1
|
Kumar A, Kumar K, Kaur K, Arya K, Mehta SK, Singh S, Kataria R. Zn-MOF@rGO nanocomposite: a versatile tool for highly selective and sensitive detection of Pb 2+ and Cu 2+ ions in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6020-6029. [PMID: 39175357 DOI: 10.1039/d4ay00987h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In this work, a hybrid nanocomposite material (PUC2@rGO) was prepared by integrating our previously developed Zn-MOF (PUC2) with reduced graphene oxide (rGO) through the wet impregnation method. The characterization of PUC2@rGO was performed using various analytical techniques, including FTIR, PXRD, FE-SEM, HR-TEM, XPS, zeta potential, and time-resolved FL spectroscopy. Our investigation primarily focused on assessing the composite's capability to detect water pollutants. Notably, PUC2@rGO demonstrated remarkable selectivity and sensitivity towards Pb2+ and Cu2+ ions via fluorescence quenching, exhibiting low detection limits and high quenching constant values. Spectroscopic analysis revealed that electron transfer from PUC2@rGO (donor) to the metal ions (acceptor) resulted in the observed quenching effect induced by Pb2+ and Cu2+ ions. Time-resolved fluorescence studies of PUC2@rGO before and after adding Pb2+ and Cu2+ ions confirmed dynamic quenching, further affirming strong interactions between PUC2@rGO and the targeted metal ions. These findings highlight PUC2@rGO's potential for efficiently detecting heavy metal pollutants in water.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140301, India
| | - Kuldeep Kumar
- Dr. S. S. Bhatnagar University, Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140301, India
| | - Kushal Arya
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Surinder Singh
- Dr. S. S. Bhatnagar University, Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
2
|
Madhukar N, Adusumalli VNKB, Koppisetti HVSRM, Mondal A, Ito A, Park YI, Mahalingam V. Selective Detection of Chromate and Permanganate Ions Using Gallic Acid Capped CaF 2:Tb 3+ Nanocrystals. Chem Asian J 2024:e202400597. [PMID: 39145684 DOI: 10.1002/asia.202400597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
In this study, we have developed ligand-sensitized Ln3+-doped nanocrystals (NCs) for the selective sensing of Cr2O7 2- and MnO4 - ions in nanomolar concentrations. This is accomplished with the gallic acid capped-CaF2:Tb3+ NCs. These NCs display bright green emission through an efficient energy transfer from surface functionalized gallic acid molecules to Tb3+ ions upon UV light excitation. The luminescence from Tb3+ ions are selectively quenched by the addition of Cr2O7 2- and MnO4 - anions. The reduction in the luminescence intensity is found to be quite selective, as the addition of other strong oxidizing species (I-, F-, Br-, Cl-, PO3 2-, SO4 2-, VO3 -, WO4 2-, IO3 -, ClO4 -,) had minimal impact on the luminescence intensity of Tb3+ ions. The calculated limit of detection from the experimental results (for the 3σ/slope criterion) is 77 nM and 55 nM for K2Cr2O7 and KMnO4, respectively. The findings show that tuning the resonance energy transfer (RET) between analytes and Tb3+ inside the NCs serves as a tool for the detection of dichromate and permanganate ions selectively.
Collapse
Affiliation(s)
- Nikita Madhukar
- Graduate School Engineering, Kochi University of Technology, Kami, Kochi, 782-8502, Japan
| | - Venkata N K B Adusumalli
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South-Korea
| | - Heramba V S R M Koppisetti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Ayan Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Akitaka Ito
- Graduate School Engineering, Kochi University of Technology, Kami, Kochi, 782-8502, Japan
| | - Yong Ii Park
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South-Korea
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
3
|
Wang XQ, Yang J, Zhang M, Wu D, Hu T, Yang J. Highly stable lanthanide(III) metal-organic frameworks as ratiometric fluorescence sensors for vitamin B 6. Dalton Trans 2023; 52:13387-13394. [PMID: 37676645 DOI: 10.1039/d3dt01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Three lanthanide(III)-based metal-organic frameworks, formulated as [(CH3)2NH2]2[Ln6(μ3-OH)8(EBTC)3(H2O)6]·4H2O·2DMF (Ln = Eu (1), Tb (2) and Ce (3)), were synthesized using a rigid tetracarboxylate organic ligand (1,1'-ethynebenzene-3,3',5,5'-tetracarboxylic acid, H4EBTC). Complexes 1-3 possess 12-connected hexanuclear [Ln6(μ3-OH)8(OOC-)12(H2O)6] clusters with the ftw topology, which were stable in water and acid/alkaline aqueous solution. Due to the antenna effect, complexes 1 and 2 presented double fluorescence emission peaks, which are the characteristic emission peaks of Ln3+ ions and the ligand H4EBTC, respectively. The doped bimetallic EuxTb1--x-MOFs were obtained by tuning the Eu(III)/Tb(III) ratio during the reaction, which exhibited a colour change from red, orange, and yellow to green. Furthermore, complexes 1, 2 and Eu2Tb8-MOF as ratiometric fluorescence sensors exhibited excellent sensing ability for vitamin B6 (VB6) in phosphate buffer solution (pH = 7.35) and real samples with high selectivity and reusability. The low detection limit (LOD) values were calculated to be 1.03 μM for complex 1, 0.25 μM for complex 2 and 0.11 μM for Eu2Tb8-MOF in aqueous solution. Finally, a visual film based on Ln-MOF@SA was prepared to detect VB6 with high reusability.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of advanced carbon based electrode materials, North University of China, Taiyuan 030051, China
| | - Jiandong Yang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Man Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Dan Wu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of advanced carbon based electrode materials, North University of China, Taiyuan 030051, China
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
4
|
Ding S, Zhou Q, Ren G, Yang Y, Wang C, Che G, Li M, He D, Pan Q. Single-phase white light material and antibiotic detection of lanthanide metal-organic frameworks. Dalton Trans 2023; 52:12112-12118. [PMID: 37581485 DOI: 10.1039/d3dt01830j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
WLEDs have been widely used in lighting and display equipment due to their energy-saving and environment-friendly advantages, but it is still a great challenge to construct high-quality single-phase white light materials for the preparation of WLEDs. In this work, three Ln-MOFs (HNU-82-84) with the same structure were synthesized by assembling rare earth ions (Tb3+, Eu3+, La3+) and 4,4',4''-nitrilotribenzoic acid (H3TCA) ligands. The structure and optical properties of the three compounds were investigated. Under the ultraviolet lamp, HNU-82-84 displays green light, red light, and blue light emission, respectively. Based on the RGB principle, aiming at the single-phase white material, the proportion of adding rare earth ions is reasonably adjusted to design and synthesize the Ln-MOF (Eu0.015Tb0.037La0.148-TCA) with CIE chromaticity coordinates of (0.319, 0.344). In addition, the WLED was prepared by Eu0.015Tb0.037La0.148-TCA and commercial LED lamps. Furthermore, HNU-82 has strong fluorescence emission and good water stability and can be used to detect nitrofurazone (NZF) and nitrofurantoin (NFT). The concentrations of the aqueous solutions of NZF and NFT had a well correlated linear relationship with the fluorescence quenching effect of HNU-82, and the detection limits were 6.60 × 10-7 mol L-1 and 4.62 × 10-7 mol L-1, respectively. Hence, HNU-82 also has potential as a fluorescent sensor for the detection of NZF and NFT in the aquatic environment.
Collapse
Affiliation(s)
- Shunan Ding
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yonghang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - MeiLing Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Danfeng He
- School of Science, Qiongtai Normal University, Haikou 571127, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Xue J, Wang Y, Yang G, Wang Y. Energy transfer, anticounterfeiting, white light emission and sensing in fine-regulating series of lanthanide metal-organic frameworks. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
Luo J, Liu BS, Zhang YC, Wang BK, Guo BB, She L, Chen TH. A new fluorescent probe constructed by europium(III)-organic framework (Eu-MOF) for detecting Cu2+ selectively and sensitively. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Lunev AM, Sidoruk AV, Gontcharenko VE, Kiskin MA, Taydakov IV, Belousov YA, Drozdov AA. Novel pyrazole-based carboxylate ligand as a building block for assembling lanthanides in luminescent 2D and 3D MOFs. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Lu TQ, Xu H, Cheng LT, Wang XT, Chen C, Cao L, Zhuang GL, Zheng J, Zheng XY. Family of Nanoclusters, Ln 33 (Ln = Sm/Eu) and Gd 32, Exhibiting Magnetocaloric Effects and Fluorescence Sensing for MnO 4. Inorg Chem 2022; 61:8861-8869. [PMID: 35653200 DOI: 10.1021/acs.inorgchem.2c00898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A family of nanoclusters, [Ln33(EDTA)12(OAc)2(CO3)4(μ3-OH)36(μ5-OH)4(H2O)38]·OAc·xH2O (x ≈ 50, Ln = Sm for 1; x ≈ 70, Ln = Eu for 2) and [Gd32(EDTA)12(OAc)2(C2O4)(CO3)2(μ3-OH)36(μ5-OH)4(H2O)36]·x(H2O) (x ≈ 70 for 3; H4EDTA = ethylene diamine tetraacetic acid), was prepared through the assembly of repeating subunits under the action of an anion template. The analysis of the structures showed that compounds 1 and 2 containing 33 Ln3+ ions were isostructural, which were constructed by three kinds of subunits in the presence of CO32- as an anion template, while compound 3 had a slightly different structure. Compound 3 containing 32 Gd3+ ions was formed by three types of subunits in the presence of CO32- and C2O42- as a mixed anion template. The CO32- anions came from the slow fixation of CO2 in the air. Meanwhile, one kind of high-nuclearity lanthanide clusters showed high chemical stability. The quantum Monte Carlo (QMC) calculation suggested that weak antiferromagnetic interactions were dominant between Gd3+ ions in 3. Magnetocaloric studies showed that compound 3 had a large entropy change of 43.0 J kg-1 K-1 at 2 K and 7 T. Surprisingly, compound 2 showed excellent recognition and detection effects for permanganate in aqueous solvents based on the fluorescence quenching phenomenon.
Collapse
Affiliation(s)
- Tian-Qi Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Han Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Lan-Tao Cheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Xue-Tao Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Lingyun Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Lunev AM, Belousov YA. Luminescent sensor materials based on rare-earth element complexes for detecting cations, anions, and small molecules. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Zhao Y, Cheng J, Li J, Wang L, Li W, Chang Z, Sun C. The synthesis of a new aromatic polycarboxylic acid and its property as fluorescence-colorimetric chemosensor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Yu CX, Jiang W, Wang KZ, Liang AP, Song JG, Zhou YL, Sun XQ, Liu LL. Luminescent Two-Dimensional Metal-Organic Framework Nanosheets with Large π-Conjugated System: Design, Synthesis, and Detection of Anti-Inflammatory Drugs and Pesticides. Inorg Chem 2022; 61:982-991. [PMID: 34968039 DOI: 10.1021/acs.inorgchem.1c03040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) nanosheets, with largely exposed surface area and highly accessible active sites, have emerged as a novel kind of sensing material. Here, a luminescent 2D MOF nanosheet was designed and synthesized by a facile top-down strategy based on a three-dimensional (3D) layered MOF {[Zn(H2L)(H2O)2]·H2O}n (Zn-MOF; H4L = 3,5-bis(3',5'-dicarboxyphenyl)-1H-1,2,4-triazole). With a large π-conjugated system and rigid planar structure, ligand H4L was elaborately selected to construct the bulk Zn-MOF, which can be readily exfoliated into 2D nanosheets, owing to the weak interlayer interactions and easy-to-release H2O molecules in the interspaces of 2D layers. Given the great threat posed to the ecological environment by anti-inflammatory drugs and pesticides, the developed luminescent Zn-MOF nanosheets were utilized to determine these organic pollutants, achieving highly selective and sensitive detection of diclofenac sodium (DCF) and tetramethylthiuram disulfide (TMTD). Compared to the detection limits of 3D Zn-MOF (7.72 ppm for DCF, 6.01 ppm for TMTD), the obviously lower detection limits for 2D Zn-MOF nanosheets toward DCF (0.20 ppm) and TMTD (0.18 ppm) further revealed that the largely exposed surface area with rigid planar structure and ultralarge π-conjugated system greatly accelerated electron transfer, which brought about a vast improvement in response sensitivity. The remarkable quenching performance for DCF and TMTD stems from a combined effect of photoinduced electron transfer and competitive energy absorption. The possible sensing mechanism was systematically investigated by the studies of powder X-ray diffraction, UV-vis, luminescence lifetime, and density functional theory calculations.
Collapse
Affiliation(s)
- Cai-Xia Yu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Wen Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Ke-Zhong Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Ai-Ping Liang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Jian-Guo Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Yan-Li Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Xue-Qin Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
12
|
Wei W, Zhang X, Lu L, Feng S. Novel 2D isomorphic lanthanide complexes based on a bifunctional 5-(pyridin-3-yloxy)isophthalic acid: synthesis, structure, fluorescence and magnetic properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Tb(iii)-complex can be used as a multifunctional luminescent sensor presenting visual quenching responses towards acetone, Fe3+ and CrO42− in aqueous solution with high sensitivity and low detection limits.
Collapse
Affiliation(s)
- Wenwen Wei
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Xue Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Sisi Feng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
13
|
Yang Y, Pang J, Li Y, Sun L, Zhang H, Zhang L, Xu S, Jiang T. Fabrication of a Stable Europium-Based Luminescent Sensor for Fast Detection of Urinary 1-Hydroxypyrene Constructed from a Tetracarboxylate Ligand. Inorg Chem 2021; 60:19189-19196. [PMID: 34865486 DOI: 10.1021/acs.inorgchem.1c02988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel europium-centered metal-organic framework fabricated from a symmetric and rigid ligand with tetracarboxylate groups, 2,6-di(2',5'-dicarboxylphenyl)pyridine (H4ddpp), has been synthesized solvothermally. Characterized by single-crystal X-ray diffraction, compound 1 features a 3D microporous structure with a butterfly-shaped trinuclear Eu3(COO)6 secondary building unit. Interestingly, three kinds of 1D open channels viewed in different directions in compound 1 are discovered, and the void ratio is calculated to be 47.5% by PLATON software. Solid-state luminescent experiments at 298 K reveal that compound 1 displays naked-eye characteristic red emission of Eu3+ ions monitoring the typical 5D0 → 7F2 transition. The exploration of luminescent sensing tests discloses that compound 1 has an outstanding capacity for recognizing urinary 1-hydroxypyrene (1-HP) with a quite fast response and high sensitivity, giving the quenching efficiency of 98.2% after the immersion time for just 1 min and 73.2% with the amount of 1-HP only 0.05 mg/mL. To our knowledge, it is the first reported Eu-MOF as an extremely fast-responsive and highly sensitive luminescent sensor for 1-HP which is interference-free from other urinary components. Furthermore, the successful preparation of the luminescent test papers makes compound 1 convenient, easy, and real-time in the application for sensing 1-HP in biomedical and biological fields.
Collapse
Affiliation(s)
- Yan Yang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jiandong Pang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yunwu Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Lei Sun
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Hao Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Luyao Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Shuting Xu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Taiwen Jiang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
14
|
Wang Y, Chang JP, Xu R, Bai S, Wang D, Yang GP, Sun LY, Li P, Han YF. N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chem Soc Rev 2021; 50:13559-13586. [PMID: 34783804 DOI: 10.1039/d1cs00296a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Though N-heterocyclic carbenes (NHCs) have emerged as diverse and powerful discrete functional molecules in pharmaceutics, nanotechnology, and catalysis over decades, the heterogenization of NHCs and their precursors for broader applications in porous materials, like metal-organic frameworks (MOFs), porous coordination polymers (PCPs), covalent-organic frameworks (COFs), porous organic polymers (POPs), and porous organometallic cages (POMCs) was not extensively studied until the last ten years. By de novo or post-synthetic modification (PSM) methods, myriads of NHCs and their precursors containing building blocks were designed and integrated into MOFs, PCPs, COFs, POPs and POMCs to form various structures and porosities. Functionalisation with NHCs and their precursors significantly expands the scope of the potential applications of porous materials by tuning the pore surface chemical/physical properties, providing active sites for binding guest molecules and substrates and realizing recyclability. In this review, we summarise and discuss the recent progress on the synthetic methods, structural features, and promising applications of NHCs and their precursors in functionalised porous materials. At the end, a brief perspective on the encouraging future prospects and challenges in this contemporary field is presented. This review will serve as a guide for researchers to design and synthesize more novel porous materials functionalised with NHCs and their precursors.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Jin-Ping Chang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Rui Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Dong Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Peng Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| |
Collapse
|
15
|
Zhang CL, Qian JL, Zhou T, Li YQ. The Length of Substituents on Ligands Regulates the Structural Diversity of Coordination Polymers. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Synthesis, luminescence sensor, and electrochemical performance of a terbium coordination polymer. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Structure regulation for ultra-high luminescence quantum yield lanthanide complex and simultaneous detection of cancer marker and ferrous ion. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
ZEYBEL L, KÖSE DA. Novel mixed ligand coordination compounds of some rare earth metal cations containing acesulfamato/N,N-diethylnicotinamide. Turk J Chem 2021; 45:1004-1015. [PMID: 34707430 PMCID: PMC8520393 DOI: 10.3906/kim-2012-47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
The mixed ligand coordination compounds containing acesulfamato and N,N -diethylnicotinamide biomolecules of some rare earth metal cations (Eu3+, Tb3+, Ho3+, Er3+ and Yb3+) were synthesized, and their structural properties were investigated. Possible structural formulas have been proposed by determining the chemical composition of molecules (elemental analysis), binding properties (infrared spectroscopy, mass analysis, solid-state UV-vis spectroscopy), thermal degradation properties (TGA / DTA curves). Based on the data collected, it is suggested that rare earth metal cations with a 3+ oxidation state have sextet coordination. The geometries of the structures were thought to be distorted octahedral. The charge balance of the coordination sphere is balanced by a monoanionic acesulfamato located outside the coordination sphere. When the thermal behaviours of the complexes were examined, it was determined that the compounds with Eu3+, Tb3+, and Yb3+ metal cations contained one hydrate water outside the coordination sphere. Hydrate waters do not exist in the Ho3+ and Er3+ metal cation-centred complexes. At the end of the thermal decomposition analysis of all complex structures, it was determined that they leave the relevant metal oxides in the reaction vessels as final decomposition products.
Collapse
Affiliation(s)
- Leriman ZEYBEL
- Department of Chemistry, Science and Arts Faculty, Hitit University, ÇorumTurkey
| | - Dursun Ali KÖSE
- Department of Chemistry, Science and Arts Faculty, Hitit University, ÇorumTurkey
| |
Collapse
|
19
|
Zhang CL, Qian JL, Zhou T, Li YQ. CONSTRUCTION OF A COBALT COORDINATION
POLYMER BASED ON A LINEAR LIGAND
WITH FLEXIBLE BRANCHED CHAINS. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621060111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Arrué L, Santoyo-Flores J, Pizarro N, Zarate X, Páez-Hernández D, Schott E. The role played by structural and energy parameters of β-Diketones derivatives as antenna ligands in Eu(III) complexes. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Kumar S, Liu S, Mohan B, Zhang M, Tao Z, Wan Z, You H, Sun F, Li M, Ren P. Fluorine-Containing Triazole-Decorated Silver(I)-Based Cationic Metal-Organic Framework for Separating Organic Dyes and Removing Oxoanions from Water. Inorg Chem 2021; 60:7070-7081. [PMID: 33884866 DOI: 10.1021/acs.inorgchem.0c03688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four new triazole-decorated silver(I)-based cationic metal-organic frameworks (MOFs), {[Ag(L1)](BF4)}n (1), {[Ag(L1)](NO3)}n (2), {[Ag(L2)](BF4)}n (3), and {[Ag(L2)](NO3)}n (4), have been synthesized using two newly designed ligands, 3-fluoro-5-(4H-1,2,4-triazol-4-yl)pyridine (L1) and 3-(4H-1,2,4-triazol-4-yl)-5-(trifluoromethyl)pyridine (L2). When the fluorine atom was changed to a trifluoromethyl group at the same position, tremendous enhancement in the MOF dimensionality was achieved [two-dimensional to three-dimensional (3D)]. However, changing the metal salt (used for the synthesis) had no effect. The higher electron-withdrawing tendency of the trifluoromethyl group in L2 aided in the formation of higher-dimensional MOFs with different properties compared with those of the fluoro derivatives. The fluoride group was introduced in the ligand to make highly electron-deficient pores inside the MOFs that can accelerate the anion-exchange process. The concept was proved by density functional theory calculation of the MOFs. Both 3D cationic MOFs were used for dye adsorption, and a remarkable amount of dye was adsorbed in the MOFs. In addition, owing to their cationic nature, the MOFs selectively removed anionic dyes from a mixture of anionic, cationic, and neutral dyes in the aqueous phase. Interestingly, the present MOFs were also highly effective for the removal of oxoanions (MnO4- and Cr2O72-) from water.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Songyuan Liu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mingjian Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhiyu Tao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhijian Wan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mu Li
- Shenzhen Environmental Engineering Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tshinghua University, Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
22
|
Yang X, Yan C, Li Z, Li X, Yu Q, Sang T, Gai Y, Zhang Q, Xiong K. Viologen-Based Cationic Metal-Organic Framework for Efficient Cr 2O 72- Adsorption and Dye Separation. Inorg Chem 2021; 60:5988-5995. [PMID: 33825478 DOI: 10.1021/acs.inorgchem.1c00404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel cationic metal-organic framework composed of {Cu2(COO)4} paddle-wheel units and a tetracarboxylic viologen derivative, namely, {[Cu2(bdcbp)(H2O)2]·2NO3·2H2O}n (Cu-CMOF, H4bdcbpCl2 = 1,1'-bis(3,5-dicarboxyphenyl)-4,4'-bipyridinium dichloride), has been successfully synthesized and structurally characterized. In Cu-CMOF, the {Cu2(COO)4} unit and viologen derivative both act as four-connected nodes forming an ssb-type cationic network with 42.84 topology, in which the positive charges are distributed on the organic viologen moieties. Deeper insight of the structure indicates that the 3D architecture of Cu-CMOF can be seen as packing of a 26-faceted polyhedral cage and two cuboid cages. Notably, Cu-CMOF displays a highly efficient anion exchange ability for capture and removal of anionic pollutants. UV-vis absorption spectra and digital images demonstrate that Cu-CMOF is capable of adsorbing the dichromate anion and anionic dyes effectively, such as methyl orange (MO-), Congo red (CR2-), and New Coccine (NC3-). Meaningfully, anionic dyes (MO-, CR2-, and NC3-) can be efficiently and selectively removed by Cu-CMOF in the presence of cationic dye methylene blue (MLB+). Such behaviors of anionic pollutant adsorption and dye separation are mainly caused by an ion-exchange process facilitated by the large cavity and decentralized distribution of positive charge in Cu-CMOF.
Collapse
Affiliation(s)
- Xiaoman Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Chaoyue Yan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Zhiyuan Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xin Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Qin Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Tingting Sang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yanli Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Qingfu Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Kecai Xiong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China.,State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
23
|
Duan SL, Zou WK, Guan Y, Lu ZW, Hu MH, Wu YF, Li YQ, Zhang H, Zou P, Wang GT. A water-stable pyridine bisphosphonate-based metal–organic framework as a selective and sensitive luminescent probe for Cr(VI) ions and acetone. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1893312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shao-Long Duan
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Wen-Kang Zou
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu Guan
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Zhi-Wei Lu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Ming-Han Hu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu-Fei Wu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu-Qing Li
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Hui Zhang
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Ping Zou
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Guang-Tu Wang
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| |
Collapse
|
24
|
Ma LL, Yang GP, Li GP, Zhang PF, Jin J, Wang Y, Wang JM, Wang YY. Luminescence modulation, near white light emission, selective luminescence sensing, and anticounterfeiting via a series of Ln-MOFs with a π-conjugated and uncoordinated lewis basic triazolyl ligand. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01100b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of Ln-MOFs with π-conjugated and uncoordinated lewis basic triazolyl ligand have luminescence modulation, near white light emission, selective luminescence sensing, and anticounterfeiting.
Collapse
Affiliation(s)
- Lu-Lu Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Gao-Peng Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Peng-Feng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Yao Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Jiao-Min Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| |
Collapse
|
25
|
Dong L, Lu YB, Zhu SD, Wu JW, Zhang XT, Liao Y, Liu CM, Liu SJ, Xie YR, Zhang SY. A new family of dinuclear lanthanide complexes exhibiting luminescence, magnetic entropy changes and single molecule magnet behaviors. CrystEngComm 2021. [DOI: 10.1039/d0ce01477j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four isomorphic and dinuclear lanthanide complexes were synthesized. Complexes EuIII and TbIII exhibit strong emissions, while GdIII shows the magnetocaloric effect and DyIII displays a single-molecule magnet.
Collapse
|
26
|
Dascălu IA, Mikhalyova EA, Shova S, Bratanovici BI, Ardeleanu R, Marangoci N, Lozan V, Roman G. Synthesis, crystal structure and luminescent properties of isoreticular lanthanide–organic frameworks based on a tetramethyl-substituted terphenyldicarboxylic acid. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Wang YW, Li MH, Zhang SQ, Fang X, Lin MJ. Photochromic and photocontrolled luminescent rare-earth D–A hybrid crystals based on rigid viologen acceptors. CrystEngComm 2021. [DOI: 10.1039/d1ce00789k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the introduction of a strong electron donor, CoIII(CN)63−, into the structure, the rare-earth donor–acceptor (D–A) hybrid crystal shows enhanced photochromism. The coordinative Eu3+ cation is also beneficial toward improving the luminescence.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, 350002, P.R. China
| | - Xin Fang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
- College of Materials Science and Engineering, Fuzhou University, 350116, China
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
28
|
Seal N, Goswami R, Singh M, Pillai RS, Neogi S. An ultralight charged MOF as fluoro-switchable monitor for assorted organo-toxins: size-exclusive dye scrubbing and anticounterfeiting applications via Tb3+ sensitization. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01091j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The trifunctional Li(i)-MOF acts as fluoro-switchable sensor for two organo-toxins, invisible-ink based data encrypter and size–specific dye scavenger, where DFT calculations support sensing and adsorption mechanisms considering extended structure.
Collapse
Affiliation(s)
- Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Inorganic Materials & Catalysis Division
- CSIR-Central Salt & Marine Chemicals Research Institute
| | - Ranadip Goswami
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Inorganic Materials & Catalysis Division
- CSIR-Central Salt & Marine Chemicals Research Institute
| | - Manpreet Singh
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Inorganic Materials & Catalysis Division
- CSIR-Central Salt & Marine Chemicals Research Institute
| | - Renjith S. Pillai
- Department of Chemistry
- Faculty of Engineering and Technology
- SRM Institute of Science and Technology
- Chennai
- India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Inorganic Materials & Catalysis Division
- CSIR-Central Salt & Marine Chemicals Research Institute
| |
Collapse
|
29
|
Xu X, Wang Z, Yan CC, Hou X, Tang SF. Structural variability of rare earth carboxylates based on polydentate carboxylate ligand containing pyridine group. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
He YC, Wang Y, Zhao FH, Wang YC, Wang KX, Yang HK, Xu N. Syntheses, structures and properties of two Ni(II) coordination polymers based on an anionic ligand deprotonated 5-((3-carboxyphenoxy)methyl)benzene-1,3-dioic acid and different neutral ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Ma YY, Qian DJ. Visual Luminescent Probes Constructed by Eu 3+ Complex-Functionalized Silica Nanocomposites and Their Langmuir-Blodgett Films at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14092-14103. [PMID: 33170711 DOI: 10.1021/acs.langmuir.0c02728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The trivalent europium ion (Eu3+) has garnered a great deal of interest for the design of luminescent materials possessing compound-independent emission bands, strong luminescent intensity, and long emission lifetimes. We herein introduce a synthetic methodology capable of constructing visual luminescent probes from Eu3+ complex-functionalized silica nanocomposites and their Langmuir-Blodgett (LB) films at interfaces. In order to facilitate the coordinative stabilization of Eu3+ over carrier surfaces, silica nanoparticles (nanoSiO2) were pregrafted with terpyridyl (TPy) to make nanoSiO2TPy linkers. Then, a well-designed coordination reaction of nanoSiO2TPy with EuCl3 and 2,6-pyridinedicarboxylic acid (DPA) was carried out at solid-liquid and air-water interfaces, where our desired material (denoted as nanoSiO2TPy@EuDPA) and its corresponding LB film are obtained. The presence of TPy and DPA interacting with Eu3+ plays a key role in regulating the chemical nature of the particle surface, hence giving rise to closely packed nanocomposite arrays in the film. As a result, the improvement in uniformity and stability is achieved alongside the enhancement in emission intensity and lifetime. With such advantageous optical properties, we find them workable as facile, green, and affordable luminescent sensors, by which a range of common toxic anions (Cr2O72-, MnO4-, and PO43-) can be visually and quantitatively recognized. Notably, the LB film-based material could afford a higher Ksv value (1.53 × 105 M-1), a lower detection limit (0.157 μM), and better recyclability than its original powder analogue, showcasing its utility as a more promising candidate for practical use.
Collapse
Affiliation(s)
- Yue-Yang Ma
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong-Jin Qian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
32
|
Li MH, Lv SL, You MH, Lin MJ. Three-component D-A hybrid heterostructures with enhanced photochromic, photomodulated luminescence and selective anion-sensing properties. Dalton Trans 2020; 49:13083-13089. [PMID: 32929431 DOI: 10.1039/d0dt02390f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As an emerging class of hybrid complexes, donor-acceptor (D-A) hybrid heterostructures with advantages of both photoactive organic and inorganic components have provided an excellent platform for the fabrication of multifunctional photoactive materials. In this context, we have demonstrated three novel host-guest D-A hybrid heterostructures, {[Ln(BCEbpy)(H2O)4][CoIII(CN)6]·4H2O}n (1 (Eu), 2 (Dy), 3 (Sm)), based on the anionic Co(CN)63- and cationic coordination layers assembled from a viologen functionalized tecton and Ln(NO)3. Due to the introduction of an electron donor, CoIII(CN)63-, the unique hybrid exhibits a highly sensitive and reversible photochromic transformation from light-yellow to brown upon UV-Vis irradiation. More interestingly, accompanied with this photochromic process, hybrid 1 simultaneously possesses a photomodulated fluorescence behaviour. In addition, hybrid 1 shows high sensitivity and selectivity towards Cr2O72- anions with a fairly small LOD of ca. 9.6 × 10-6 M.
Collapse
Affiliation(s)
- Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350116, China.
| | | | | | | |
Collapse
|
33
|
Zhuang Z, Liu D. Conductive MOFs with Photophysical Properties: Applications and Thin-Film Fabrication. NANO-MICRO LETTERS 2020; 12:132. [PMID: 34138131 PMCID: PMC7770712 DOI: 10.1007/s40820-020-00470-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/29/2020] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of hybrid materials with many promising applications. In recent years, lots of investigations have been oriented toward applications of MOFs in electronic and photoelectronic devices. While many high-quality reviews have focused on synthesis and mechanisms of electrically conductive MOFs, few of them focus on their photophysical properties. Herein, we provide an in-depth review on photoconductive and photoluminescent properties of conductive MOFs together with their corresponding applications in solar cells, luminescent sensing, light emitting, and so forth. For integration of MOFs with practical devices, recent advances in fabrication of photoactive MOF thin films are also summarized.
Collapse
Affiliation(s)
- Zeyu Zhuang
- Skate Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dingxin Liu
- Skate Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
34
|
Xia T, Wan Y, Li Y, Zhang J. Highly Stable Lanthanide Metal-Organic Framework as an Internal Calibrated Luminescent Sensor for Glutamic Acid, a Neuropathy Biomarker. Inorg Chem 2020; 59:8809-8817. [PMID: 32501688 DOI: 10.1021/acs.inorgchem.0c00544] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutamic acid (Glu) is the most abundant excitatory neurotransmitter in the central nervous system, and an elevated level of Glu may indicate some neuropathological diseases. Herein, three isomorphic microporous lanthanide metal-organic frameworks (MOFs) [(CH3)2NH2]2[Ln6(μ3-OH)8(BDC-OH)6(H2O)6]·(solv)x (ZJU-168; ZJU = Zhejiang University, H2BDC-OH = 2-hydroxyterephthalic acid, Ln = Eu, Tb, Gd) were designed for the detection of Glu. ZJU-168(Eu) and ZJU-168(Tb) suspensions simultaneously produce the characteristic emission bands of both lanthanide ions and ligands. When ZJU-168(Eu) and ZJU-168(Tb) suspensions exposed to Glu, the fluorescence intensity of ligands increases while the emission of lanthanide ions is almost unchanged. By utilizing the emission of ligands as the detected signal and the emission of lanthanide ions as the internal reference, an internal calibrated fluorescence sensor for Glu was obtained. There is a good linear relationship between fluorescence intensity ratio and Glu concentration in a wide range with the detection limit of 3.6 μM for ZJU-168(Tb) and 4.3 μM for ZJU-168(Eu). Major compounds present in blood plasma have no interference for the detection of Glu. Furthermore, a convenient analytical device based on a one-to-two logic gate was constructed for monitoring Glu. These establish ZJU-168(Tb) as a potential turn-on, ratiometric, and colorimetric fluorescent sensor for practical detection of Glu.
Collapse
Affiliation(s)
- Tifeng Xia
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, P. R. China.,State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yating Wan
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanping Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jun Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
35
|
Zhu S, Zhao L, Yan B. A novel spectroscopic probe for detecting food preservative NO2−: Citric acid functionalized metal-organic framework and luminescence sensing. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Shi ZQ, Ji NN, Wang MH, Li G. A Comparative Study of Proton Conduction Between a 2D Zinc(II) MOF and Its Corresponding Organic Ligand. Inorg Chem 2020; 59:4781-4789. [DOI: 10.1021/acs.inorgchem.0c00053] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhi-Qiang Shi
- College of Chemistry and Chemical Engineering, Taishan University, Tai’an 271021, P. R. China
| | - Ning-Ning Ji
- College of Chemistry and Chemical Engineering, Taishan University, Tai’an 271021, P. R. China
| | - Ming-Hao Wang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
37
|
Zhao XY, Liang B, Xiong KC, Shi YW, Yang SL, Wei TY, Zhang H, Zhang QF, Gai YL. Two novel lead-based coordination polymers for luminescence sensing of anions, cations and small organic molecules. Dalton Trans 2020; 49:5695-5702. [DOI: 10.1039/d0dt00533a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel lead-based compound is reported as a multi-responsive luminescent sensor for detecting anions, cations and small organic molecules, especially Cr2O72−, CrO42−, Fe3+ and nitrobenzene.
Collapse
Affiliation(s)
- Xue-Yan Zhao
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Bing Liang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Ke-Cai Xiong
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
- State Key Laboratory of Structural Chemistry
| | - Yu-Wen Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Si-Lei Yang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Ting-Yu Wei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Hui Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Qing-Fu Zhang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Yan-Li Gai
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
- State Key Laboratory of Structural Chemistry
| |
Collapse
|
38
|
Liu G, Han S, Gao Y, Xu N, Wang X, Chen B. Multifunctional fluorescence responses of phenyl-amide-bridged d10 coordination polymers structurally regulated by dicarboxylates and metal ions. CrystEngComm 2020. [DOI: 10.1039/d0ce01351j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal/carboxylate co-induced 1D → 3D phenyl-amide-bridged d10 coordination polymers that show multifunctional fluorescent responses for cations, anions and pesticides.
Collapse
Affiliation(s)
- Guocheng Liu
- College of Chemistry and Materials Engineering
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Bohai University
- Jinzhou 121013
- P. R. China
| | - Shengwei Han
- College of Chemistry and Materials Engineering
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Bohai University
- Jinzhou 121013
- P. R. China
| | - Yue Gao
- College of Chemistry and Materials Engineering
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Bohai University
- Jinzhou 121013
- P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Bohai University
- Jinzhou 121013
- P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Bohai University
- Jinzhou 121013
- P. R. China
| | - Baokuan Chen
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P. R. China
| |
Collapse
|
39
|
Wang JY, Shi Y, Tao DL, Yin GY, Bo QB. 2D chain layer versus 1D chain: rigid aromatic benzoate disassembling flexible alicyclic dicarboxylate-based lanthanide coordination polymers with enhanced photoluminescence and characteristic single-molecule magnet behavior. CrystEngComm 2020. [DOI: 10.1039/d0ce00583e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Used as photosensitizer and structural separator, aromatic benzoate activator was grafted on cyclopropane dicarboxylate-based lanthanide coordination polymers with efficient photoluminescence and characteristic behavior of single molecule magnet.
Collapse
Affiliation(s)
- Jia-Yin Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan250022
- PR China
| | - Yang Shi
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan250022
- PR China
| | - Dong-Liang Tao
- College of Chemistry and Material Engineering
- Fuyang Normal University
- Fuyang236037
- PR China
| | - Guo-Yin Yin
- Analytical Department
- STA Pharmaceutical US LLC
- San Diego
- USA
| | - Qi-Bing Bo
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan250022
- PR China
| |
Collapse
|
40
|
Yu HH, Chi JQ, Su ZM, Li X, Sun J, Zhou C, Hu XL, Liu Q. A water-stable terbium metal–organic framework with functionalized ligands for the detection of Fe3+ and Cr2O72− ions in water and picric acid in seawater. CrystEngComm 2020. [DOI: 10.1039/d0ce00430h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel Tb-MOF-A was fabricated by functionalized ligands and Tb3+, which displays high fluorescence, water stability up to 21 days and rapid, cyclic, simultaneous detection of Fe3+, Cr2O72− ions in water and picric acid in seawater.
Collapse
Affiliation(s)
- Hai-Huan Yu
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- People's Republic of China
| | - Jia-Qi Chi
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Xiao Li
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Jing Sun
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Chen Zhou
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Xiao-Li Hu
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Qun Liu
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- People's Republic of China
| |
Collapse
|
41
|
Gao W, Zhou AM, Wei H, Wang CL, Liu JP, Zhang XM. Water-stable LnIII-based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj00828a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Six Ln-CPs were synthesized: Dy-CP shows slow magnetic relaxation, and Eu-CP and Tb-CP exhibit recyclable and multi-responsive sensing for Fe3+, MnO4−, CrVI-anions (CrO42−, Cr2O72−) and TNP in an aqueous system.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Ai-Mei Zhou
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Han Wei
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Cui-Li Wang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| |
Collapse
|
42
|
Dong ZP, Zhao F, Zhang L, Liu ZL, Wang YQ. A white-light-emitting lanthanide metal–organic framework for luminescence turn-off sensing of MnO4− and turn-on sensing of folic acid and construction of a “turn-on plus” system. NEW J CHEM 2020. [DOI: 10.1039/d0nj02145h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A white-light-emitting lanthanide MOF shows recyclable and dual-responsive sensing for MnO4− and folic acid in an aqueous system with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Zhen-Peng Dong
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| | - Fei Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| | - Lei Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| | - Zhi-Liang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| |
Collapse
|
43
|
Sun Q, Yang K, Ma W, Zhang L, Yuan G. A highly stable 8-hydroxyquinolinate-based metal–organic framework as a selective fluorescence sensor for Fe 3+, Cr 2O 72− and nitroaromatic explosives. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01032d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel 8-hydroxyquinolinate-based metal–organic framework exhibits excellent sensing performance toward Fe3+, Cr2O72− and nitroaromatic explosives.
Collapse
Affiliation(s)
- Quan Sun
- School of Chemistry and Chemical Engineering
- Institute of Materials Science and Engineering
- Anhui University of Technology
- Maanshan
- China
| | - Kun Yang
- School of Chemistry and Chemical Engineering
- Institute of Materials Science and Engineering
- Anhui University of Technology
- Maanshan
- China
| | - Wenna Ma
- School of Chemistry and Chemical Engineering
- Institute of Materials Science and Engineering
- Anhui University of Technology
- Maanshan
- China
| | - Liyan Zhang
- School of Chemistry and Chemical Engineering
- Institute of Materials Science and Engineering
- Anhui University of Technology
- Maanshan
- China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering
- Institute of Materials Science and Engineering
- Anhui University of Technology
- Maanshan
- China
| |
Collapse
|
44
|
Liu X, Du L, Li R, Ma N, You M, Feng X. Different effects in the selective detection of aniline and Fe 3+ by lanthanide-based coordination polymers containing multiple reactive sites. CrystEngComm 2020. [DOI: 10.1039/d0ce00238k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isostructural Ln-CPs (1-Eu and 2-Tb) show almost the same high detection ability for Fe3+ and different detection abilities for aniline. The detection difference was studied through PXRD, UV-vis, luminescence lifetimes and Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Xinfang Liu
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Liyong Du
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- PR China
| | - Rongfang Li
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Ningning Ma
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Mengdi You
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Xun Feng
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| |
Collapse
|