Senior College, Nanded, Maharashtra, 431603, India
| | - Avinash Shinde
- P.G. Department of Chemistry, N.E.S. Science College, Nanded, Maharashtra, 431605, India
| |
Collapse
|
12
|
Yadav P, Gond S, Shekher A, Gupta SC, Singh UP, Singh VP. A multifunctional basic pH indicator probe for distinguishable detection of Co 2+, Cu 2+ and Zn 2+ with its utility in mitotracking and monitoring cytoplasmic viscosity in apoptotic cells. Dalton Trans 2022; 51:6927-6935. [PMID: 35445683 DOI: 10.1039/d2dt00286h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal ions such as Co2+, Cu2+ and Zn2+ have extensive applications in biological and industrial realms, but the toxicity caused by these ions poses a serious threat to mankind. However, there is no report in the literature on the development of a chemosensor for distinguishable detection of these toxic ions. Addressing this challenge, a multifunctional probe as a basic pH indicator with both colorimetric and fluorescence turn-on responses has been reported. The probe selectively discriminates Co2+, Cu2+ and Zn2+ ions with brown, dark yellow and greenish yellow colors, respectively, in DMF : water (9 : 1 v/v, HEPES 10 mM). Additionally, a fluorescence turn-on response specific to Zn2+ has also been observed. The sensing mechanism has been explored using UV-Vis, fluorescence spectroscopy and 1H NMR titration and confirmed with computational results. The inhibition of CN isomerization and excited state intramolecular proton transfer (ESIPT) along with chelation enhanced fluorescence emission (CHEF) result in fluorescence enhancement with Zn2+. Job's plot and HRMS spectra confirm a 1 : 1 (L : M) stoichiometry between the probe and metal ions. The probe is able to exhibit excellent viscochromism in DMF : glycerol medium. Live cell imaging on SiHa cells has been successfully performed for intra-cellular detection of Zn2+ at basic pH. Furthermore, the probe displays its utility in mitotracking and monitoring cytoplasmic viscosity changes in SiHa cells. It is efficiently used to recognize the apoptosis process by displaying an enhancement in fluorescence intensity from cancerous SiHa cells to apoptotic cells.
Collapse
Affiliation(s)
- Pranjalee Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Sarita Gond
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.,Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India
| | - Udai P Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vinod P Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Das B, Ghosh A, Dorairaj DP, Dolai M, Karvembu R, Mabhai S, Im H, Dey S, Jana A, Misra A. Multiple ion (Al3+, Cr3+, Fe3+, and Cu2+) sensing using a cell-compatible rhodamine-phenolphthalein-derived Schiff-base probe. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Mishra S, Kumar Singh A. Real time sensor for Fe 3+, Al 3+, Cu 2+ & PPi through quadruple mechanistic pathways using a novel dipodal quinoline-based molecular probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120832. [PMID: 35065423 DOI: 10.1016/j.saa.2021.120832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A quinoline-based small molecular probe, H2L was designed, synthesized and characterized by different spectroscopic methods. It was utilized as a multi-responsive probe for the detection of Fe3+, Al3+, Cu2+ and PPi. It showed very selective instant turn-on fluorimetric response towards Fe3+and Al3+ with a detection limit in nanomolar range. Solutions of H2L containing Fe3+ or Al3+ could sequentially sense PPi by a turn-off mechanism. Also, H2L could determine the presence of Cu2+ very selectively among a series of other metal ions by a sharp change in colour. Detection of Cu2+ through colorimetry was further investigated by systematic UV-Vis studies and the potential of H2L to act as a potential colorimetric sensor for Cu2+ was suitably established. Filter-paper strip experiments were conducted to demonstrate the practical utility of the proposed sensor. Potential applications of H2L as a sensor for pH in the acidic range has also been explored.
Collapse
Affiliation(s)
- Sagarika Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India.
| |
Collapse
|
15
|
Shaji LK, Kumar SKA. A quinoline-benzothiazole-based chemosensor coupled with a smartphone for the rapid detection of In 3+ ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:620-626. [PMID: 35060981 DOI: 10.1039/d1ay01767e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A newly designed quinoline-benzothiazole probe 2-((Z)-((E)-benzo[d]thiazol-2(3H)-ylidenehydrazono)methyl)quinolin-8-ol (L) was synthesized by reacting 8-hydroxyquinoline-2-carbaldehyde with 2-hydrazinobenzothiazole and structurally characterized by various spectroscopic techniques. The sensing ability of probe L was studied with various cations using colorimetry, test paper strips, a red-green-blue (RGB) model and UV-visible spectrophotometry in DMSO : H2O (3 : 7, v/v). The pale yellow colour of L turns into orange on contact with In3+ ions, whereas other tested metal ions did not show any change in colour. The probe L exhibits an absorbance band at 360 nm due to ligand-to-ligand charge transfer (LLCT); upon interaction with In3+ ions, it exhibits a band at 445 nm due to ligand-to-metal charge transfer (LMCT). The probe L binds In3+ in a 2 : 1 ratio with an association constant of 8.1 × 105 M-1 and this is established using the Job's and Benesi-Hildebrand (B-H) methods. The probe L can work in the pH range of 4-8 without interfering with other competing ions. It can be used to detect quantities as low as 2.3 ppb and 85 ppb by spectrophotometry and RGB, respectively. The binding mechanism was studied by 1H NMR titration, ESI mass and FT-IR spectral analysis and well supported by theoretical studies. Overall, probe L demonstrates promising potential for the detection of In3+ ions in the semi-aqueous phase and this is its first report as a colorimetric chromogenic probe.
Collapse
Affiliation(s)
- Leyana K Shaji
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
| |
Collapse
|
16
|
Jayaraj A, Gayathri MS, Sivaraman G, P CAS. A highly potential acyclic Schiff base fluorescent turn on sensor for Zn 2+ ions and colorimetric chemosensor for Zn 2+, Cu 2+ and Co 2+ ions and its applicability in live cell imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112371. [PMID: 34906923 DOI: 10.1016/j.jphotobiol.2021.112371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Herein, we report two acyclic Schiff base receptors CS-1 and CS-2 capable of being selective fluorescent turn on for Zn2+ions and colorimetric chemosensor for Zn2+, Cu2+, and Co2+ ions by showing a colour change from colourless to yellow in 1:1 ratio of acetonitrile and HEPES buffer (1:1, v/v, pH 7.4) without the interference from other metal ions screened (Cd2+, Hg2+, Sn2+, Ni2+, Cr3+, Mn2+, Pb2+, Ba2+, Al3+, Ca2+, Mg2+, K+ and Na+). The fluorescence turn on enhancement towards Zn2+ ions is ascribed to PET blocking, suppression of -C=N- isomerisation, and the ESIPT process. The selectivity, competitivity and reversibility of the synthesised probes (CS-1 and CS-2) made them promising chemosensors for the detection of Zn2+, Cu2+, and Co2+ ions. The density functional theory (DFT) calculations have theoretically endorsed the colorimetric changes in the examined absorption spectra and binding mode of both CS-1/CS-2 with metals ions. In addition, 1H NMR titrations were also consistent with the recognition mechanism of Zn2+ ions with the CS-1/CS-2. Further, the Jobs plot analysis infers a 1:1 stoichiometric ratio for both evaluating receptors CS-1 and CS-2 with Zn2+, Cu2+ and Co2+ ions and was supported by DFT, NMR (only for Zn2+ ions), UV-Visible, and fluorescence spectroscopic studies. Moreover, the detection limits of CS-1 and CS-2 for Zn2+ ions were determined to be 7.69 and 5.35 nM, respectively, which is less compared to the detection limit of Cu2+, Co2+ ions as well as the limit approved by the United State Environmental Protection Agency (US EPA). The probes CS-1 and CS-2 found to show high fluorescence quantum yields at pH = 7 during the titration with Zn2+ as compared with other pHs (5-6 and 8-11). Gratifyingly, fluorescence microscopy imaging in HeLa cells revealed that the pair of receptors can be employed as an excellent fluorescent probe for the detection of Zn2+ions in living cells, indicating that this facile chemosensor has a huge potential in cellular imaging.
Collapse
Affiliation(s)
- Anjitha Jayaraj
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut 673601, India
| | - M S Gayathri
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut 673601, India
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - Chinna Ayya Swamy P
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut 673601, India.
| |
Collapse
|
17
|
Hu T, Wang L, Li J, Zhao Y, Cheng J, Li W, Chang Z, Sun C. A new fluorescent sensor L based on fluorene-naphthalene Schiff base for recognition of Al3+ and Cr3+. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Pu L, Li P, Li S, Xu W, Long H, Dong W. An investigation of structure, Hirshfeld surface, and fluorescence properties of two dinuclear Ni (II) and Zn (II) salamo‐type complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lu‐Mei Pu
- College of Science Gansu Agricultural University Lanzhou China
| | - Peng Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Shi‐Zhen Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Wei‐Bing Xu
- College of Science Gansu Agricultural University Lanzhou China
| | - Hai‐Tao Long
- College of Science Gansu Agricultural University Lanzhou China
| | - Wen‐Kui Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
19
|
A family of salamo-type trinuclear Co(II) and Ni(II) complexes: Structural characterization, Hirshfeld surface analysis and fluorescent properties. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Ju H, Taniguchi A, Kikukawa K, Horita H, Ikeda M, Kuwahara S, Habata Y. Argentivorous Molecules with Chromophores in Side Arms: Silver Ion-Induced Turn On and Turn Off of Fluorescence. Inorg Chem 2021; 60:9141-9147. [PMID: 34085518 DOI: 10.1021/acs.inorgchem.1c01161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of argentivorous molecules (L1 and L2) having two chromophores (4-(anthracen-9-yl)benzyl or 4-(pyren-1-yl)benzyl groups) and two benzyl groups and the fluorescence properties of their silver complexes in a solution and the solid state are reported. A crystallographic approach for the Ag+ complexes with L1 and L2 revealed that the observed fluorescence changes stem from the excimer formation and extinction of fluorescent. Furthermore, binding stabilities of L1 and L2 toward Ag+ ions were estimated by the Ag+-induced UV-vis and PL spectral changes.
Collapse
Affiliation(s)
- Huiyeong Ju
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Aya Taniguchi
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Kaoru Kikukawa
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hiroki Horita
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Mari Ikeda
- Education Center, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan
| | - Shunsuke Kuwahara
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.,Research Center for Materials with Integrated Properties, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yoichi Habata
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.,Research Center for Materials with Integrated Properties, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
21
|
Jothi D, Munusamy S, Sawminathan S, Kulathu Iyer S. Highly sensitive naphthalimide based Schiff base for the fluorimetric detection of Fe 3. RSC Adv 2021; 11:11338-11346. [PMID: 35423638 PMCID: PMC8695811 DOI: 10.1039/d1ra00345c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/21/2021] [Indexed: 12/26/2022] Open
Abstract
A simple 1,8-naphthalimide based Schiff base probe (E)-6-((4-(diethylamino)-2-hydroxybenzylidene)amino)-2-(2-morpholinoethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NDSM) has been designed and synthesized for the specific detection of Fe3+ based on a fluorimetric mode. The absorbance of NDSM at 360 nm increased significantly in acetonitrile : water (7 : 3, v/v) medium only in the presence of Fe3+ ions with a visible colour change from yellow to golden yellow. Likewise, fluorescence emission intensity at 531 nm was almost wholly quenched in the presence of Fe3+. However, other competitive ions influenced insignificantly or did not affect the optical properties of NDSM. Lysosome targetability was expected from NDSM due to the installation of a basic morpholine unit. The LOD was found to be 0.8 μM with a response time of seconds. The fluorescence reversibility of NDSM + Fe3+ was established with complexing agent EDTA. Fe3+ influences the optical properties of NDSM by complexing with it, which blocks C[double bond, length as m-dash]N isomerization in addition to the ICT mechanism. The real-time application of Fe3+ was demonstrated in test paper-based detection, by the construction of a molecular logic gate, quantification of Fe3+ in water samples and fluorescence imaging of Fe3+.
Collapse
Affiliation(s)
- Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | - Sathishkumar Munusamy
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Sathish Sawminathan
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | | |
Collapse
|
22
|
Zhu M, Zhao Z, Liu X, Chen P, Fan F, Wu X, Hua R, Wang Y. A novel near-infrared fluorimetric method for point-of-care monitoring of Fe 2+ and its application in bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124767. [PMID: 33310335 DOI: 10.1016/j.jhazmat.2020.124767] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Iron is one of the essential trace elements in the human body, which is involved in many important physiological processes of life. The abnormal amount of iron in the body will bring many diseases. Therefore, a novel near-infrared fluorimetric method was developed. The method is based on a fluorescent probe (E)-4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-en-1-yl)vinyl)-N, N-diethylaniline oxide (DDED) which uses N-oxide as a recognition group to real-time monitoring and imaging of Fe2+ in vivo and in vitro. The method exhibits excellent selectivity and high sensitivity (LOD = 27 nM) for Fe2+, fast reaction rate (< 4 min), extremely large Stokes shift (> 275 nm), low cytotoxicity. The strip test strongly illustrates the potential application of DDED in real environment. In particular, DDED has been successfully applied to real-time monitoring and imaging of Fe2+ in HepG2 cells and zebrafish. That is, the method has great potential for the detection of Fe2+ in living systems.
Collapse
Affiliation(s)
- Meiqing Zhu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Zongyuan Zhao
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xina Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Panpan Chen
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Fugang Fan
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiangwei Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Li P, Yao GX, Li M, Dong WK. Influence of different counteranions on supramolecular self-assemblies, Hirshfeld surfaces analyses and fluorescence properties of three multi-nuclear Cu(II) salamo-based complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114981] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Li B, Liu Z, Li L, Xing Y, Liu Y, Yang X, Pei M, Zhang G. A Schiff base sensor for relay monitoring of In3+ and Fe3+ through “off–on–off” fluorescent signals. NEW J CHEM 2021. [DOI: 10.1039/d1nj00929j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Schiff base N′-(3-ethoxy-2-hydroxybenzylidene)-4,5-dihydronaphtho[1,2-b]thiophene-2-carbohydrazide (LB2) was designed and synthesized and could be used as a sensor to identify In3+ and Fe3+ through fluorescence ‘off–on–off’ behavior.
Collapse
Affiliation(s)
- Bing Li
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Zhihua Liu
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd
- Sanmenxia
- China
| | - Linlin Li
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Yujing Xing
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Yuanying Liu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| |
Collapse
|
25
|
Tehrani T, Meghdadi S, Salarvand Z, Tavakoli B, Eskandari K, Amirnasr M. An anthracene–quinoline based dual-mode fluorometric–colorimetric sensor for the detection of Fe 3+ and its application in live cell imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj00178g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive anthracene–quinoline based dual-mode sensor has been synthesized and used for the fluorometric and colorimetric detection of Fe3+ and in live cell imaging.
Collapse
Affiliation(s)
- Tahereh Tehrani
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 8415683111
- Iran
| | - Soraia Meghdadi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 8415683111
- Iran
| | - Zohreh Salarvand
- Department of Chemistry
- Chemistry and Petrochemistry Research Center
- Institute of Standard and Industrial Research of Iran (ISIRI)
- Karaj 3174734563
- Iran
| | - Behnam Tavakoli
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 8415683111
- Iran
| | - Kiamars Eskandari
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 8415683111
- Iran
| | - Mehdi Amirnasr
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 8415683111
- Iran
| |
Collapse
|
26
|
Dayanidhi K, Sheik Eusuff N. Distinctive detection of Fe 2+ and Fe 3+ by biosurfactant capped silver nanoparticles via naked eye colorimetric sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj01342d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Distinctive detection of Fe2+ and Fe3+via naked eye colorimetic sensing.
Collapse
Affiliation(s)
- Kalaivani Dayanidhi
- PG & Research Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Velachery
- Chennai
| | - Noorjahan Sheik Eusuff
- PG & Research Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Velachery
- Chennai
| |
Collapse
|
27
|
Kim SH, Kim J, Kim SK. Calix[4]arenes bearing triazolyl anthracenes: Hg 2+-selective receptors exhibiting fluorescence or dual optical responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj03753f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An azo-coupled calix[4]arene with triazolyl anthracenes detects Hg2+ with high selectivity via dual optical responses.
Collapse
Affiliation(s)
- Seung Hyeon Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Jaehyeon Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 660-701, Korea
| |
Collapse
|
28
|
Park J, Yu H, Park SH, Lee KH. Selective ratiometric red-emission detection of In 3+ in aqueous solutions and in live cells using a fluorescent peptidyl probe and metal chelating agent. Analyst 2020; 145:4031-4040. [PMID: 32364198 DOI: 10.1039/d0an00288g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Indium has been regarded as one of the most rarely used metal ions; however, the consumption of indium has increased intensively due to its increasing use in electrodes of liquid crystal displays (LCDs). In recent years, warnings have been issued about the toxicity of indium to aquatic ecosystems and humans. Thus, the development of efficient and selective detection methods for In3+ in aquatic environments as well as in live cells is highly required. However, the selective and sensitive detection of In3+ in the presence of trivalent metal ions and other metal ions is highly challenging. In the present study, we synthesized a fluorescent probe (1) for In3+ and Al3+ based on an unnatural peptide receptor and an aggregation-induced emission fluorophore and developed a selective fluorescent detection method for In3+ in aqueous solutions and live cells using the probe and a metal chelating agent. 1 recognized In3+ and Al3+ selectively among 19 metal ions in aqueous solutions depending on pH by the enhancement of the red emission at 600 nm and decrease in the green emission at 530 nm. 1 sensitively detected In3+ and Al3+ by ratiometric response in a wide pH range (3.5-7.4), and the ratiometric response was complete within 20 seconds in an aqueous buffered solution at pH 5.0. Interestingly, the addition of EDTA to the complex of 1 with In3+ or Al3+ did not induce the Al3+-free spectrum but instead induced the In3+-free spectrum; thus, In3+ and Al3+ could be easily differentiated. The detection limit of 1 for In3+ ions was 211 nM (R2 = 0.981) in purely aqueous solutions. The fluorescence ratiometric detection method using 1 could quantify low concentrations of In3+ in ground water and tap water. Fluorescence cell image studies revealed that the probe was cell-permeable, and low concentrations of In3+ inside the cells could be recognized by the enhancement of the red emission at 600 nm. The binding mode study via NMR, IR, and CD spectroscopy revealed how the peptide receptor of 1 interacted with In3+ and resulted in the enhancement of the red emission in an aqueous solution.
Collapse
Affiliation(s)
- Joohee Park
- Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, South Korea.
| | | | | | | |
Collapse
|